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Abstract

Background: Precision medicine focuses on the identification
of therapeutic strategies that are effective for a group of
patients based on similar unifying characteristics. The recent
success of precision medicine in non–critical care settings
has resulted from the confluence of large clinical and
biospecimen repositories, innovative bioinformatics, and
novel trial designs. Similar advances for precision medicine
in sepsis and in the acute respiratory distress syndrome
(ARDS) are possible but will require further investigation
and significant investment in infrastructure.

Methods: This project was funded by the American Thoracic
Society Board of Directors. A multidisciplinary and diverse
working group reviewed the available literature, established a
conceptual framework, and iteratively developed
recommendations for the Precision Medicine Research Agenda
for Sepsis and ARDS.

Results: The following six priority recommendations were
developed by the working group: 1) the creation of large richly

phenotyped and harmonized knowledge networks of clinical,
imaging, and multianalyte molecular data for sepsis and ARDS;
2) the implementation of novel trial designs, including adaptive
designs, and embedding trial procedures in the electronic health
record; 3) continued innovation in the data science and
engineering methods required to identify heterogeneity of
treatment effect; 4) further development of the tools necessary for
the real-time application of precision medicine approaches; 5)
work to ensure that precision medicine strategies are applicable
and available to a broad range of patients varying across differing
racial, ethnic, socioeconomic, and demographic groups; and 6)
the securement and maintenance of adequate and sustainable
funding for precision medicine efforts.

Conclusions: Precision medicine approaches that incorporate
variability in genomic, biologic, and environmental factors
may provide a path forward for better individualizing the
delivery of therapies and improving care for patients with
sepsis and ARDS.
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Overview

Sepsis and acute respiratory distress
syndrome (ARDS) are well-described clinical
syndromes (1, 2) that constitute a substantial
portion of ICU admissions and hospital
deaths (3, 4) with few therapies
demonstrating consistent benefit in clinical
trials (5–9). A major impediment to
identifying new therapies is unrecognized
heterogeneity that may influence patients’
susceptibility to these syndromes and their
response to specific treatments (10–12).
Precision medicine approaches that
incorporate variability in genomic, biologic,
environmental, and lifestyle factors into the
optimal therapeutic strategy may provide a
path forward for sepsis and ARDS
management (13, 14).

For this research statement, we
convened a workshop to discuss the
challenges for implementing precision
medicine in the ICU and to suggest a
research agenda in precision medicine that
could spur advances for sepsis and ARDS.
Key recommendations include the
following:

1. Creating large richly phenotyped and
harmonized knowledge networks of
clinical, imaging, and multianalyte
molecular data for sepsis and ARDS.

2. Implementing novel trial designs that
facilitate precision medicine
approaches.

3. Continuing to innovate in the data
science and engineering methods
required to identify heterogeneity of
treatment effect.

4. Further developing the tools necessary
for the real-time application of
precision medicine in the ICU.

5. Ensuring that precision medicine
strategies are applicable and available
to a broad range of patients varying
across differing racial, ethnic,
socioeconomic, and demographic
groups.

6. Securing and maintaining adequate and
sustainable funding for precision
medicine efforts.

Introduction

The terms “precision medicine” and
“personalized (or individualized) medicine”
are sometimes used interchangeably. In
precision medicine, the focus is on
identifying which approaches will be effective
for a group of patients based on similar
unifying characteristics. Although the
eventual goal is to tailor care for each
individual (personalized medicine), most
current efforts are focused on precision
medicine because predicting treatment
response at an individual patient level is
challenging (15).

Significant breakthroughs have been
made in precision medicine in non–critical
care settings, including oncology, asthma,
and chronic obstructive pulmonary disease,
by leveraging extensive clinical data and
molecular phenotyping to uncover
subgroups that share dysregulation of
specific pathways (16–21). These
advancements have engendered a hope that
we could rapidly apply similar techniques for
sepsis and ARDS, but there are key
differences (13). The molecular landscapes of
sepsis and ARDS are complex and evolve
rapidly, and clinicians often make
therapeutic decisions within hours in
contrast to days or weeks for outpatient
decisions. Although “omics” platforms may
improve molecular characterization of
diseases, rapid turnaround times for complex
assays are currently not readily available.
Thus, initial steps toward precision medicine
for patients with sepsis and ARDS include
using clinical markers or easy-to-measure
biomarkers. Importantly, clinical benefits of
future precision medicine approaches in
sepsis and ARDS, if any, will need to be

tested and confirmed in rigorous well-
conducted prospective clinical trials.

