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Abstract

In this paper, we investigate the interaction impacts of body mass index (BMI) on the other

important risk factors for venous thromboembolism (VTE), using deep venous thrombosis

(DVT) patient data from the International Warfarin Pharmacogenetics Consortium (IWPC).

We apply eight machine learning techniques, including naive Bayes classifier (NB), support

vector machine (SVM), elastic net regression (ENET), logistic regression (LR), lasso regres-

sion (LAR), multivariate adaptive regression splines (MARS), boosted regression tree

(BRT) and random forest model (RF). The RF method is selected as the best model for clas-

sification. Out of 33 features considered in this study, we identify 12 variables as relatively

important risk factors for VTE. Finally, we examine the interaction impacts of BMI on these

important VTE risk factors. We conclude that the impacts of risk factors on VTE incidence

are varying across different BMI groups, and the variations are different for different risk fac-

tors. Therefore the interaction impacts of BMI on the other risk factors have to be taken into

account in order to better understand the incidence of VTE.

1 Introduction

Venous thromboembolism (VTE), a term referring to blood clots in the veins, is a disorder

that includes deep vein thrombosis (DVT) and pulmonary embolism (PE). It is the third most

common vascular disorder in Caucasian after myocardial infarction and stroke [1, 2]. VTE

also causes morbidity and mortality in cancer patients and patients after major surgery, espe-

cially hip or knee arthroplasty [3–5]. To prevent VTE, warfarin is one of the main oral antico-

agulants treatments [6, 7], which needs international normalized ratio (INR) monitoring.

One leading risk factor for VTE is obesity [1, 3, 8, 9]. In particular, Yang et al. [10] classified

obesity as a moderate risk factor for VTE incidence, and found it can interact with other risk

factors in VTE development and increase the risk of VTE. Obesity not only increases the VTE

incidence, but also causes other chronic diseases such as diabetes, hypertension, coronary

heart disease, and ischemic stroke [10]. The prevalence of obesity has increased dramatically

during the last decades [11, 12]. According to the World Health Organization, at least 700 mil-

lion adults and more than 20% of young children aged 6–11 years in the world were obese in
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2015 [13]. Due to the high prevalence of obesity, there is increasing interest in measuring body

fat. Body mass index (BMI), calculated as the ratio of an individual’s weight (in kg) to his/her

squared height (in meter), is one of the most popular measures of body mass because of its

simplicity.

BMI, as an indicator for obesity, has been identified as a VTE risk factors by the previous

studies [14–18]. The previous studies have also found the effect of BMI on warfarin treatment.

For example, Routledge et al. [19] identified one of the key factors affecting on warfarin ther-

apy is body weight. Tellor [20] showed morbidly obese patients required higher total weekly

dose to maintain a therapeutic INR. Wallace et al. [21] compared average warfarin dose with

the different patients BMI to get the therapeutic INR in hospital, and found warfarin response

dose was decreasing with the BMI increment. Wells et al. [22] predicted warfarin dose with

BMI, age and some other predictors, for patients with a history of VTE. However, there is no

enough evidence on the impact of BMI on VTE occurrence for warfarin treated patients with

history of DVT, and on the interaction between BMI and other risk factors for VTE.

To assess the VTE risk factors, the traditional statistical techniques such as linear regression

model [17, 22], logistic regression model [5] and Cox regression model [23] have been widely

used by the previous studies. Although these statistical techniques are powerful tools for pre-

diction and description, there are various issues influencing classification, i.e. prediction of

discrete values, by the traditional regression models [24, 25]. In particular, highly correlated

predictors and sparse sample size are two common statistical issues which may lead to collin-

earity and over-fitting, respectively [26]. To address these issues, machine learning (ML) tech-

niques provide an alternative way. Significant advantages of ML techniques include high

power and accuracy, ability of modeling non-linear effects, and capacity of dealing with large

data sets [27, 28].

