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ARTICLE INFO ABSTRACT

Keywords: Almost every dataset these days continually faces the predicament of class imbalance. It is difficult to train
Imbalanced dataset classifiers on these types of data as they become biased towards a set of classes, hence leading to reduction in
SMOTE classifier performance. This setback is often tackled by the use of various over-sampling or under-sampling al-
E)SI)Z'I-]S)i;Ilngpling gorithms. But, the method which stood out of all the numerous algorithms was the Synthetic Minority Over-
Classification sampling Technique (SMOTE). SMOTE generates synthetic samples of the minority class by oversampling each

data-point by considering linear combinations of existing minority class neighbors. Each minority data sample
generates an equal number of synthetic data. As the world is suffering from the plight of COVID-19 pandemic, the
authors applied the idea to help boost the classifying performance whilst detecting this deadly virus. This paper
presents a modified version of SMOTE known as Outlier-SMOTE wherein each data-point is oversampled with
respect to its distance from other data-points. The data-point which is farther than the other data-points is given
greater importance and is oversampled more than its counterparts. Outlier-SMOTE reduces the chances of
overlapping of minority data samples which often occurs in the traditional SMOTE algorithm. This method is
tested on five benchmark datasets and is eventually tested on a COVID-19 dataset. F-measure, Recall and Precision
are used as principle metrics to evaluate the performance of the classifier as is the case for any class imbalanced
data set. The proposed algorithm performs considerably better than the traditional SMOTE algorithm for the
considered datasets.

1. Introduction coronavirus, every dataset having a clinical history of patients is bound to

be imbalanced. An imbalanced dataset is the dataset where elements of

As of July 22nd’ 2020, over 15 million cases of COVID-19 were
detected over the world. Schools postponed their examinations, offices
were closed, many employees were laid-off, and a plethora of labourers
were stranded. There may be just a countable number of people whom
this pandemic has not affected since its onset. Also called the Novel
Coronavirus, it has caused an average of 144 deaths per 1 million people.
Although the death rate is on the lower side, the number of people
hospitalized proliferated day by day. Hospitals could rarely accommo-
date so many people, and also faced a shortage of equipment. The authors
salute the heroic efforts by the doctors [1] and the government to
overcome this abysmal situation.

To combat this situation, the researchers present their contribution in
improving the classification accuracy while dealing with highly imbal-
anced COVID-19 datasets. Since only 9% of the people tested positive for
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one class heavily outnumber the elements of the other [2]. While dealing
with imbalanced datasets, this paper has considered two-class imbal-
ances to ensure clarity [3,4]. These imbalanced datasets heavily affect
the performance of the classifier [5]. The class imbalance problems have
been noticed in a myriad of fields such as fraud detection [6], medicine
[71, bioinformatics [8], intrusion detection [9], financial management
[10], and event identification in nuclear plants [11] being a few of them.
Therefore, the authors propose an improved oversampling method which
will create new and near-accurate synthetic data based upon the existing
data. This method is an adaptation of the Synthetic Minority Over-
sampling Technique (SMOTE) [12]. SMOTE creates synthetic samples of
the minority class by calculating the euclidean distance between any two
randomly chosen k-nearest neighbors [13] and introducing new syn-
thetic samples along the line joining the two minority samples. Every
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data point is oversampled a certain amount, to produce more synthetic
samples. For instance, 300% oversampling means every minority sample
is oversampled thrice, meaning three synthetic samples are generated for
every data point. The proposed algorithm in this paper called the
Outlier-SMOTE states that every minority sample need not be over-
sampled by the same amount. Each data-point should be oversampled
based upon its position in the space. Outlier-SMOTE gives more impor-
tance to the outlying/remotely placed samples, and oversamples them
more as compared to its counterparts. This makes the job of the classifier
easy to notice the miniscule features and classify them correctly. Since
the motive is to apply the algorithm to a medical domain (example:
COVID-19), the main goal should be to reduce the false negatives, which
means outputting the result ‘safe’ for the person who is affected. The
aftermath could be disastrous if something of the sort happens.

1.1. COVID-19 and Outlier-SMOTE

The detection of COVID-19 involves undergoing a ‘nasopharyngeal
swab’, a ‘throat swab’ and a check through RT-PCR. A real-time poly-
merase chain reaction (real-time PCR), is a laboratory technique of mo-
lecular biology based on the polymerase chain reaction. Other than its
function in detection of COVID-19, RT-PCR has been used to measure
viral load with HIV and may also be used with other RNA viruses such as
measles and mumps.

