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ABSTRACT

Alternative splicing plays an important role in regu-
lating gene expression. Currently, most efficient
methods use expressed sequence tags or microar-
ray analysis for large-scale detection of alternative
splicing. However, it is difficult to detect all alterna-
tive splice events with them because of their in-
herent limitations. Previous computational methods
for alternative splicing prediction could only predict
particular kinds of alternative splice events. Thus, it
would be highly desirable to predict alternative
50/30 splice sites with various splicing levels using
genomic sequences alone. Here, we introduce the
competition mechanism of splice sites selection
into alternative splice site prediction. This approach
allows us to predict not only rarely used but also
frequently used alternative splice sites. On a dataset
extracted from the AltSplice database, our method
correctly classified �70% of the splice sites into
alternative and constitutive, as well as �80% of the
locations of real competitors for alternative splice
sites. It outperforms a method which only considers
features extracted from the splice sites themselves.
Furthermore, this approach can also predict the
changes in activation level arising from mutations in
flanking cryptic splice sites of a given splice site.
Our approach might be useful for studying alterna-
tive splicing in both computational and molecular
biology.

INTRODUCTION

Alternative splicing is emerging as an important mechanism
contributing to the functional complexity of higher eukary-
otes. It expands proteomic diversity and regulates develop-
mental stages or tissue-specific processes by generating
multiple transcripts from a single gene (1,2). Recent genome-
wide studies have indicated that 40–60% of human genes
undergo alternative splicing (3–5). Disruption of pre-mRNA
splicing plays a role in human disease, so alternative splicing

is highly relevant to numerous diseases and therapies (6,7).
Thus, accurate prediction of alternative splice events is
important in the study of gene function and disease therapy.
However, detecting alternative splicing in the whole genome
solely with traditional biological experiments is both time-
consuming and expensive. Therefore, it is highly desirable
to develop high throughput tools for quick identification of
alternative splicing, especially tools whose predictions can
provide useful guidance for further biological analysis.

Most recent large-scale studies have used expressed
sequence tags (ESTs) or cDNAs for detection of alternative
splicing (3–5,8). Usually, a pair of splice forms that match
exactly at one splice site (donor/acceptor splice site, i.e.
50/30SS) and differ at the other (30/50SS) is required to identify
an alternative splice event (4). Genomically aligned transcript
sequences (ESTs and/or cDNAs) have also been integrated
into ab initio gene structure prediction to provide alternative
optimal predictions besides the classical optimal one (9).
Using this method, each predicted alternative variant should
be supported by transcript evidence. Although there are
�7.9 million human ESTs in the latest release of dbEST
(release 063006, June 30, 2006) (10), the full extent of splice
variants is probably still far from being detected owing to the
many inherent problems with ESTs, such as coverage limita-
tions, bias of RT–PCR artifacts, EST fragmentation, etc. (5).
Specifically designed microarrays have also been used for
detection of alternative splice variants (11). However, even
these high-throughput alternative splicing detections are not
sufficient for the identification of all splice variants because
probes are usually designed as spanning specific exon–exon
junctions and it is difficult to test all combinations of tissues,
developmental stages and physiological conditions.

Because of the limitations of these methods, several non-
EST-based approaches have been proposed to predict alterna-
tive splicing. Some recent methods have tried to identify
conserved skipped exons using features of their genomic
sequences and comparative genomics (12–15), or to predict
exon skipping and intron retention events by using the
annotation of Pfam domains (16). By combining machine
learning approaches and cross species conservation or protein
domain annotations, these methods are able to predict partial
alternative splice events which lead to entire exon skipping
or entire intron retention. However, species-specific alterna-
tive splice events and events not including annotated Pfam
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domains are ignored by these methods, as exon extension/
truncation (i.e. alternative 50SS and alternative 30SS) events,
which are also prevalent in alternative splicing.