Methods

This project was proposed by members as an
American Thoracic Society (ATS) project
and approved for funding by the ATS Board
of Directors. Participants included the
project proposers and an invited diverse
group of individuals with 1) expertise in
managing critically ill pediatric or adult
patients; 2) experience in patient-oriented
research frommechanistic, clinical,
translational, or bioinformatic perspectives;
and 3) representation from different
geographic regions (e.g., North America,
South America, Europe, Africa, and
Australia) and federal funding agencies (e.g.,
National Institute of Health), and reflecting
different perspectives based on sex, seniority,
and race/ethnicity.

A small working groupmet initially to
review the available literature, develop a
conceptual framework, agree on definitions
for key terms, and determine the goals of the
document. Members of the panel met in
person at the Critical Care Canada Forum in
November 2018 and the ATS International
Conference inMay 2019 to develop and
prioritize recommendations. The chairs and a
small working group prepared an initial draft
of the document on the basis of the in-person
meetings and circulated it to the panel for
iterative feedback. Members of the committee
were asked to vote on the prioritization of
recommendations. The revised document was
shared electronically and iteratively refined
until all authors approved the work.

Conceptual Framework

Although the current definitions of sepsis
and ARDS are useful for assessing
epidemiology and providing supportive care,
they select a heterogeneous group of patients
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and may exclude some patients who could
be part of a subgroup identified with
alternate definitions and approaches. We
use the term “subgroups” to generally
include several commonly used terms,
including phenotypes, subphenotypes, and
endotypes (22, 23). Prior work has
identified subgroups of patients with sepsis
and ARDS who are more or less likely to
have poor clinical outcome on the basis of
clinical or biologic biomarkers (prognostic
markers). The efficacy (relative or absolute
benefit or harm) of a treatment may vary
across patient subgroups, such that the
benefit (or harm) is concentrated in one or
more subgroups—a variability referred to
as heterogeneity of treatment effect (HTE)
(24). Understanding HTE and identifying
biomarkers based on genomic, biologic,
environmental, and lifestyle factors that
predict benefit or harm from a treatment
(predictive markers) is key to advancing
precision medicine strategies (14, 25).

Prognostic markers have an established
discovery pipeline and can be identified in
any observational cohort by testing for
association with outcome. In contrast,
predictive markers are most readily
determined through the interrogation of a
dataset in which patients are randomly
assigned to a treatment, such as a
randomized controlled trial (RCT).Without
random allocation, causal inference that
patients with a set of observed variables are
more or less responsive to therapy is
limited by potential confounding.
Confounding variables may be measured
or unmeasured (residual confounding). A
common example is confounding due to
indication, in which a treatment is more or
less likely to be administered on the basis of
illness severity, comprising both
inadequate adjustment of measured
confounders and residual unmeasured
confounding (26, 27).

We propose a conceptual framework to
develop precision medicine strategies for
sepsis and ARDS through the creation of
knowledge networks as recommended by the
National Academy of Sciences (28). A
knowledge network can include both
observational studies and RCTs to integrate
layers of clinical, lifestyle, environmental, and
biological data about a disease (similar to a
geographic information systemmap),
allowing us to understand the connections
within and across layers. Depending on the
research questions and treatments being
studied, knowledge networks could be small

(and potentially include observational studies
only) or large (including multiple large
observational studies and RCTs). These
knowledge networks will enable the
identification of subgroups and the
elucidation of complex pathways using a
combination of observational studies and
RCTs, and the discovery of HTE using RCTs.
The confidence in subgroups identified as
“likely to benefit”may vary, and, on the basis
of the certainty of subgroup identification,
trial designs could employ traditional (enroll
only the subgroup that is most likely to
benefit under settings of a very high level of
certainty) or novel (e.g., adaptive platform
trial design) methods to identify and validate
precision medicine strategies (Figure 1). The
financial investment required for the
advancement of precision medicine in sepsis
and ARDS will be substantial, but it
ultimately could reduce costs through
improved targeting of treatments and patient
outcomes.