Plus, pulse oxygen saturation (also called SpO2) is an important
testing method for COVID-19. It is a fraction of the oxygen-saturated
haemoglobin, compared to the total haemoglobin in the blood. Also,
Chest X-ray can be used as an effective and a fast way to immediately
triage COVID-19 patients when suspected, but Chest X-Rays have been
found to produce many false positives in the detection of COVID-19, due
to which they may not be an effective method to gauge the chances of the
disease. Due to the high volume of cases, RT-PCR, SpO2 (Pulse oxygen
saturation) and chest X-Ray are infeasible in many locations due to the
global shortage of test kits and resources. Many tests turn out to be
negative as a lot of people having a mere cough or cold are tested for
COVID-19. This leads to a massive drain of resources provided by the
government and the people really in need of the test are left out. Outlier-
SMOTE acts as a filter by improving the prediction of a person having the
virus. The model is trained upon the data provided by Kaggle,' and
predicts whether the person, given particular symptoms, is likely to be
affected by COVID-19. This dataset contains anonymized data from pa-
tients seen at the Hospital Israelita Albert Einstein, at Sao Paulo, Brazil,
and who had samples collected to perform the SARS-CoV-2 RT-PCR and
additional laboratory tests during a visit to the hospital. Outlier-SMOTE
algorithm helps in filtering out people who are less likely to be affected
and in turn leads to the optimum use of resources available. Using this
algorithm, tests will only be conducted on the people who are most
probable of being affected with the virus.

Outlier-SMOTE can reduce the chances of false negatives, by a unique
method of oversampling for each data-point. The Euclidean distance of
each minority sample is taken and is compiled as a Matrix. L2 norms can
be used for finding the oversampling weights of the samples in the mi-
nority class. The farthest element will have the maximum priority for
oversampling. Then, the matrix is normalized and converted into an
oversampling matrix with the formula given below to show how much
each data-point will be oversampled. Upon experimentation with five
benchmark datasets, and comparison with SMOTE [12] and ADASYN
[14], this paper has proved that Outlier-SMOTE performs better in the
majority of cases, when tested upon Recall, Precision and F1-Score. As
stated in Fig. 1, the authors aim to maximize the performance of the al-
gorithm in the pre-processing stage.

Further sections of this paper are elaborated as follows: Section 2
briefly summarizes the past work on imbalanced datasets. Section 3

L https://www.kaggle.com/einsteindata4u/covid19.
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provides us with the details of the Outlier-SMOTE algorithm and its
working. Section 4 presents the various testing methods that were used to
evaluate the algorithm’s performance. Section 5 elucidates the results by
describing the comparison of Outlier-SMOTE with SMOTE and ADASYN.
and Section 6 explains the inferences that were obtained from the results.
Section 7 elaborates the COVID-19 data and tests the algorithm in a
similar way as that of the five considered benchmark datasets. Section 8
has been included to discuss the nuances and the scope of improvements
for this algorithm. Finally, the authors conclude the paper in Section 9.

2. Literature review

The quandary of imbalanced datasets has been prevailing a long time,
and several methods have been proposed to improve the classification
accuracy, like random over-sampling or under-sampling [15], NearMiss
[16], Borderline SMOTE [17], and many more [18,19]. SMOTE chooses a
minority sample and randomly selects one of it’s k-nearest neighbors,
multiplies the distance of the line joining the two with any number be-
tween 0 and 1, and places it in that line. This process is carried out for all
other feature data in the minority class until the N% oversampling limit is
reached. While a modified version known as Safe-Level SMOTE [20],
synthesizes minority instances which are at a safe level and assigns
weights accordingly. According to this paper, the gap between the ma-
jority and minority samples should be as much as possible. Many re-
searchers also used different classifiers to gauge their performance such
as [21], which uses Bagging [22], and SVMs [23] to deal with imbal-
anced datasets. It’s an extrapolated version of Borderline-SMOTE.

Borderline SMOTE [17] effectively over-samples only those minority
elements which are at a safe distance from the border of the majority
samples. Doing this prevents the risk of overlapping the samples which
happens in most of the cases while oversampling. If the minority samples
are at a safe distance, then oversampling will be safe and it also eases the
work of the classifier in extracting the important features. Many hybrid
approaches are also followed, for instance Ref. [24], implementing
SMOTE in appropriate searching algorithms such as PSO (Particle Swarm
Optimization [25]) and classifiers such as C5 (Decision Tree [26]) can
significantly improve the effectiveness of classification for massive
imbalanced data sets.

The algorithms used for comparison with Outlier-SMOTE in this
paper are ADASYN [14] and SMOTE [12]. The essential idea of ADASYN
is to use a weighted distribution for various minority class examples
according to their own level of difficulty in learning, where a greater
amount of synthetic data is generated for minority samples that are
harder to learn. The logic of these algorithms, though being similar, have
a minor difference, which is that ADASYN is an improved version of
SMOTE. In SMOTE, all the synthetically generated samples have a linear
correlation with the original samples, whereas in ADASYN, instead of
being linearly correlated, the generated samples have a minutia of vari-
ance in them, which make them look analogous to the real samples.
ADASYN, though being adaptive as compared to SMOTE, generates
imprecise samples often as more data is generated in neighbourhoods
with high amounts of majority class samples. Because of this, the syn-
thetic data generated might be very similar to the majority class data,
potentially generating many false positives. This drawback can be
countered by putting a cap on the oversampling rate.