Several computational programs have been developed for
the prediction of gene structure and splice sites based on
the genomic sequences. These methods usually search for the
optimal gene structure, and the splicing signals, such as
splice sites, should fit the whole optimal gene structure
well. Thus, most of these algorithms hardly detect any alter-
native splice event (17). Up to now, ab initio prediction of
alternative splicing event based on one genomic sequence
alone has been attempted only rarely (14), especially for
splice events involving alternative 50/30SS. Recently, Wang
and Marin (18) described an approach for prediction of alter-
native splice sites using splice site sequences. However, their
method can only distinguish rarely used alternative splice
sites from constitutive ones based on the features extracted
from splice sites themselves. As alternative splice sites
have various usage frequencies, and the sequence features
of the most frequently used alternative splice sites are similar
to those of constitutive ones, this method is only able to
predict a fraction of human alternative splice sites.

The existing methods for splice site prediction usually use
features of the splice sites themselves. However, it is difficult
to predict alternative splice sites by using these features
alone. Our current research shows that there is no essential
distinction between constitutive and alternative splicing in
terms of their splice site sequences. Instead, their differences
are graded in nature and are correlated with the expression of
the splice sites: the more frequently an alternative splice site
is used, the more similar is its flanking sequence to that of
constitutive splice sites (see Supplementary Data 1). Thus,
discriminating all alternative splice sites from constitutive
ones based on splice site sequences alone is a difficult task.
Previous experiments have shown that the intrinsic strength
of competing 50SS is one of the factors involved in the choice
of 50SS (19). Roca et al. (20) further extended this selection
model for constitutive versus alternative 50SS selection for
nearby 50SS. Their experiments showed that mutations in
flanking cryptic 50SS could change the level of activation
of constitutive 50SS, suggesting that the choice of a splice
site is not only related to its own intrinsic strength, but
might also be influenced by its flanking competitors. Nearby
alternative splice sites might be involved in a mutually
exclusive competition for being spliced. This hypothesis of
competition mechanism of splice sites selection, that is, alter-
native splice sites might compete with each other, might give
a new insight to alternative splice site prediction. Therefore,
alternative splice sites should not be predicted solely based on
their own sequence features.

In this paper, we introduce the competition mechanism of
splice sites selection into the field of alternative splice site
prediction. First, we describe the application of support
vector machine (SVM), a machine learning method, for pre-
dicting whether the relation between two candidate splice sites
is competitive solely based on their genomic sequences.
Then, we predict whether a given splice site is alternative
or constitutive based on its relation to flanking potential splice
sites. The results show that considering the involvement of
splice sites competition in splice site selection provide useful
information for alternative splice site recognition. The new

method outperforms a method which only considers features
extracted from splice sites themselves (18). Our method pro-
vides a novel approach for the detection of alternative splice
sites based on the combination of sequence features and
potential competition mechanism for splice sites selection
which does not require additional data such as ESTs, etc.
Furthermore, our method can also provide information for
searching for potential competitors of a given splice site. It
also provides useful clues to guide experimental analysis of
alternative splicing, for instance towards detection of alterna-
tive splice events not covered by EST data or in evaluation of
the effects on splice site activation of mutations in flanking
sequences.

MATERIALS AND METHODS

Procedures for alternative splice site prediction

Based on the ‘competition hypothesis’ of splice site selection,
we can divide the combination between a splice site and its
flanking candidate splice sites into competitive splice site
pairs (CSSPs) and non-competitive splice site pairs
(NCSSPs). CSSPs refer to those pairs in which both splice
sites are activated and compete with each other, such as alter-
native splice site pairs. Conversely, if a splice site pair has
only one real spliced site and the other site in the pair is
not spliced, such as an alternative-pseudo splice site pair or
a constitutive-pseudo splice site pair, then the pair is an
NCSSP. Thus, our approach for alternative splice sites recog-
nition is implemented as follows:

Step 1: CSSP and NCSSP recognition. A machine learning
method, SVM, is used for the detection of CSSPs and
NCSSPs.
Step 2: Distinguishing alternative and constitutive splice
sites. For each splice site, all GT (for 50SSs) or AG
(for 30SSs) sites within ±m nt of that splice site are extracted
as candidate competing splice sites. Each of these candidates
is combined with the splice site in question, and a prediction
is made to tell whether any of them represents a CSSP. If the
answer is ‘yes’, then this splice site is an alternative one;
otherwise, it is a constitutive one. A flow chart of our method
is shown in Figure 1.