Recommendations

Recommendation 1
Create large richly phenotyped harmonized
knowledge networks of clinical, imaging, and
multianalyte molecular data from patients
with sepsis and ARDS.

Rationale. Discovery of prognostic and
predictive biomarkers in complex
heterogeneous disorders, including cancer,
asthma, and cardiovascular disease, have
occurred through the coordinated
establishment and harmonization of
knowledge networks. Similar collaborative
efforts for sepsis and ARDS are necessary to
advance precision medicine efforts.
Observational studies, both already
completed and future studies, recruit a broad
group of patients unlike those enrolled in
RCTs and can provide platforms for the
discovery of phenotypes using clinical,
imaging, andmultianalyte molecular data
(e.g., DNA, RNA, proteomics, microbiome,
andmetabolomics) from whole blood,
plasma/serum, sputum/tracheal aspirate,
BAL, or urine samples, as well as facilitate
deep phenotyping (precise and
comprehensive analysis of phenotypic
abnormalities). Previously completed RCTs
contribute to knowledge networks as venues
for validation of phenotypes and HTE
hypotheses. Multiple RCTs, if available for
the same treatment, will enable the
identification of HTE in subgroups of

patients and for validation of observations
identified in a single trial. The variables
defining HTEmay not be known or
measured (or the technologies to uncover
these variables may not be readily accessible)
at the time of enrollment in observational
studies and RCTs andmay potentially be
identified retrospectively as new knowledge
becomes available without the need to
conduct new studies.

Despite the increased financial cost of
collecting and storing a variety of
biospecimens in clinical studies, such efforts
are necessary for the advancement of
precision medicine in sepsis and ARDS.
Successful harmonization of data will be
essential to reduce and account for
variability between studies and to facilitate
validation of promising findings. Recent
examples include efforts by the International
Severe Acute Respiratory Infection
Consortium and the Discovery Viral
Infection and Respiratory Illness Universal
Study research registries for coronavirus
disease (COVID-19) (Table 1). Measures
that can support the creation of these large
collaborative knowledge networks include
the following:

1. Making greater global efforts to organize
and catalog extant data and
biospecimens from already
completed clinical studies of sepsis
and ARDS, such as the NHLBI
Biologic Specimen and Data
Repository Information Coordinating
Center repository (29, 30) (Table 1).
No similar publicly available
biobanks currently exist for sepsis in
the United States, but these are
actively encouraged by the National
Institute of General Medical Sciences
(31), and none exist to organize
studies globally.

2. Including biospecimen collection, both
before randomization and
longitudinally, in future observational
studies and RCTs and modifying
consent processes to ensure that data
and biologic samples may be widely
shared with additional investigators
for collaborative efforts. Using
approaches that are less resource
intense, such as collecting samples at a
single time point before administering
the treatment, using leftover samples
in the clinical laboratory (32), and
collecting samples from a subset of
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sites rather than in all patients enrolled
in large RCTs, should be considered.

3. Cultivating a harmonized global
infrastructure that can recruit
patients, measure molecular markers
consistently and rapidly, integrate
data, and regularly report results to
help maintain the networks. For
clinical data, adopting a common set
of minimum data elements,
employing consensus definitions for
outcomes, covariates, and
interventions, and developing
standardized protocols for clinical
data collection (33). For molecular
data, developing uniform protocols
for sample collection, processing,
storage, and assay selection as well as
encouraging the use of consistent
imaging and biochemical platforms,
similar to clinical minimal data
elements.

4. Prioritizing funding for sepsis and ARDS
studies with discrete and transparent
data sharing plans (e.g., requiring
submission of data to a common
online data repository) and by
allocating funds specifically for the
creation and maintenance of data
harmonization initiatives because the
expense and effort required for
harmonization can be substantial and
are often not budgeted in initial study
designs.

Recommendation 2
Implement novel trial designs to identify
precision medicine strategies for sepsis and
ARDS.