Also, there are many popular algorithms such as [27] SMOTEBoost
combines an intelligent oversampling technique (SMOTE) with Ada-
Boost, resulting in a highly effective hybrid approach to learning from
imbalanced data. The authors say, combining RUS and Boost will give a
much improved performance as compared to SMOTE. Also, there is SCUT
[28], which is used to balance the number of training examples in such a
multi-class setting. The SCUT approach oversamples minority class ex-
amples through the generation of synthetic examples and employs cluster
analysis in order to undersample majority classes. It is done on
multi-class imbalanced datasets.
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Fig. 1. An illustration describing the stage at which the algorithm works.

3. Outlier-SMOTE algorithm
3.1. Principle

The traditional SMOTE algorithm equally oversamples each data-
point in the minority class. But more often than not, it is not necessary
to give equal importance to every data-point. The clustered data in the
feature space can be oversampled less as compared to its counterparts as
the classifier can classify them easily. The authors strongly believe that
high importance should be given to the data-points which are far away
from the cluster, as they are the samples which are challenging to clas-
sify. Outlier-SMOTE works on the same principle. Fig. 2 shows the
workflow of the proposed algorithm.

3.2. Steps involved in the algorithm

1. After cleaning the dataset, separate the minority samples, and feed it
into the algorithm of Outlier-SMOTE. Let us say, the minority dataset
consists of N samples and W features. Now, a Euclidean Matrix is
generated using the minority data samples. The dimension of the
matrix can be represented as [N,W]. The distance of each point with
respect to the others is calculated using the euclidean distance for-
mula mentioned below. After looping through, a matrix of dimension
[N,N] is obtained.

N

> (mi,2) = m(2))

EUCLIDEAN DISTANCEi (m; , m;) =

(€Y

In this equation, i € [0,N] and j € [0,N]. In the Euclidean Matrix [29]
all the diagonal elements(where j = i) are zero, as the distance of a
sample from itself is zero.

2. For constructing the oversampling matrix, each sample is assigned
probability weight p in the range (0, 1) to decide how much impor-
tance it gets. Therefore, the sum of the column elements is taken. So,
the dimension now changes to [N,1]. This summed matrix denotes the
total distance of the samples from the cluster of the minority class.
‘ED’ in equation (2) signifies the Euclidean distance.

EUCLIDEAN SUM (ES) = [ZED“, ZEDZi’ ZED3i ......... s ZEDNi] N x
1 2

Now, the [N,1] dimensioned matrix may contain all the numerals
from [0,00]. Bringing all the elements under a scale is necessary to decide
the importance of each sample. Therefore, normalize the matrix using the
formula given below.

ES

Normalized Matrix(NM) :W(ES)

3)

3. This normalized matrix is able to indicate the apt amount of over-
sampling required for the samples. Now, round off the values to two
decimal points, and then multiply them with the percentage of
oversampling (T%) mentioned.

N*T
Over: ling Matrix=
versampling Matrix=—0

[NM] C))

This algorithm is vividly illustrated using the example given below.
Here, let us take an example of 5 minority samples (N = 5) which have to
be sampled 5 times (T = 500%). This dataset is just an example to
illustrate how the algorithm actually functions. Let us start off by
considering a euclidean distance matrix (summed) of five synthetic
sample data-points whose amount of oversampling has to be deciphered.
The ES Matrix is calculated by summing over the columns of the
euclidean distance matrix as shown in Point no. 2. Table 1 will clearly
show how the algorithm calculates by the oversampling rate of each
sample.

In traditional SMOTE, each of the given samples, N = (1,2,3,4,5)
would have been given equal priority and would have been oversampled
5 times; which means the closer and farther samples would have the same
importance. Whereas, Outlier-SMOTE leverages upon this factor of
SMOTE and oversamples each minority data according to its position in
the feature space. Farther samples get more importance and the samples
in proximity of each other get comparatively lesser importance.

At the same time the total number of samples created stays the same.

@ In traditional SMOTE: (5+5+5+5+5) = 25 synthetic samples
created.
@ In Outlier-SMOTE: (34+5+2 +9+6) = 25 synthetic samples created.

So, Outlier-SMOTE prioritizes the samples and oversamples each one
of them accordingly without changing the total amount of synthetic
samples generated.