Dataset

Human sequences of alternative splice sites that obey the
GT–AG rule were extracted from the AltSplice database
(Human release 2) at http://www.ebi.ac.uk/asd/altsplice/
index.html (21,22), together with the number of ESTs
supporting them. Alternative 50/30SSs that have the same
positions of upstream and downstream 30/50SSs as their
competing sites were extracted, together with their flanking
sequences. A total of 3383 alternative 50SSs together with
their 3550 competitive splice sites and 7236 alternative
30SSs together with their 8036 competitive splice sites were
collected. Constitutive splice sites were also extracted from
the AltSplice database restricting to those ones whose
flanking exons and introns do not show any alternative splice
events. A total of 3359 constitutive 50SSs and 7862 constitu-
tive 30SSs were randomly chosen.
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The data was randomly divided into a training set and a
testing set. The training set of 50SSs includes 993 alternative
50SSs and 1003 constitutive 50SSs, with a total of 1040 pairs
of alternative splice sites as well as 1974 randomly selected
pairs of alternative/constitutive-pseudo splice site pairs. Our
statistical analysis of the distance between two alternative
splice sites shows that >90% of alternative 50SSs and 30SSs
locate within 200 and 150 nt of their competitors, respec-
tively (the length distribution of the alternative fragments
are shown in Figure S4 in Supplementary Data 2). The
50SS testing set includes 2390 alternative and 2356 constitu-
tive 50SSs, with a total of 2510 pairs of alternative splice sites
as well as 72 988 pairs of alternative/constitutive-pseudo
splice sites. The pseudo splice sites were extracted within a
range from �200 nt of upstream exon to 200 nt of down-
stream intron of the 50 splice site considered. The data extrac-
tion of training set and testing set for 30SSs was similar
(detailed information is shown in Table 1).

Support vector machine

Support vector machine (SVM) is a popular machine learning
algorithm, which was initially proposed by Vapnik (23,24)
based on statistical learning theory. It has been successfully
applied to bioinformatics investigations, such as the identi-
fication of splice sites (25), and identification of skipped
exons (13), etc. The basic idea of SVM is mapping data

into a high-dimensional feature space, and then constructs a
hyperplane as the decision surface between positive and
negative data. The actual mapping is achieved through kernel
functions, making it easy to implement and fast to compute.
Popular kernel functions are:

linear kernel : Kðxi‚xjÞ ¼ xTi xj‚ 1

polynomial kernel : Kðxi‚xjÞ ¼ ðgxTi xj þ rÞd‚g > 0‚ 2

radial basis function ðRBFÞ kernel :
Kðxi‚xjÞ ¼ expð � gkxi�xjk2Þ‚ g > 0‚

3

sigmoid kernel : Kðxi‚xjÞ ¼ tanhðgxTi xj þ rÞ‚ 4

where xi, xj are input vectors, g , r and d are kernel parameters.
In the present research, we used the software SVMlight (26)

to implement SVM. This software can be downloaded from
http://svmlight.joachims.org/.

Feature selection

Nucleotide composition is the basic feature of the splice site
sequence. Each of the nucleotide, i.e. A, G, C and T, can be
represented by a 4-bit string code as A-0001, G-0010, C-0100
and T-1000, respectively. For each real or pseudo splice site,
regions of ±L nt around the splice site were examined. For
donor splice sites, we set L ¼ 20, and for acceptor splice
sites, we set L ¼ 30. Thus, each site of a splice site pair is
represented by an 8L-D (dimension) feature vector.