Rationale. The RCT is a valuable
tool to test efficacy, avoid confounding,
and establish causal effect of an
intervention. Traditional RCTs are
conducted in a broad group of patients
anticipating that the average treatment
effect across trial participants will
demonstrate benefit.

Adaptive designs allow prospective
modifications of one or more aspects of the
study on the basis of interim analyses of
participants already enrolled in the study
(34). These designs may be more efficient
than traditional trial designs for identifying
patients who benefit in settings in which
HTE exists within the study population.
Frequentist or Bayesian statistical approaches
may be used in these designs depending on
the complexity of potential modifications
(35, 36). The additional interim analyses and
modifications potentially increase the risk of
false positive results. Defining all
modifications a priori and building strong
partnerships with statisticians are essential to
reduce bias. Examples of designs that may
identify precision medicine approaches are
included in Table 2 (37).

Additional considerations include
embedding trial procedures in the electronic
health records (EHRs) and using response

adaptive randomization strategies to increase
trial efficiency, participant enrollment, and
generalizability of results (32, 38). These
aspects of trial design allow the integration of
research and clinical care (e.g., REMAP-
CAP) and the creation of a “learning health
system” (39).

Recommendation 3
Advance data science and engineering
approaches to facilitate precision medicine
strategies for sepsis and ARDS.

Rationale. Continued innovations in
data science and engineering methods are
essential to identify HTE and advance the
use of novel trial designs. Both applying
approaches developed for other
conditions to sepsis and ARDS and
developing novel approaches will be
necessary. Potential areas for
advancement include methods to identify
patients who benefit by incorporating
combinations of clinical and molecular
markers across multiple omics platforms
(combining deep phenotyping with HTE
identification), as has recently been
explored in other non–critical care
disorders (40, 41), to modify treatment
approaches in response to the rapid
changes in the host immune response over
time, and to use causal modeling when
RCT data are sparse and only results of
observational studies are available (42)
(Table 3).

Potential Trial Approaches

Candidate
Subgroups

Knowledge
Networks

Observational
Cohort
Studies

Environmental data
Clinical and
EHR data

Imaging data
Transcriptomics

Proteomics
Metabolomics

Genomics

Phenotype
identification

Exploration of
biomarkers

Detection of
heterogeneity of
treatment effect

Causal
inference
studies

Low Certainty
Enroll broad populations

Adaptive enrichment strategies

Moderate Certainty
Enroll multiple candidate subgroups
Responsive adaptive randomization

Adaptive biomarker designs

High Certainty
Validation only in

most promising subgroup

Completed
Randomized
Clinical Trials

Figure 1. Conceptual model of the path forward for precision medicine in sepsis and the acute respiratory distress syndrome. EHR=electronic
health record.
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Recommendation 4
Develop the tools necessary for the real-time
application of precision medicine
approaches.

Rationale. Precision medicine for sepsis
and ARDS will require rapid assessment of
patient phenotype and subgroups that
benefit, in contrast to other disorders, such as
cancer or asthma, in which precision
medicine decisions can be made days or
weeks after initial assessment. Potential
strategies to facilitate the rapid deployment
of precision medicine strategies include
leveraging EHRs and novel technologies to
ensure rapid turnaround of
biomarker results.

1. Observational studies can be partially
or completely nested within EHRs.
Linking EHRs with claims data from
health insurance providers may be
preferred because patients may receive
care at multiple sites, many of which
may not share EHRs. Opportunities to
embed RCTs in EHRs include using
real-time clinical and laboratory data
to identify patients with sepsis and
ARD, identifying of subgroups that
may benefit from the intervention
using machine learning and artificial
intelligence algorithms, randomizing
within the EHR, and using live
decision support (e.g., using edge

computing to reduce latency) to
provide treatment options to
providers at the bedside (43–46).
Finally, these approaches will have to
be incorporated across multiple EHRs
for multicenter RCTs. Recent trials,
such as the REMAP-CAP
(Randomised, Embedded, Multi-
factorial, Adaptive Platform Trial for
Community-acquired Pneumonia):
COVID adaptive clinical trial, have
successfully used some of these
approaches (39).