Although, it is a known fact that each dataset has a unique classifier
tailored for it which can give the best Precision, F1 and Recall Score, here

Table 1

An example showing the working of Outlier-SMOTE algorithm.
N 1 2 3 4 5
Sum of Euclid Dist 96 159 51 264 192

Matrix

Normalized Matrix 0.12598 0.20866 0.06693 0.34645 0.25196
Rounded Off Values 0.13 0.21 0.07 0.35 0.25
Oversampling Rates 3 5 2 9 6

Minority
Dataset

Euclidean

Column-wise

H Distance Matrix H sum of the Matrix Matrix Matrix

Normalized Overasampling

Fig. 2. Workflow of Outlier-SMOTE.
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the authors have used Logistic Regression as a blueprint for gauging the
performance of the algorithm, as it has a wide reputation of its gener-
alizing capability. The hyper-parameter K-Nearest Neighbors to over-
sample has been set to a constant (k = 5) as it did not lead to much
variation in performance with different values. Since this algorithm is
used at a pre-processing stage, the authors have used one classifier and
multiple oversampling rates to experiment on its performance.

Future work regarding this field will concentrate on finding an apt
distance measure for high-dimensional datasets. Euclidean Distance,
though being lucid and robust, fails to capture the intricacies of more
than 3 dimensions. Therefore, an alternative distance measure such as
Mahalanobis Distance [30] or Manhattan Distance [31] must be taken
into consideration. Further sections detail the experiments conducted on
the algorithm and the intuitions obtained from them.

4. Methods for evaluating performance

Selecting an apt performance measure for evaluation of the algorithm
is a pivotal step, because classifiers trained on imbalanced datasets give
very majority-class biased results. An apt performance measure will assist
us in judging the algorithm’s adaptability in an efficient manner. The
main aim should be to reduce the false negatives (FNs) as much as
possible.

The most ubiquitous method used in this situation is the confusion
matrix [32], which indicates the amount of True Positives(TP), True
Negatives(TN), False Positives(FP) and False Negatives(FN). The visual
representation of the matrix in Table 2.

In the confusion matrix, the correctly classified samples in the posi-
tive (TP) and negative (TN) classes should be as high as possible. This
matrix treats the predicted samples class-wise but not as a whole. In this
case, the minority samples should be classified as correctly as possible.
Since, the goal is the correct classification of minority classes, a well-
suited performance metric is needed, such as Precision, Recall and F1-
Score.

TP
Precision = —————— )
TP + FP
TP
Recall = ————
ecall TP+ FN (6)

Precision is a ratio between the correctly classified positive samples
and the total number of positive samples. Precision is a good measure to
gauge when the costs for False Positives are high and is normally used in
E-Mail spam detection. Recall or Sensitivity is the measure of number of
correctly classified positive samples out of the number of observations in
the positive class. After considering the above two equations, let us
consider the F1-Score which is the harmonic mean of Precision and
Recall.

2*Recall* Precision

F1 Score = Recall + Precision 2

The authors also remark that the Receiver Operating characteristic
(ROC) curve could also be applied to evaluate imbalanced data. It uses
the Sensitivity parameter and it plots a graph between False Positive Rate
(FPR) and True Positive Rate (TPR). ROC curve assesses the overall
classification performance and does not place more emphasis on class-
wise performance. Therefore, this paper tests the algorithm on Recall,

Table 2
Ilustration of the confusion matrix.

Predicted + ve Predicted -ve

Actual + ve TP FN
Actual -ve Fp TN
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Precision and F1-Score on various oversampling rates to maximize the
fairness while dealing with minority classes.

5. Experiment
5.1. Datasets

The authors tested this algorithm on five benchmark datasets with
imbalance ratios (minority: majority) ranging from 1:9 to 1:40. The
datasets were taken from University of California at Irvine (UCI) Re-
pository,? and were fetched using the imblearn Python library [33]. As
this work is concentrated on binary imbalanced datasets, this paper takes
one class in each dataset as minority and treats the rest as majority. The
researchers first test the algorithm on the following datasets before
applying it to the COVID-19 data. Table 3 gives a brief overview of the
datasets used to test the algorithm.

Fig. 3 shows the majority to minority ratio of the datasets. The bar-
plots clearly indicate that the data used was highly-imbalanced. In the
further sections, the authors go on to prove that Outlier-SMOTE drastically
increased the Precision, Recall and F1-Score while classifying this data.

5.2. Classifier used

As mentioned above, the work is concentrated in the preprocessing
stage, so the authors used just one classifier and gauged the algorithm’s
performance. Binary Logistic Regression was used in this paper because
of its adaptability. The authors have tested the algorithm using different
oversampling rates to prove its superiority over other preprocessing
algorithms.