Based on the splicing mechanism, we also included other
features which might affect splice sites selection. We have
previously found that the U1 snRNA binding free energy is
a factor involved in the selection of 50SSs (27). Thus, for
each 50SS in a pair, the free energy of U1 snRNA binding
to 50SS (positions �3 to +8) was calculated using the hybrid-
ization server on the Mfold web (http://www.bioinfo.rpi.edu/
applications/hybrid/twostate.php) (28). For each 30SS in a
pair, several features of polypyrimidine tract (PPT) related
region were considered. The PPT is important for splicing.
It has been reported that mutations which change the pyrimi-
dine composition of PPT may influence the selection of
branch-site (BS) or cause the splicing system to abolish splic-
ing altogether (29,30). BS which locates upstream of the PPT
has a strong influence on the splicing result. An analysis of
19 experimentally proven BSs has shown that the average

Figure 1. Flow chart for our alternative splice site prediction method.

Table 1. The datasets for identification of alternative splice sites

Splice site (SS) Splice site pair (SSP)
Alternative Constitutive Competitivea Non-competitivea

50SS
Training set 993 1003 1040 1974
Testing set 2390 2356 2510 72 988

30SS
Training set 2136 2455 2357 4533
Testing set 5100 5407 5679 164 720b

a‘Competitive’ refers to alternative splice site pairs and ‘non-competitive’
refers to alternative/constitutive-pseudo splice site pairs.
bFlanking pseudo splice sites were extracted within ±150 nt of the considered
30SSs.
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distance between the BS and the 30 splice site is 33–34 nt and
the minimal length of the PPT is 14 nt (31). We therefore
calculated the number of pyrimidines in the last 35 nt
upstream each 30SS via a sliding window of 14 nt, and the
window with the highest pyrimidine content was taken to
represent the pyrimidine intensity of the PPT-related region
for that site. The maximum number of continuous pyrim-
idines in that region was also calculated for each 30SS. The
distance between the region of maximum pyrimidine inten-
sity or maximum number of continuous pyrimidines and the
30SS was also calculated.

The features mentioned above can be used to represent the
intrinsic strength of a splice site. The relationship between
two sites in one pair (CSSP or NCSSP) depends on their
relative strength comparison. In addition, we also included
the distance and frame-preservation (an exact multiple of
3 nt in length) between a pair of splice sites that are also
important features for alternative splicing in our method.
We scaled each feature that is used in the range of [�1, +1].

Finally, all features were combined into one vector and an
N-D feature vector x

* ¼ ðx1‚x2‚x3‚ . . .‚xNÞ for each pair of
splice sites was obtained, where N ¼ (8L + 1) ·
2 + 2 ¼ 324 for 50SSs and N ¼ (8L + 4) · 2 + 2 ¼ 490
for 30SSs.

Performance assessment

We used sensitivity (Sn), specificity (Sp), total accuracy (TA)
and the Matthew’s correlation coefficient (MCC) to evaluate
the performance of our algorithm. We used True Positive
(TP) and False Negative (FN) to denote the numbers of posi-
tive data (such as CSSPs or alternative splice sites) that were
predicted as positive and negative, respectively. Similarly,
True Negative (TN) and False Positive (FP) were used to
denote the numbers of negative data (such as NCSSPs or
constitutive splice sites) that were predicted as negative and
positive, respectively. Then Sn and Sp were defined as:

Sn ¼
TP

TPþ FN
· 100%‚ 5

Sp ¼
TN

TNþ FP
· 100%‚ 6

That is, Sn and Sp are the proportion of positive and
negative data, respectively, which were correctly predicted.
TA and MCC were defined as:

TA ¼ TPþ TN

TPþ FNþ TNþ FP
· 100%‚ 7

MCC ¼ ðTPÞðTNÞ � ðFNÞðFPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞ

p : 8

In our study, a 5-fold cross-validation test was performed on
the training set to validate the prediction performance. The
training set was divided into five subsets of approximately
equal size. We trained our algorithm based on four of these
subsets, and then the remaining one was used to estimate
the prediction accuracy of the trained classifier. This process

was repeated until all subsets have been subjected to the
cross-validation.