The objective of ML algorithms is to optimize its performance at a particular task using the

past experience (input data). Supervised classification techniques are ML algorithms that learn

patterns in data to predict associated discrete classes [29]. In medical science, supervised classi-

fication techniques have been employed to identify risk factors for a specific disease or to pre-

dict disease occurrence such as VTE. Among a large number of available supervised ML

techniques, kernel machine learning [30], various decision trees [31, 32], artificial neural net-

works [33–35], random forest [36, 37], support vector machines [38, 39], Bayesian decision

rules [40, 41], supervised principal component analysis [42], penalized regression models [43]

have been applied in medical science. Although the choice of ML techniques is often based on

the minimum loss function, it is difficult to make an informed decision on the most appropri-

ate method.

The main objective of this study is to investigate the interaction effect of BMI on the other

risk factors for VTE. In order to fulfill this objective, we have answered the following two ques-

tions first. They are, (1) which ML algorithm is most suitable for classification, and (2) which

risk factors play important roles as risk factors for VTE. In particular, we use the DVT patient’s

validation group of international warfarin pharmacogenetics Consortium (IWPC), from the

PharmGKB website to identify the risk factors for VTE, predict the VTE occurrence, and

examine the interaction impact of BMI on the other risk factors for VTE. We perform a two-

step procedure to select important risk factors for VTE. First, we apply eight ML methods,

including naive Bayes classifier (NB), support vector machine (SVM), elastic net regression

(ENET), logistic regression model (LR), lasso regression (LAR), multivariate adaptive regres-

sion splines (MARS), boosted regression tree (BRT) and random forest classification (RF), and

select the best classification method among them. Second, we use the selected classification

model to identify the important risk factors for VTE. Finally, we examine the interaction

impacts of BMI on the selected risk factors for VTE.
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2 Methods

In this study, we apply eight supervised classification ML methods. We compare their perfor-

mance and select the best model to identify the important risk factors for VTE. A brief intro-

duction of each ML technique is given below.

2.1 Naïve Bayesian classifier

Naïve Bayesian classifier (NB) is a simple probabilistic classifier based on the Bayes’ theorem

[29], which is introduced by Maron [44]. NB assumption is conditional independence between

every pair of predictors [45]. It predicts membership probabilities for each class, such as the

probability that a given record or a data point belongs to a particular class. The class with the

highest probability is considered as the most likely class, which is also known as maximum

posterior probability of each class [46].

2.2 Support Vector Machine (SVM)

Introduced by Vapnik [47], Support Vector Machine (SVM) is based on the inductive learning

[48]. SVM is used in both classification and regression. It uses the principle of maximum mar-

gin classifier to separate data. For a d-dimensional data, SVM uses a (d– 1)-dimensional hyper

plane for data separation. The advantages of SVM are in identifying nonlinear impact using

small sample and high dimensional data [49]. In addition, its loss function is based on a global

optimization, hence SVM is not prone to fall into a local optimization [50].

2.3 Elastic-net regression

Elastic-net Regression (ENET) was introduced by Zou [51], which combines the lasso regres-

sion (LAR) and the ridge regression model. It penalizes both the L1 and L2 norms with individ-

ual tuning parameters in order to achieve the best performance for both LAR and ridge

regressions. ENET is robust to extreme correlations among the predictors [52].

2.4 Logistic regression model

Pearl et al. [53] introduced the logistic regression model (LR), based on logistic function, to

model a binary dependent variable. It has been borrowed by machine learning for binary clas-

sification problems.

2.5 Lasso regression

Lasso (Least absolute shrinkage and selection operator) regression (LAR) analysis performs

both variable selection and regularization. It was introduced by Tibshirani [54] in order to

improve the prediction accuracy of regression model by selecting only a subset of the provided

covariates for use in the final model rather than using all of them. LAR relies on the L1 penalty

for both fitting and penalization of the coefficients.