5.3. Procedure

Table 4 shows us how the data was segregated while feeding it into
the classifier. The table is a visualization of the working scheme of k-Fold
Cross Validation where k = 5. The table is just shown as an illustration of
the process. This paper has used the value of k as 10. This method splits
the data into ‘k’ equally distributed parts and uses one of them as a
validation set each time. After doing this process k-times, take an average
of all scores to get a correct interpretation of the result. This paper took
the value of k = 10 [34], a value that has been found through experi-
mentation to generally result in a model skill estimate with low bias and a
modest variance.

Table 3
Description of the datasets.
DESCRIPTION MIN: # #
MAJ SAMPLES FEATURES
ECOLI DATASET Classification of 35:336 371 8
proteins based on 1:9)
their amino acid
sequences.
ABALONE Prediction of the 42 : 689 731 8
DATASET age of abalone (1:16)
YEAST DATASET Contains the data 51: 1321 9
of localization of 1270 (1:
yeast bacteria 24)
WINE QUALITY Signifies the 175: 5073 11
DATASET quality of white 4898 (1:
wine 27)
MAMMOGRAPHY Test for breast 260 : 11,443 6
DATASET cancer 11,183
(1:42)

2 https://archive.ics.uci.edu/ml/datasets.php.
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Fig. 3. Bar Graph illustrating the number of majority and minority samples.

Table 4
An illustration of 5-Fold Cross Validation.

One iteration of the process on a fictitious imbalanced dataset looks as
follows:

1) The cleaned dataset is fetched, and is split into majority and minority
classes.

2) Further, both the classes are split into 90% and 10% of their respec-
tive sets.

3) So, now there are 4 classes:

a) 90% + 10% of the majority set; and
b) 90% + 10% of the minority set.

4) Now, combine the 90% of the majority set from 3(a) and the 90% of
the minority set from 3(b) and use it as a training set. Similarly, club
the 10% majority from 3(a) and 10% minority from 3(b) and make ita
validation set.

5) Train on the decided classifier obtained and store the Recall, Precision
and F1-Score.

After training for k-times, take an average of all the observations
obtained to get the most unbiased result. An important point to note is
that K-Fold Cross Validation is only applied on the training data to avoid
any data leakage. This process ensures the correct result in any dataset
that has tested the algorithm.

6. Dataset results
6.1. Quantitative results

The observed values for Recall, Precision and F1-Score are presented
in the tables below. Each table represents the datasets that the authors
have tested the algorithm upon. Each table has 5 rows having the over-
sampling rates varying from 100% to 500%. The performance of Outlier-
SMOTE was compared with two benchmark algorithms, traditional
SMOTE [12] and ADASYN [14]. Each algorithm uses the same classifier:
Logistic Regression. After preprocessing it with the three oversamplers
mentioned above, they are fed into the classifier and the results are
noted. The comparisons show that, in most cases, Outlier-SMOTE per-
forms better as compared to its counterparts. Tables 5-9 show the results
obtained after experimentation where ‘OS Rate’ represents oversampling
rate and O-SMOTE represents Outlier-SMOTE.

6.2. Inferences drawn from the results

For the ECOLI dataset in Table 5, the algorithm surpasses the other
two by a substantial amount in recall and F1-Score. The performance

Table 5
Results obtained on ECOLI dataset.
Recall Precision F1 - Score

OS Rate O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN
100 99.9 99.4 99.8 88.9 89.7 88.6 94.14 94.14 93.9
200 99.1 93.6 96.4 85.8 88.6 85.2 92.1 90.5 90.4
300 94.2 88.6 91.1 85.1 90.0 88.9 89.6 88.6 89.4
400 91.1 87.7 89.4 91.5 91.23 88.8 91.1 88.5 88.6
500 88.4 84.33 87.6 91.7 93.3 90.1 90.7 87 88.5
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Table 6
Results obtained on ABALONE dataset.
Recall Precision F1 - Score
OS Rate O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN
100 99.9 99 99.89 90 84 86.2 95 91.3 92.5
200 929 94 97.6 81 81.6 81 89.5 87.6 89.3
300 89.5 88 89.6 85 84.7 79.6 86.5 86.3 84.4
400 87 85 85.4 85.6 84.8 81.1 86.2 85.3 83.4
500 82.5 81.7 82.6 86 84.8 80.8 83.2 83.3 81.7
Table 7
Results obtained on YEAST dataset.
Recall Precision F1 - Score
OS Rate O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN
100 99.99 99.9 99.9 93.1 95.2 94.2 97.5 96.06 97.0
200 99.99 99.9 99.8 92.4 94.6 91.9 96.1 95.1 95.8
300 99.9 99.3 99.6 90 89.6 89.6 94.4 94.2 94.1
400 99.6 96.6 98.8 89.4 86.6 88.6 93.4 91.3 93.0
500 98.4 96.7 97.2 87.8 87.4 86.4 92.2 92.04 91.5
Table 8
Results obtained on WINE-QUALITY dataset.
Recall Precision F1 - Score
OS Rate O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN
100 96.9 94.9 95.1 88.3 86.8 87.2 92.4 90.7 91
200 929 93.3 93 84.5 86.6 84.7 88.5 89.8 87
300 89.2 87.6 88.5 84.6 83.8 84 86.4 85.7 85.2
400 87.1 84.9 85 83.3 82.6 82.8 84.3 83.7 83.9
500 82.8 81.6 81.3 83.7 83.5 829 83.2 82.55 83.1
Table 9
Results obtained on MAMMOGRAPHY dataset.
Recall Precision F1 - Score
OS Rate O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN
100 99.6 99.4 99.5 98.6 97.7 98.2 99.1 98.5 98.9
200 99.5 99.3 99.4 97.6 97.7 97.0 98.6 98.5 98.2
300 99.19 99.2 99.2 97.1 96.95 95.5 98.1 98.0 97.3
400 99.3 98.9 98.9 96.2 96.6 94.3 97.6 97.8 96.5
500 98.9 98.5 98.6 95.9 95.6 93.4 97.1 97.2 95.9