RESULTS

Recognition results of splice site pairs using SVM

The splice site pairs were divided into competitive and non-
competitive splice site pairs. In our dataset, the alternative
splice site pairs were considered as CSSPs, and the
alternative-pseudo or constitutive-pseudo splice site pairs
were considered as NCSSPs. In order to recognize CSSPs
and NCSSPs, several commonly used kernel functions were
tried: the linear, the polynomial of degree 2 and 3, the RBF
and the sigmoid kernel function. We found that the RBF
kernel performed better than the other kernels. The parameter
g was set to g ¼ 1/k for the RBF kernel where k is the number
of features. We then performed a grid search over a range of
values of the penalty parameter C ranging from 0.25 (2�2) to
128 (27). The performance was evaluated by a 5-fold cross-
validation test. The best performance for 50SSPs was
achieved by an RBF kernel with parameter g ¼ 0.003 and
C ¼ 4, and the best result for 30SSPs was obtained by an
RBF kernel with g ¼ 0.002 and C ¼ 16.

The results of using SVM to identify 50SSPs and 30SSPs in
the testing set are shown in Table 2. Our SVM classifier was
able to identify 84.94% of the 50CSSPs and 78.34% of the
30CSSPs in the test. These results indicate that our method
can successfully estimate the relation between splice sites
in pairs.

Prediction of alternative splice sites

The prediction of alternative splice sites was performed on
the testing set according to the competition mechanism of
splice sites selection. For a given splice site, we searched
its flanking sequences for candidate competitors to identify
CSSPs. A splice site pair with a prediction value above a
selected threshold value E was considered a putative CSSP.
The threshold value E grants flexibility in adjusting the algor-
ithm’s sensitivity and specificity. All splice sites involved in
putative CSSPs were then considered as alternative.

Flanking sequences of different lengths m were tested for
searching candidate competitors of a given splice site, and
Receiver Operating Characteristics (ROC) curves for alterna-
tive splice sites predictions under various values of m are
shown in Figure 2. For a wide range of m, our method can
correctly predict �70% of the alternative splice sites with a
false positive rate �30%.

As the candidate competitors were extracted in the flanking
regions of ±m nt of given splice sites, CSSPs that consist
of competing sites lying beyond m nt could not be detected.
Thus, alternative splice sites whose real spliced competi-
tors lie only beyond m nt can hardly be detected. Thus, we

Table 2. Performance of the SVM classifier for splice site pairs (SSPs)

recognition on the testing set

Sn (%) Sp (%) TA (%) MCC

50SSP 84.94 89.35 89.21 0.395
30SSP 78.34 88.31 87.98 0.346
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further examined the performance for predicting the splice
sites which have known spliced competitors in the range of
±m nt. Figure 3 shows the sensitivities of prediction
under different values of m with threshold value E ¼ 0 as
an example (detailed results can be found in Tables S1 and
S2 in Supplementary Data 3).

Generally speaking, our method can identify >80% of
alternative 50SSs or 30SSs which have known spliced com-
petitors within ±m nt under the restriction on flanking regions
for candidate competitors searching. These results show that
our method can successfully predict alternative splice sites,
especially alternative splice sites with real spliced competi-
tors within the investigated flanking regions. Moreover, as
listed in Table 2, �80% of the CSSPs and near 90% of the
NCSSPs can be correctly identified. From the relation
between splice sites in pairs, our method could also identify
the potential alternatives to a given splice site.

Comparison with existing methods

We compared the performance of our method with that of a
published method named ASSP (18) on the testing set. ASSP
is a web-application available at http://es.embnet.org/~mw
ang/assp.html for the prediction of alternative splice sites,
and predicts alternative splice sites based on the features
within the splice sites themselves. Pre-processing models
are used by ASSP to scan the uploaded sequences for putative

splice sites. If a splice site is recognized by the pre-processing
models, i.e. its score is higher than a certain cut-off value,
it can then be classified into alternative or constitutive
splice site by ASSP. A total of 2199 constitutive 50SSs,
2052 alternative 50SSs, 5224 constitutive 30SSs and 4307
alternative 30SSs in our testing set were classified by ASSP,
using the default cut-off values for 50SS and 30SS provided
by the ASSP website. We call these data testing set I. We
set m ¼ 200 for 50SSs and m ¼ 150 for 30SSs with a threshold
value E ¼ 0.7 in our method for comparison. The results of
the comparison are listed in Table 3.