2.6 Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) is a non-parametric regression technique

introduced by Friedman [55]. The MARS uses spline-based method by allowing different func-

tions (linear or nonlinear) over different intervals to model the nonlinear relationship between

the input and the output variables (x, y), in order to improve the goodness of fit [56].
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2.7 Boosted regression tree model

Boosted Regression Tree (BRT) models combine two techniques, i.e. decision tree algorithms

and boosting methods [57]. In particular, a decision tree algorithm relates a response to their

predictors by recursive binary splits, and a boosting method is an adaptive method for com-

bining many simple models to give improved predictive performance.

2.8 Random forests classifier

Random Forests (RF) classifier is an ensemble tree-based learning algorithm [58]. Generally

speaking, RF constructs a multitude of decision trees at training time and outputs the class as

the mode of the classes (classification) of the individual trees. The first algorithm for random

forests was created by Ho [59], and the random forests proper was first introduced by Breiman

[60]. RF is robust to overfitting, and more stable in the presence of outliers and in high dimen-

sional parameter spaces than other machine learning algorithms [61].

2.9 Simulation setup

Feature (or variable) selection helps to explain the data in the simplest way, avoids unnecessary

cost of measuring redundant predictors, and mitigate the issue of collinearity. It also helps to

improve the prediction accuracy [62]. Therefore finding a proper feature selection method is

crucial. In this paper, we apply the eight aforementioned ML methods and compare their per-

formance in order to select the best classification model suitable for our data. To evaluate the

eight ML methods’ performance, we apply bootstrap sampling and cross validation [63]. In

order to generate reliable results, we use 100 bootstrapping samples for the bootstrap sampling

and choose K = 10 for the K-fold cross validation.

Except for LR, all the other models rely on specific assumptions or tuning parameters,

which need to be selected in advance. For example, for NB model we need to assume a distri-

bution or generate nonparametric models for the explanatory variables from the training set.

We are required to specify the kernel and their hyper parameters for the SVM. For ENET and

LAR we need to select the penalty parameters in the loss functions. MARS model requires to

specify the pruning method. The tuning parameters for BRT include the loss function (distri-

bution), the tree complexity, the K interaction depth (K-folds), the learning rate parameter λ
(shrinkage) and the subsampling rate (bag.fraction). In the case of RF, hyper parameters

include the number of decision trees in the forest and the number of features considered by

each tree when splitting a node.

We use accuracy and Cohen’s Kappa to compare model performance in prediction. Models

with higher accuracy and Cohen’s Kappa value are believed to have better performance in pre-

diction and fitness. We select the best one among the aforementioned eight methods as our

classification method. From the selected model, we identify the relatively important risk fac-

tors for VTE as those variables with p-value less than α (α = 0.05).

The flowchart presented in Fig 1 shows the study workflow. We perform all calculations

using R (V3.6.1). In particular we use R packages including “e1071”, “glmnet”, “dismo”,

“earth”, “gbm”, “vcrpart”, “caret” and “naivebayes”.

3 Data

In this study, we use the International Warfarin Pharmacogenetics Consortium (IWPC) data

obtained from the PharmGKB (http://www.pharmgkb.org), to identify important risk factors

for VTE and to predict its incidence among DVT patients. The IWPC include information for

6256 warfarin treated patients from 22 research groups over nine countries in four continents

PLOS ONE Evaluation of the impact of body mass index on venous thromboembolism risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0235007 July 9, 2020 4 / 17

https://en.wikipedia.org/wiki/Nonparametric
http://www.pharmgkb.org/downloads/
https://doi.org/10.1371/journal.pone.0235007


[64]. The dataset contains patients’ non-genetic and genetic information such as their clinical

characteristics, personalized medications, warfarin therapeutic doses, and genotypes. In partic-

ular, two very important genotypes, i.e. CYP2C9 and VKORC1, are available in the dataset,

which are significantly related to warfarin therapy [65–68]. The IWPC has been used in several

recent studies to model the warfarin dose with individual patient’s clinical characteristics and

genetic information [64, 69–73].