drops down at 300% oversampling but is still higher than the perfor-
mance of the two algorithms. Recall in the Abalone dataset gives
marginally better results than the other two, as it is always on the higher
side as shown in Table 6. SMOTE’s performance varies a lot in the F1-
Score, but nevertheless, Outlier-SMOTE performs better every time.
Precision values seem unpredictable here as a major drop in performance
is noticed at 200% oversampling. Outlier-SMOTE’s performance on the
Yeast dataset (refer Table 7) has been the most commendable so far, as
the recall and Fl-scores are very distinctive and Outlier-SMOTE has
performed consistently well in both of them as shown in Table 7. As
shown in Table 8, SMOTE and ADASYN have approximately the same
Recall rates in the Wine Quality dataset, while Outlier-SMOTE performs
marginally better. Here, in F1-Score, SMOTE'’s performance increases at
200% oversampling, but Outlier-SMOTE surpasses it in the rest. Recall
and F1-Score give a more accurate representation of the performance in
imbalanced datasets rather than precision. Despite giving the perfor-
mance at 300%, the recall score is consistently higher for Outlier-SMOTE
in Mammography dataset (refer Table 9), and while the F1-Score grad-
ually goes down with the increase in oversampling, Outlier-SMOTE
manages to perform better for majority of the oversampling rates.
Clearly, Outlier-SMOTE performs better than SMOTE or ADASYN in
majority of the cases. The performance is especially commendable on

ECOLI, Yeast and US-Crimes dataset where it surpasses the performance
in almost all the oversampling rates. Here, the paper focuses more on the
recall and F1-scores only as they are more indicative of the algorithm’s
generalization capability.

7. Comparative analysis of Outlier-SMOTE with SMOTE and
ADASYN on the highly imbalanced COVID-19 dataset

This section presents the analysis of various crucial and pivotal
symptoms of COVID-19 using the dataset obtained from Kaggle. The
authors hope their work can be utilized to garner further insights, and
pray for the world to return to its normalcy as quickly as possible.

7.1. Dataset description

This dataset contains anonymized data from patients seen at the
Hospital Israelita Albert Einstein, at Sao Paulo, Brazil, and who had
samples collected to perform the SARS-CoV-2 RT-PCR and additional
laboratory tests during a visit to the hospital. The link to the dataset is
provided here. This dataset has 5644 test samples of various patients
being tested for COVID-19. The patients were evaluated on 111 attributes
such as Haemoglobin, Platelets, Arterial Blood gas analysis, etc. Out of
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5644 tests, only 553 people tested positive for COVID-19. This statistic
clearly indicates a 1 : 9 (minority to majority class) ratio. Since, only one
reliable dataset was found which denoted the clinical symptoms of
COVID-19 clearly, the authors tested their hypothesis on only this orig-
inal and trusted dataset from Kaggle. In the future, if any dataset is ob-
tained from an unverifiable source, the authors suggest to cross-check the
results with other similar datasets to negate the chances of mislabeling in
the data.

The data had lots of Null and NaN values, because of lack of data from
the patients. Therefore, the features with >90% of Null values were
removed. Further, to clean the data, the variables with zero variance
were removed as they consist of only one value and do not have any
significance. The last 19 columns were related to the presence of antigens
(binary values - 0 or 1), and the null values were immense in these,
therefore a row-wise sum was taken. All the 19 columns were combined
into one column named ‘other_disease’. It was found that 13% of the
patients tested positive for the presence of at least one antigen. The rest of
the scattered null values were replaced by the mean of their counterparts.
After trimming all the unnecessary attributes, the authors narrowed
down to 39 variables on which the model will be trained. Fig. 4 shows the
dependency of each attribute with respect to the other in the form of a
correlation matrix.