Previous researches have used the fraction of total
transcripts of a gene that supports an alternative splice
event to measure its observed frequency (32,33). Similarly,
we defined the splicing level of a splice site as its frequency
of being used among all the competing sites in the gene
(a detailed description can be found in Supplementary
Data 1). We further compared the performance of our method
and ASSP on identifying alternative splice sites with different
splicing levels.

We estimated the splicing level of each alternative splice
site in testing set I. Then all the alternative splice sites
in testing set I were divided into two sub-testing sets labeled
testing sets II and III according to their splicing levels, com-
prising alternative splice sites with splicing levels >0.7
(strong splice sites, SSSs) and <0.3 (weak splice sites,

Figure 2. ROC curves for prediction results on testing set with different m.
The value of m is the length of flanking sequences for searching candidate
competitors of a given splice site. False positive rate (FPR) ¼ 1 � Sp. The
algorithm’s sensitivity and specificity could be adjusted by threshold value E.
(a) Results of 50SS prediction. (b) Results of 30SS prediction.

Figure 3. The sensitivities of alternative splice site prediction with various
lengths of flanking sequences for searching candidate competitors, threshold
value E ¼ 0. The x-axis represents the length (denoted by m) of flanking
sequences. The lines marked with asterisks represent the prediction
performance for all splice sites in testing set, and the lines marked with
circles represent the prediction performance for splice sites which have real
spliced competitors in considering range of sequences. (a) Results for 50SSs.
(b) Results for 30SSs.
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WSSs), respectively. Splice sites with intermediate splicing
levels were not used. The results from the comparisons on
testing sets II and III are listed in Table 4, and show that
considering competitors in flanking sequences of given splice
sites will improve the prediction performance. Our method
outperforms ASSP, especially for frequently used alternative
splice sites. This suggests that we can apply our method to
any splice site, without the restriction to rarely spliced sites
as ASSP does.

We also repeated the same analysis using the data
extracted from AltExtron to further examine the performance
of our method on distinguishing between constitutive and
rarely used alternative splice sites. There are >20 000 constitu-
itutive exons, 698 alternative isoform 50 splice sites and 1347
alternative isoform 30 splice sites in the AltExtron database.
The alternative isoform splice sites refer to those rarely
recognized splice sites of extended or truncated exons
(18,22). Wang and Marin (18) constructed a training set
including 10 000 constitutive 50SSs, 600 alternative isoform
50SSs, 10 000 constitutive 30SSs, and 1200 alternative iso-
form 30SSs to train ASSP. The testing set they used included
1000 constitutive 50SSs, 98 alternative isoform 50SSs, 1000
constitutive 30SSs and 147 alternative isoform 30SSs. The
accuracies of ASSP on this testing set were 79.12% for
donors and 73.48% for acceptors (18). We randomly
extracted a training set and a testing set from the AltExtron
database with the same number of splice sites as for Wang
and Marin (18). For each splice site in the training set,
we extracted all CSSPs for each alternative splice site and
randomly chose one NCSSP for each alternative or constitu-
tive splice site, and trained our SVM classifier on this set.
Whether the splice sites in the testing set were alternative
or not were then predicted using our method. This procedure
was repeated 10 times and the average prediction perfor-
mance was calculated. On average, 88.19% of donor sites
and 81.80% of acceptor sites were correctly identified by
our method with m ¼ 200 for donors, m ¼ 150 for acceptors,
and threshold E ¼ 0. Thus, our method can achieve a satisfy-
ing performance on classifying constitutive and rarely used
alternative splice sites.

Recently, several non-EST-based methods other than
ASSP have been developed for predicting alternative splice
events (12–16). We further compared our method with the
previously published non-EST-based methods. Our method
differs from these methods in both the goals of prediction
and the data sources underlying the predictions. First, the
method presented here was designed to predict alternative
50SS and 30SS which lead to exon extension/truncation, rather
than entire exon skipping or intron retention. We extracted
937 internal exons from 100 randomly selected genes from