In this study, we choose 376 DVT patients as the cohort validation group to predict VTE

incidence (262 out of the 376 DVT patients have VTE). These DVT patients use warfarin on

daily basis. Therefore in this study we take their warfarin dose, INR and the genotypes of

CYP2C9 and VKORC1 as potential risk factors to examine. We also examine other risk factors

including demographic factors, BMI and clinical characteristics. Except that the variables of

INR and warfarin dose are continuous, all the other risk factors considered in this study are

categorical variables. Table 1 presents the demographic features used in this study, including

age, gender, race, and genotypes (CYP2C9 and VKORC1), as well as warfarin dose, INR and

BMI, and the corresponding frequency and variable names for each feature.

The clinical characteristics considered in this study include the DVT patients’ comorbidi-

ties and concomitant medications.

In Table 2, we present the frequencies for the comorbidities and concomitant medications

we examine, as well as their corresponding variable names in the dataset. All the comorbidities

Fig 1. Modelling procedure to evaluate the effect of BMI on VTE risk factors for warfarin users.

https://doi.org/10.1371/journal.pone.0235007.g001
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and concomitant medications we examine in this study happen to more than 5% of the DVT

patients in this dataset.

We check the correlations across all variables in the DVT patient dataset. Fig 2 presents the

correlation vizualization. It is worthwhile to note that the labels in Fig 2 are the variable names

listed in Tables 1 and 2, which are in the alphabetical order from left to right and top to bot-

tom. It is common to see high negative correlations across different categories of the same fea-

ture, for example “bl” (the race of black) and “wh” (the race of white). Across different

features, we see high positive correlations between “Han” and “AA”, and between “bl” and

“GG”. It has been found that AA genotype of VKORC1 is the most common genotype in

Asians, and the most common genotype in African Americans is GG [74], which can explain

the high correlations across the VKORC1 and race categories in our data.

4 Results and discussion

As shown in Fig 1, to evaluate the interaction impact of BMI on the other risk factors for VTE, we

conduct a three-steps analysis. First, we select the best classification model from the eight ML

methods presented in Section 2; second, we identify the important risk factors for VTE using the

selected model; third, we examine the interaction impact of BMI on the other risk factors for VTE.

4.1 Selection of the best classification model

First of all, we apply the eight ML methods introduced in Section 2, in order to select the best

classification method among them. As discussed in Section 2.9, we have to select the required

Table 1. Demographic characteristics of the DVT validation group.

Demographic

characterize

Data characters Validation group

frequency

Variable

Name

Demographic

characterize

Data

characters

Validation group

frequency

Variable

Name

Gender Male 189 gen race Black 125 bl

Age > 40yr. 330 age White 181 wh

Warfarin dose-mg/

wk

Median 30 wds Han Chinese 21 Han

range 7.00–95.00 CYP2C9 genotype �1/�1 282 g11

INR Median 2.5 INR �1/�2 45 g12

range 1.5–3.7 �1/�3 24 g13

BMI Median 30 BMI_A �1/�5 1 g15

range 14.9–68 �2/�2 3 g22

Underweight & normal

weight

68 �2/�3 7 g23

overweight 120 BMI_B �3/�3 1 g33

Obesity 137 BMI_C VKORC1 genotype G/G 168 GG

Morbidly obesity 51 BMI_D A/G 99 AG

A/A 31 AA

https://doi.org/10.1371/journal.pone.0235007.t001

Table 2. Clinical characteristics of the DVT validation group.