2. Treatment response to a particular
therapy in sepsis and ARDS may
depend on molecular signatures that

Table 1. Current Knowledge Networks and Efforts to Harmonize Data across Observational Studies or Randomized Controlled
Trials

Name Brief Description Limitation

ARDS

NHLBI BioLINCC (29, 30) Clinical data and biomarkers measured
within RCTs testing treatments for
ARDS. Biospecimens also may be
available

Only includes observational studies and
trials that are funded by NHLBI

Sepsis

PHENOMS (57) Prospective observational cohort by the
Collaborative Pediatric Critical Care
Research Network biobanking samples
from pediatric patients with sepsis to
examine inflammatory endotypes

Does not include adult patients

IBBJ (58, 59) Integrated central biobank merging clinical
data and samples from ongoing studies
and from three previous sepsis biobanks
(SEPNET, Septomics, and CSCC)

Includes German sites only

COVID-19

ISARIC (60, 61) Global collaborative network established
with the goal of generating harmonized
clinical data and rapidly disseminating
evidence during epidemics

Does not include biospecimens

VIRUS (62, 63) International registry collecting clinical data
on critically ill patients with COVID-19

Does not include biospecimens

BLUE CORAL Biobank comprising biospecimen collection
and longitudinal epidemiology

Includes U.S. sites only

COLOBILI Biobank comprising biospecimen collection
and longitudinal epidemiology

Includes Canadian sites only

BBMRI-ERIC (64, 65) Global network connecting researchers to
cataloged resources and samples from
more than 600 biobanks worldwide

Included biobanks do not have uniform
sample collection protocols

Definition of abbreviations: ARDS=acute respiratory distress syndrome; BBMRI-ERIC=Biobanking and Biomolecular Resources Research
Infrastructure–European Research Infrastructure Consortium; BLUE CORAL=Biology and Longitudinal Epidemiology of COVID-19 Observational
Study; COLOBILI =COVID-19 Longitudinal Biomarkers in Lung Injury; COVID-19=coronavirus disease; CSCC=Center for Sepsis Control and
Care; IBBJ= Integrated Biobank Jena; ISARIC= International Severe Acute Respiratory and Emerging Infection Consortium; NHLBI
BioLINCC=NHLBI Biologic Specimen and Data Repository Information Coordinating Center; PHENOMS=Biomarker Phenotyping of Pediatric
Sepsis and Multiple Organ Failure Study; RCT = randomized controlled trial; SEPNET=German Competence Network Sepsis; VIRUS=Viral
Infection and Respiratory Illness Universal Study.
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need to be determined quickly,
preferably using point-of-care assays.
Recent advances in diagnostic testing
have enabled the prompt identification
of such signatures (e.g., detection of
infectious versus noninfectious
transcriptomic signatures and for the
detection of antimicrobial resistant
bacterial pathogens in hours) (47–49).
However, there are important
challenges to develop these molecular
signatures. First, it is logistically
challenging to conduct RCTs to test
molecular signatures to tailor therapies
because these tests are not Food and
Drug Administration approved and are
often validated in Clinical Laboratory
Improvement Amendment–certified
laboratories across multiple sites as
laboratory-derived tests. This is an
expensive endeavor that may not be
efficiently completed in a single RCT.
This situation creates a regulatory and
development paradox in that the major
investment needed to develop a
diagnostic test is not attractive to

pharmaceutical companies until the
diagnostic’s market has been confirmed,
yet the therapeutic’s utility may be
uncertain without the diagnostic test to
identify patients who will benefit. In the
United States, the Food and Drug
Administration has mechanisms to
codevelop a diagnostic assay with a
therapeutic agent during the approval
process (50). Second, these efforts may
require partnerships between academic
investigators and pharmaceutical
companies. It would be important to
ensure that the intellectual property
rights of the various stakeholders are
maintained.

Recommendation 5
Ensure that precision medicine advances be
applicable to a broad range of patients across
different healthcare delivery systems;
resource-rich and resource-limited settings;
racial, ethnic, socioeconomic, and
demographic groups; and social and
environmental practices.