the Ensembl genome annotation project (34) and tested our
method and one of the previously published approaches
[ACESCAN (15)] on these exons. Results showed that our
method could predict near half exons which might be
extended or truncated by alternative 50SS/30SS. However,
our method cannot tell whether an exon will be skipped.
ACESCAN, on the other hand, can be used to predict whether
an exon is a conserved skipped exon both in human and
mouse, but cannot predict alternative splice events involving
exon extension/truncation. Second, all features used by our
method can be derived from the pre-mRNA sequences,
whereas methods that predict skipped exons or retained
introns rely on cross-species sequence conservation or protein
annotation. The comparison between our method and previ-
ously published approaches are listed in Tables S3 and S4
in Supplementary Data 4. Thus, our method and the published
non-EST-based methods could complement each other in
predicting different types of alternative splicing.

Predicting the influence of mutations in flanking
sequence on splicing

Our approach was also adapted to mutational analysis of gen-
ome sequence flanking a given splice site, and can estimate
the influence of mutations in cryptic splice sites flanking a
given splice site on the activation level of the given site.
Here, we use an example to illustrate this adaptability of
our method.

The mutational analysis of the cryptic 50SS located 16 nt
upstream of the authentic 50SS of the first exon in the
human b-globin gene has shown that mutations of the cryptic
50SS can influence the selection of the authentic 50SS (20).
Based on the in vitro splicing efficiencies, 26 mutant cryptic
50SSs were grouped into three functional subclasses: strong,
intermediate and weak. Strong mutant cryptic 50SSs cause
the authentic splice site to be alternatively spliced while
the intermediate and weak mutant splice sites did not
influence the constitutive splicing of the authentic site.

We used our method to predict whether the authentic 50SS
would be turned into an alternative splice site or remain a
constitutive site under each situation of mutation. The activa-
tion of the authentic 50SS was only related to its combination
with the mutant cryptic 50SS, since all the combination of
other possible splice sites within the upstream exon and
downstream intron to the authentic 50SS were predicted to
be NCSSPs. The threshold value was set to E ¼ 0. Results
are shown in Figure 4. Our method could correctly predict
the effect of all strong and weak mutations as well as the
effect of near half of all the intermediate mutations. However,

Table 4. Prediction results of our method and ASSP on splice sites with

different strengths

Correctly predicted splice site (%)
Our method ASSP

Testing set II (strong splice site)
50SS 60.08 42.97
30SS 53.27 44.56

Testing set III (weak splice site)
50SS 75.77 69.58
30SS 73.21 69.34

Table 3. Summary of the performance of our method and ASSP on testing set I

Sn (%) Sp (%) TA (%) MCC

Testing set I
50SS

Our method 67.15 71.71 69.51 0.389
ASSP 56.63 62.66 59.75 0.193

30SS
Our method 64.22 71.88 68.42 0.362
ASSP 58.16 65.10 61.97 0.233
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it could not predict the change in activation level of the
authentic 50SS if only the authentic splice site itself was
considered (as with ASSP), because the mutations in the
candidate competitor do not significantly change the flanking
sequence characteristics of the authentic site. The results are
also shown in Figure 4. Regardless of which mutant of the
cryptic 50SS was tested, ASSP always predicted the authentic
50SS as an alternative splice site with confidence level >0.88,
whereas experimental data showed that the authentic 50SS
was constitutively spliced in the majority of cases (20). The
detailed results from the analyses with our method and
ASSP are listed in Table S5 in Supplementary Data 5.

To further evaluate the methods, we calculated Pearson’s
correlation coefficient (r-value) between the prediction values
and the experimentally determined activation levels of
authentic 50SS splicing in competition with the mutant sites.

Results are shown in Table 5. Our method can fit the results
of the splicing assays well (r ¼ �0.69, p ¼ 10�4), whereas
the results with ASSP (r ¼ �0.36, p ¼ 0.07) cannot.
This implies that when studying alternative splicing, we
should consider splice sites and their flanking information,
including possible competing sites as well as splicing regula-
tors, rather than just the splice sites themselves. Doing so, our
method not only achieves a satisfying performance on
alternative splice site prediction, but also provides evidence
for the influence of competition on the selection of alternative
splice sites and facilitates further experimental work.