Comorbidities & Concomitant drugs No (%) Variable names Comorbidities & Concomitant drugs No (%) Variable names

Abnormal heart rhythm 35 (9) aHR Diabetes 88 (23) dib

Aspirin 80 (21) asp History of stroke 39 (10) st

Atorvastatin 31 (8) ato Hyperlipidemia 38 (10) hyL

Atrial fibrillation 24 (6) AF Hypertension 162 (43) hyT

Cancer 46 (12) can Myocardial infarction 41(11) infr

Depression 28 (7) dep Simvastatin 64 (17) Sim

https://doi.org/10.1371/journal.pone.0235007.t002
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hyper parameter(s) for each ML method except for the LR model. In this study, we use Gauss-

ian distribution for the NB method. For the SVM model, we choose a linear kernel and set

the regularization hyper parameter C as 10. In LAR and ENET models, the penalty parameters

are selected through cross-validation. We apply the backward strategy as the pruning method

for the MARS model. As for the BRT model, Gaussian distribution is chosen as the loss func-

tion, while the tree complexity, the learning rate (λ) and the subsampling rate (bag.fraction)

are set as 4, 0.004 and 0.5, respectively. For the RF model we set the number of trees as 500 and

the number of features considered by each tree (mtry) as 4. To evaluate the prediction

Fig 2. Visualisation of correlations acrosss the risk factors.

https://doi.org/10.1371/journal.pone.0235007.g002
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performance of these ML models, we apply five measures, including accuracy, Cohen’s Kappa,

precision, recall and F1 score. For all performance measures, a higher value indicates a better

performance on prediction. We perform a bootstrap sampling with replication number of 100

and K-fold (K = 10) cross validation to calculate these measures. The results are presented in

Fig 3.

As shown in Fig 3, the RF model has the best prediction performance among the eight ML

models, followed the MARS model, and the NB model has the poorest performance. Therefore

we choose RF as the best model to conduct the following analysis.

In Fig 4, we plot the Receiver Operator Characteristic (ROC) curve for the RF model. Its

AUC is 0.78207, indicating a good performance on classification.

Next, we implement a simple Monte Carlo simulation to examine the stability of our pre-

diction using the RF model. In this Monte Carlo simulation, we generate a simulation envelope

through a number of randomization (for example, n = 50) of VTE risk factors. From each ran-

domization, the probability density function (PDF) of the predicted probability of VTE inci-

dence can be obtained. All these PDFs constitute the simulation envelope. We compare the

PDF of the predicted probability of VTE incidence from our dataset with the simulation enve-

lope to examine the stability of the RF model prediction. Fig 5 presents the results on the PDF

of the predicted probability of VTE incidence from our dataset (indicated by the red line) and

the simulation envelope (indicated by the grey lines).

As shown in Fig 5, the prediction from the RF model (observed) matches well with the sim-

ulation envelope (perturbed). In particular, if we define the perturbed error as the difference

between the prediction from the RF model and the simulation probability, the error mean is

0.1012 and the standard deviation is 0.0064, which demonstrate the stability of the RF

prediction.

4.2 Identification of the important risk factors

We apply the RF model to rank importance of risk factors for VTE. Table 3 presents the mean

decrease accuracy (MDA) for all risk factors used in this study and the corresponding p-values

from permutation tests. The variables with larger mean decrease accuracy values are more

important for VTE incidence, and the permutation p-values indicate the significance of impor-

tance metrics for the RFmodel.

4.3 Impact of BMI

Even though our results from the RF model show BMI is not an important risk factor for VTE,

previous studies have found that obesity may interact with other risk factors in VTE develop-

ment and change the impacts of other risk factors on VTE [22]. However there is very limited

evidence on the exact interaction between BMI and the other VTE risk factors. This study

aims to fill the gap in the literature. To examine the interaction effects, first we group our sam-

ple into four BMI categories, including underweight and normal weight (BMI<25), over-

weight (25�BMI<30), obesity (30�BMI<40), and morbidly obesity (BMI�40). We then

apply the RF model to each BMI group separately. In this way, we can obtain the varying

impacts of the other important risk factors, including comorbidities and demographic features,

on VTE occurrence for individuals from different BMI groups.