Rationale. Precision medicine should
improve care for patients with sepsis and
ARDS globally and not worsen healthcare
inequalities. A threat to this goal is to solely
focus onmolecular substratification, which
may require complex assays and apply only
to highly resourced quaternary medical
centers. More than 80% of the world’s
population resides in resource-limited or
developing countries, and patients in these
countries account for.85% of the global
sepsis burden (51). However, these patients
may not have access to results of complex
assays to target treatments precisely and
rapidly. Similarly, critical care outcomes vary
significantly by race, ethnicity, and sex, and
clinical trials have often underrepresented
minoritized and socioeconomically
disadvantaged groups (52, 53). Differences in
lifestyle factors such as diet, physical activity,
and tobacco and alcohol exposure among
groups warrant consideration in precision
medicine approaches, as they potentially may
be of equal if not greater importance
compared with biologic markers in
explaining differences in prognosis and

Table 2. Trial Design Strategies for Precision Medicine in Sepsis and Acute Respiratory Distress Syndrome

Approach Brief Description

Adaptive trial designs Incorporate prospectively planned modification of one or more
aspects of trial design (e.g., sample size, dose, treatments, or
study endpoints) based on adaptive analyses

Adaptive enrichment Modification of eligibility criteria to target participants likely to
benefit and/or exclude participants unlikely to benefit

Biomarker-guided adaptive design Stratification of participants based on biomarker level with
planned modifications based on treatment response within
groups

Biomarker-threshold adaptive design Biomarker may predict response to treatment but optimal
threshold to guide treatment is not known and is established
within the trial

Response adaptive randomization Prior analyses suggest efficacy within several potential subgroups
that are examined within the trial with allocation into subgroups
changed on the basis of interim analyses

Platform trial Multiple interventions are tested within a single trial framework
against a single control arm for a single condition. Therapeutic
arms are added or dropped from the trial based on interim
analyses

Seamless phase 2/3 trials Rapid transition of a promising phase 2 to a larger phase 3 study
facilitating cost-efficient scaling for effective therapies

Perpetual trial Trial framework is established for a condition and new therapies
are continually being added or dropped in perpetuity

Integration with the electronic health record Trial procedures including screening, randomization, and
deployment of interventions are integrated with the electronic
health record, improving efficiency and potentially
generalizability
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treatment response (54, 55). Potential
strategies to enact an equitable and just
global deployment of precision
medicine include:

1. Consciously including diverse
stakeholders from different geographic,
economic, cultural, racial/ethnic, and
sex backgrounds on advisory panels
and peer review committees.
Specifically, patient advocates, funding
agencies (both federal and nonfederal),
medical foundations, public health
entities, and pharmaceutical companies
should each have a voice in articulating
the precision medicine priorities for
these conditions and how they might
be achieved. Enhanced efforts to
promote the inclusion of ethnically and

racially diverse populations in
observational studies and clinical trials
will allow broader applicability of
precision medicine.

2. Using approaches tailored for low-
resource settings. These include 1)
partnerships with industry to develop
cost-effective and rapid diagnostic tests,
which can be stored and performed
easily and used in any healthcare
setting; 2) simplifying predictor and
classifier models by reducing data
redundancy and using surrogate models
that are reliant on readily available
clinical data instead of complex
biological data; 3) using the “Fast-
Second Winner model” (51), which
leverages large-scale discovery efforts
elsewhere to develop more site-specific

public health strategies to accelerate
investment in promising biomarker and
diagnostic candidates based on local
health burdens and needs in low-
resource settings; and 4) artificial
intelligence applications that leverage
high dimensional clinical data with
relatively low local technological
investment (56), preferably using
electronic data feeds if available.

Recommendation 6
Secure andmaintain adequate and
sustainable funding.