As illustrated in Fig. 4, there are a myriad of variables which are
dependent on one another such as Haemoglobin and Hematocrit, Red
Blood cells and Hematocrit, Platelets and Leukocytes and many more.
Higher the value, the more importance the feature has in determining the
probability of COVID-19. Fig. 4, describes some of the pivotal features
which may turn out to be useful in the detection of the disease.

7.2. Classification strategies

The authors concentrate on improving the performance only in the
pre-processing stages. Therefore, they use only one best performing
classifier with multiple oversampling rates and tested it on Recall, Pre-
cision and F1-Scores. The main focus is on the Recall factor as the main
aim is on minimizing the False Positives.

Although Logistic Regression and Random Forest classifier gave us
roughly the same results, Random Forest classifier with n_estimators =
100 was preferred, as the authors wanted to present a classifier which
will be able to perform regardless of substantial change in the data in the
future. This paper solely focuses on the effect of various oversampling
rates on the accuracy of the classifiers. The five benchmark datasets were
classified using Logistic Regression because of its better generalizing
capability, and because it gave the highest possible result. Also, Random
Forest is popular for handling more complex datasets as compared to
Logistic Regression. The authors specifically chose Random-Forest for
only COVID-19 datasets so that they could achieve a state-of-the-art
combination of the Outlier-SMOTE algorithm and a well-structured
classifier in the field. It could potentially help to gain more insights
about the disease.

7.3. Experiments

Table 10 illustrates the results obtained after experimenting with
COVID-19 dataset. The results are obtained after performing 10-fold
cross validation on the dataset. The model was tested on five over-
sampling rates (between 100% and 500%) with three parameters, Recall,
Precision and F1-Score, similar to the five benchmark datasets. Upon
obtaining results, it is noted that the COVID-19 dataset’s peak perfor-
mance is obtained at 500% oversampling, and since the dataset had to be
trimmed to remove the Null and NaN values, the performance rates are
quite unconventional as opposed to the five datasets tested above. As
seen, since COVID-19 dataset was an imbalanced dataset with the
imbalance ratio of 1:9, the algorithm performed efficiently as compared
to the other two. With no oversampling, the classifier almost fails to
distinguish between the positive and negative classes, and as
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oversampling rate increases, the performance boosts up, which gets us to
believe that for detecting the crucial symptoms of COVID-19, it is abso-
lutely essential to get more authentic data. For the specific dataset pre-
sented above, the authors conclude Outlier-SMOTE is by-far the best
option to improve the performance of the classifier.

Random Forest classifier comes with a feature importance attribute
that outputs an array between O and 1 representing how useful the
feature is to the model while predicting the output. Random forest uses
gini importance or mean decrease in impurity (MDI) to calculate the
importance of each feature. As shown in Fig. 5, Leukocytes and Platelets
amass the greatest importance in prediction of the COVID-19 disease.
Surprisingly, a patient’s age doesn’t contribute much in the detection of
the disease. The feature importance graph is pivotal in distinguishing
features which actually contributed to the accuracy and the ones which
were just noise. Further extrapolating this technique, we use the very
useful SHAP [35] to visualize the variation in output of the model with
the change in values of individual features. SHAP and Gini Importance
agree on a lot of features such as the fact that leukocytes, platelets and
eosinophils indicate a greater chance of presence of COVID-19. Gini can
be defined as a statistical measure of the degree of variation represented
in a set of values. It should be noted that Fig. 5 only provides the names of
the features which were pivotal in detection of the disease. The way
through which the values (higher or lower) of these features affect the
symptomatology of COVID-19 is discussed through SHAP (Fig. 6).

This paper used the very interesting SHAP (Shapely Additive Expla-
nations) [35] method to visualize the readings. SHAP (SHapley Additive
exPlanations) is a game theoretic approach to explain the output of any
machine learning model. The authors would like to remark that SHAP
technique was used as an orthogonal validation of their model. As shown
in Fig. 6, SHAP actually denotes which features are important or which
features are dominant while giving the result. For instance, a high value
of Mean Corpuscular Volume (MCV) drives the result towards a negative
output which means a high level of MCV may be a symptom of a
COVID-negative person. SHAP values are calculated by taking the
average of the marginal contributions of all the features. SHAP repeat-
edly changes each variable’s value and sees how it would affect the result
and plot the graph. The goal of SHAP is to explain the prediction of an
instance x by computing the contribution of each feature to the predic-
tion. The X-axis contains the impact of the feature on the result, negative
values mean a low impact and positive values mean a higher impact. The
Y-Axis has all the features that have been observed.

The authors found certain interesting pointers through the correlation
matrix and extracting features from the data using SHAP in Fig. 5, which
are noted:

@ If a patient has a high value of Monocytes, it is a strong indicator of
the presence of COVID-19.