Table 4 presents the MDA of the important risk factors (identified by the RF model for the

whole sample) for each BMI group. We also present the significance level of permutation test

for importance for each risk factor across the BMI groups. As shown in Table 4, all important

risk factors for VTE, except for two features (infarction and stroke), are still significantly

important for VTE across all different BMI groups. However, infarction and stroke are

PLOS ONE Evaluation of the impact of body mass index on venous thromboembolism risk factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0235007 July 9, 2020 8 / 17

https://doi.org/10.1371/journal.pone.0235007


Fig 3. Model performance on prediction.

https://doi.org/10.1371/journal.pone.0235007.g003
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significantly important for some specific BMI groups. For example, infarction is a moderate

and weak VTE risk factor for morbidly obese people and overweight people, respectively, with

significance level for importance at 10%, but it is not significantly important for people for the

other two BMI groups. Stoke is significantly important for overweight and obese people but

not for normal or under weight people, in terms of VTE occurrence. It is worthwhile to men-

tion that the importance of AA genotype for VKORC1 is only 10% significant for the morbidly

obesity people, while for all other people, it is 5% significantly important. On the other hand,

depression is 5% significantly important for overweight people, but only 10% significantly

important for the other BMI groups. In terms of MDA values, all risk factors, except for three

feastures including AA genotype for VKORC1, infarction and stroke, can be qualified as, at

least, moderate (i.e.MDA>2) risk factors for VTE. In particular, AA genotype for VKORC1

and infarction are two weak VTE risk factors (MDA<2) for overweight individuals but moder-

ate for people from other BMI groups; while stroke is a weak risk factor for any BMI group. It

can be seen that importance of the same risk factors are different across different BMI groups.

We present the visualized results of MDA across different BMI groups in Fig 6.

The horizontal axis of Fig 6 indicates the important VTE risk factors identified from the

whole sample, which are ordered according to their MDA from highest to lowest. For example,

“Han” has the highest MDA of 10.7470 and the lowest MDA of 2.6900 belongs to “dep”, as pre-

sented in Table 3. Fig 6 presents four lines of MDA, estimated for the four BMI groups, respec-

tively. The trend of these lines is not strictly downward and these lines are not parallel.

Fig 4. ROC curve of random forest model (RF).

https://doi.org/10.1371/journal.pone.0235007.g004
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Fig 5. Monte Carlo simulation for model stability.

https://doi.org/10.1371/journal.pone.0235007.g005

Table 3. MDA of risk factors and permutation p-value.

variables MDA P-value variables MDA P-value variables MDA P-value

Han 10.7470 0.0196�� dep 2.6900 0.0568� sim 0.2702 0.5156

hyL 7.1637 0.0215�� ato 2.2515 0.1058 g15 0.1379 0.5647

GG 6.4284 0.0196�� AG 2.0170 0.1294 g22 -0.0232 0.7215

wh 5.6208 0.0215�� can 1.7153 0.1470 g33 -0.1104 0.6196

INR 5.2390 0.0215�� hyT 1.5271 0.1921 BMI_B -0.2345 0.8431

bl 4.9470 0.0196�� g11 1.2509 0.2372 BMI_C -0.4384 0.6627

AF 4.4381 0.0254�� wds 0.9681 0.2862 age -0.6928 0.7921

aHR 4.1946 0.0235�� asp 0.8348 0.2921 g13 -1.0160 0.7411

AA 3.6397 0.0313�� BMI_A 0.7155 0.3098 g23 -1.3614 0.7960

infr 3.3170 0.0607� g12 0.5582 0.4215 dib -1.7603 0.8666

st 3.0067 0.0568� gen 0.4266 0.4431 BMI_D -2.4002 0.9470

We identify the risk factors with high MDA (>2) and low permutation p-values (<0.05) as relatively important risk factors for VTE. In particular, they include race

feature (Han, bl, wh), hyperlipidemia (hyL), VKORC1 genotype (GG and AA), INR, atrial fibrilation (AF), abnormal hear beat (aHR), myocardial infarction (infr),

stroke (st) and depression (dep).