Rationale. Funding for precision
medicine initiatives will require a shared
financial investment by academic
institutions, federal and nonfederal funding

Table 3. Potential Statistical Approaches to Improve Use of Knowledge Networks

Method Brief Description Examples

Subgroup identification

Unsupervised learning to identify
subgroups

Identifies subgroups that are agnostic to
treatment allocation and patient
outcome. Used to identify phenotypes

Hyperinflammatory and hypoinflammatory
phenotypes identified in ARDS (66–69),
and transcriptomic endotypes in sepsis
(70, 71)

Supervised learning to identify treatment
response subgroups

Identifies variables that predict treatment
response (predict individuals who are
likely to benefit from or be harmed by a
treatment). Subgroups are specific to
each treatment

Glucocorticoids therapy for septic shock
(72)

Reinforcement learning to identify patient
characteristics that respond to a
treatment

Uses patient data to predict dynamic
patient states and identify specific
treatment decisions over time

Treatment with fluids or vasopressors for
septic shock (43)

Data integration

Horizontal integration Normalization of clinical and biomarker
data across different studies and
biobanks

Harmonization of transcriptomic data in
sepsis biobanks (73)

Vertical integration Integration of clinical and biologic data
across multiple omics platforms in a
single study or dataset

Immune phenotyping of patients with
COVID-19 (74)

Inferring causal relationship

Mendelian randomization Variation of the instrumental variable
technique in which the instrument is one
or more genetic variants that predict an
intermediate variable (e.g., transcript
abundance or protein concentration),
and the intermediate may contribute to
the outcome

Plasma protein concentrations (Ang-2 or
soluble RAGE) contribute to sepsis and
ARDS risk (75, 76)

Mediation analyses Approach to explain the mechanism by
which an explanatory variable influences
outcome via a third ‘mediator’ variable.
The explanatory variable may be genetic
or nonmolecular

Platelet count and trajectory mediate
associations between variants in the
gene LRRC16A and ARDS risk and
mortality (77, 78)

Definition of abbreviations: ARDS=acute respiratory distress syndrome; COVID-19=coronavirus disease.
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agencies, pharmaceutical and biotechnology
companies, philanthropic societies, and
healthcare systems. No single agency funding
precision medicine in isolation will be able to
advance quickly enough to meaningfully
impact the field. Sustainable funding is
required to build and maintain collaborative
networks that allowmultiple agents to be
tested sequentially or in parallel, ensure data
and biospecimen harmonization, develop
novel trial design and informatic approaches,
and enroll patients in new precision
medicine studies. The success of precision
medicine efforts in breast cancer has come in
no small part because of the multiple
stakeholders that have provided funding,
including academic institutions,
pharmaceutical companies, not-for-profit
organizations, and food and drug retailers, in
addition to the substantial investment from
federal sources that ensured stability.
However, efforts across multiple stakeholders
will have to be coordinated. Recent examples
include the REMAP-CAP, RECOVERY
(Randomised Evaluation of COVID-19
Therapy), and iSPY-COVID trials, which

quickly engaged multiple stakeholders and
sponsors (including various pharmaceutical
companies whose products were tested,
academic healthcare centers, and federal
agencies such as the NIH in the United States
and the National Health Service in the
United Kingdom) to develop the
infrastructure, technology, and resources
necessary to rapidly and flexibly test multiple
therapeutic interventions in the midst of the
COVID-19 pandemic.

Specific recommendations include
increased funding by federal and nonfederal
agencies for proposals that advance precision
medicine for sepsis and ARDS and improved
efforts to coordinate activities across multiple
stakeholders.

Summary

Developing precision medicine approaches
will require reexamination of the conduct
of observational studies and RCTs for
sepsis and ARDS. In particular, the
equitable sharing of data and biospecimens

and the creation and maintenance of large
knowledge networks to identify HTE and
subgroups that benefit from a treatment
will be imperative. Although observational
studies are important, conducting RCTs
remains critical to making inferences
about causality and validate findings.
These steps will require significant
investment up front by multiple
stakeholders, and, ultimately, successful
precision medicine approaches will have
several economic advantages.
Pharmaceutical and biotechnology
companies, trial investigators, and
funding agencies will benefit from
infrastructures that allow for different
treatments to be tested within established
precision medicine trial networks, which
may reduce costs and improve chances
for a successful trial. Healthcare systems
and insurance companies will benefit
from creating learning healthcare systems
by potentially decreasing low-value care.
Most importantly, patients will benefit
from the ability to receive therapies that
have a higher likelihood of success. �
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