@ COVID-19 presence is also indicated by low values of Eosinophils,
Leukocytes and Platelets.

@ If the patient is tested positive for ‘other_disease’ (i.e., if its value is 1),
it is highly unlikely that the person will have COVID-19. This means
that presence of other similar diseases does not indicate the presence
of coronavirus.

@ Since Outlier-SMOTE works efficiently on this dataset, it can be
inferred that the remotely placed minority samples in the distribution
space have features which are a strong indication of corona-virus.

@ False Positives or negatives can be reduced only upto a certain extent
by researchers using a couple of datasets. Further assessments and
inferences can only be drawn by an experienced doctor.

8. Discussion

Outlier-SMOTE is an algorithm which oversamples the minority data-
point according to its position in the sample space. The data-point which
is outlying or is in a remote position gets oversampled more than the
others, and the data-point which is near to the cluster gets a lesser
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Fig. 4. Correlation Matrix denoting the importance of the various features in the considered COVID-19 dataset.
Table 10
Results obtained on COVID-19 dataset.
Recall Precision F1 - Score
oS O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN O-SMOTE SMOTE ADASYN
Rate
100 69 69.8 64.2 73.2 69.5 69.2 70.4 68.1 58.0
200 78.2 71.3 70.2 82.8 77.3 76.6 80.3 74.1 71.4
300 89.9 82.13 81.5 87.2 80.8 80.8 90.6 81.44 80.8
400 87.6 86.7 87.45 90.4 84.12 83.9 88.9 85.37 85.5
500 88.8 88 86.9 91.4 85.5 85.07 90.1 86.77 85.86
Feature Importance
Red blood cell distribution width (RDW)
Mean corpuscular hemoglobin concentration (MCHC)
Patient age quantile
Mean corpuscular volume (MCV)
Red blood Cells
Basophils
Lymphocytes.
Monocytes
Mean platelet volume
Eosinophils
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Fig. 5. Feature Importance of each attribute in the dataset.

amount of oversampling. Outlier-SMOTE reduces the chances of the
synthetic samples overlapping with the other samples, as compared to
SMOTE as it prioritizes only the remotely placed samples. Although
Outlier-SMOTE variably oversamples each minority data-point, the total
amount of oversampling for the complete minority set remains constant.
The primary incorporation of Outlier-SMOTE in automated frameworks
may be in mobile applications which predict the probability of COVID-
19. If the incorporation of COVID-19 questionnaire and the algorithm
is done together, the prediction of probability of the disease can be
bolstered.

There are a few areas of improvement in this algorithm which the re-
searchers will look forward to as their future work. First one would be the
Euclidean Distance. In case of lower-dimensional datasets, Euclidean
distance is a perfect measure to calculate the distance from one point to
another. But for higher dimensions, the nuances of the data might get lost
while calculation which mightlead to reduction in performance. Although
this paper considered a fixed oversampling rate of 100%-500%, the au-
thors claim that there is no fixed oversampling rate for any dataset to
ensure maximum performance. Each dataset has a unique oversampling
rate which will help the classifier to achieve maximum accuracy.
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9. Conclusion and future work

A classifier trying to learn from an imbalanced dataset can cause a
major bottleneck for researchers trying to train a model. Imbalanced
datasets often decrease the performance of the classifiers by a substantial
amount. One of the many ways to counter this problem is to oversample
the minority datasets, where SMOTE (Synthetic Minority Oversampling
Technique) amassed a lot of attention. This paper presents an improved
version of SMOTE called the Outlier-SMOTE. This algorithm calculates
the amount of times each minority data-point has to be oversampled. O-
SMOTE gives greater priority to the outlying/remote minorities and
oversamples them more as compared to their counterparts. Before
applying it to the COVID-19 dataset, the algorithm was rigorously tested
on 5 benchmark datasets and compared with 2 other oversampling al-
gorithms, SMOTE and ADASYN, and it was found that Outlier-SMOTE
performed remarkably well on every dataset. To contribute further to
the literature, the researchers outlined the importance of each feature
using the dataset using the correlation matrix and SHAP Analysis. This
paper also throws light on certain trivial symptoms which might be a
crucial detector of the presence of COVID-19 disease. After confirming its
performance on the normal datasets, the authors tested it on the COVID-
19 symptoms dataset on which Outlier-SMOTE surpassed in almost every
parameter. The authors express their gratitude to the extensive work
done on the data by Lucas Moda on Kaggle [36]. The authors salute the
heroic efforts taken by the doctors [1], police and the government to
combat this pandemic.

In this paper, the five benchmark datasets from UCI repository played
a major role in determining the performance of the algorithm. To
maximize the performance of Outlier-SMOTE, an algorithm for deter-
mining a custom oversampling rate for each dataset has to be devised,
which the authors look forward to as future work.
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