https://doi.org/10.1371/journal.pone.0235007.t003
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Two conclusions emerge from Fig 6. First, the importance order of these risk factors for a

particular BMI group is different from that of the whole population. For example, although the

variable of “Han” is the most important VTE risk factor for DVT patients regardless BMI cate-

gory, the second most important risk factor is different for each BMI group from the whole

population. In particular, without taking into account of the interaction effect of BMI, hyper-

lipidemia is the second most important risk factor, however it is “bl” for overweight and mor-

bidly obesity group, and “GG” for obesity group. Similar differences can be found on the other

risk factors.

Second, the same VTE risk factor may play a different role across different BMI groups.

Take the variable of race feature, “Han”, as an example, though it is the most important one

across all BMI categories, it plays a most important role in the obesity group, followed by mor-

bidly obesity group, and a least important role in the overweight group (as indicated by the

points in the dashed oval in Fig 6). For some risk factors, such as “AF”, we can see more varia-

tions in the importance across different BMI grooups. But for some variables, such variation is

much smaller, such as “INR”. These results further demonstrate the interaction effect of BMI

on the other risk factors on VTE incidence.

5 Conclusions

In this study, we investigate the interaction impact of BMI on the other important VTE risk

factors. First, we apply eight ML methods, including NB, SVM, ENET, LR, LAR, MARS, BRT

and RF. According to five performance measures, i.e. accuracy, Cohan’s Kappa, precision,

recall and F1-score, we choose the RF model as the best classification model among the eight

ML methods. Second, by applying the RF model we identify twelve important risk factors

according to their MDA and permutation test for importance. Last, we run the RF model sepa-

rately for each BMI group to examine the interaction impact of BMI on the other important

VTE risk factors. From this three-step analysis, we conclude that, first the importance of VTE

risk factors may vary for different BMI groups. For example, we find that the AA genotype of

VKORC1 plays a more important role in determine VTE occurrence for obesity or morbidly

Table 4. Importance of VTE risk factors across four BMI categories.

VTE relative importance risk factors MDA

Underweight and nornal weight

(BMI_A = = 1)

Overweight

(BMI_B = = 1)

Obesity

(BMI_C = = 1)

Morbidly Overweight

(BMI_D = = 1)

Han 9.4954�� 9.3687�� 11.1069�� 10.55530��

hyL 6.3908�� 5.2757�� 5.7726�� 5.59147��

GG 7.2202�� 6.1136�� 6.1143�� 5.50135��

wh 4.1953�� 3.3283�� 2.6041�� 4.8617��

INR 4.4106�� 4.9653�� 4.69031�� 4.6838��

bl 6.32087�� 7.05594�� 5.7726�� 6.0119��

AF 4.25188�� 5.1580�� 4.4514�� 7.0565��

aHR 3.2959�� 2.8318�� 3.8149�� 2.79094��

AA 2.87470�� 1.6976�� 3.7920�� 4.11092�

infr 3.59218 1.5147� 2.1701 2.70934�

st 0.98655 1.5530� 1.84809� 0.74331�

dep 4.03310� 2.9494�� 2.9211� 4.31530�

�� and � indicate 5% and 10% significant in the permutation test, respectively.

https://doi.org/10.1371/journal.pone.0235007.t004
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obesity individuals than for people from the other BMI categories. Second, the variation of a

risk factor’s importance on VTE incidence across the four BMI groups is different. For exam-

ple, we see large variation in the importance of atrial fibrillation across BMI groups, however

the variation in INR’s importance is much smaller. Therefore in order to determine the risk of

VTE and how risk factors impact on VTE, the interaction impact of BMI on the risk factors

has to be taken into account.
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