DISCUSSION

In this paper, we describe a novel approach that predicts
alternative splice sites based on the competition mechanism
of splice sites selection. Alternative splice sites were pre-
dicted according to their relation to their flanking potential
splice sites. We used SVM to distinguish competitive from
non-competitive splice site pairs based on features derived
from their genomic sequences alone. These features might
also be factors related to the splicing machinery. Data from
other sources, such as ESTs and cross-species conservation,
are not required by our method. Our method can predict
>80% of alternative splice sites that have known competing
sites within their flanking searching regions, as well as the
locations of the potential competitors in these regions.
These results might benefit further experimental analysis of
alternative splicing.

The concept of competition has already been used by the
optimal algorithms in other fields. For example, some compu-
tational programs predicting the gene structure of alternative
isoform by using a suboptimal parse of a HMM gene model
have considered competition between different splice
patterns. Here, we introduce the competition hypothesis
into alternative splice site prediction. The method that we
propose is different from most other splice site predictors.
The prediction of a splice site by using our method is not
only based on its own intrinsic strength, but also related to
the strength of its candidate competitors. The competition
hypothesis for splice sites selection may shed light on the
biological significance of alternative splice site usage, and
is of importance for the prediction of alternative splice sites.

The results of our prediction are restricted to the regions
searched for candidate competitors of a given splice site,
and it is therefore difficult to detect alternative splice sites
whose spliced competitors lie beyond the scanned regions.
We have shown that for >90% of alternative 50 and 30

splice sites, the competing sites locate within 200 or 150 nt,

Figure 4. Box plot of prediction values for authentic 50SS with different
groups of mutant cryptic 50SSs. The dash-dotted lines in (a) and (b) represent
the prediction values for wild-type authentic 50SS with the wild-type cryptic
50SS of our method and ASSP, respectively. The x-axis represents the
authentic 50SS with different groups of mutant cryptic 50SSs, and the category
labels on the x-axis represent different groups of mutation sites as followed:
‘S’, strong mutant sites; ‘I’, intermediate mutant sites; ‘W’, weak mutant
sites; and the letter in parentheses represents the authentic 50SS is alternative
(A) or constitutive (C) spliced validated by experiments. (a) Output values of
our SVM classifier on the splice site pair of authentic 50SS and mutant cryptic
50SS. A positive value indicates that the authentic 50SS is predicted to be
alternatively spliced and a negative value means the authentic 50SS is
predicted to be constitutively spliced. (b) Output values for splice sites
assigned to be alternative by ASSP.

Table 5. Correlations (Pearson’s correlation coefficients) between prediction

values and the experimentally validated percentage of activation (20) of

authentic 50SS

Our method ASSP
r P-value r P-value

Authentic 50SS with
all 26 mutants

�0.689 1.004 · 10�4 �0.364 0.067

Authentic 50SS with
strong mutants

�0.696 0.125 �0.286 0.583
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respectively, allowing our method to predict the majority of
alternative splice sites. The range of the investigated flanking
regions can be flexibly adjusted according to application.
To further reduce the false positive rate, the application-
dependent threshold E can be used to eliminate possible
NCSSPs.

The comparison with ASSP shows that the approach
presented here has 6–10% higher sensitivity with substan-
tially lower false positive rate. Particularly, our approach
has much better performance on predicting strong splice
sites than ASSP, and has 17.11% and 8.71% higher sensitiv-
ity than ASSP for predicting strong 50SSs and 30SSs,
respectively. We have mentioned that frequently used alter-
native splice sites are similar to constitutive splice sites in
terms of their flanking sequences. Thus, it is difficult to
distinguish between these two types of splice sites by features
extracted from the splice sites alone. A method considering
splice sites alone, such as ASSP, can only distinguish
constitutive and rarely used alternative splice sites. In
contrast, our approach considers not only the features of
splice sites themselves, but also their relation to competing
sites. This allows our method to detect both strong and
weak alternative splice sites. Furthermore, when we restricted
our method on distinguishing between constitutive and rarely
used alternative splice sites (i.e. we trained and tested our
method on the data extracted from the AltExtron database),
we got much better prediction performance than that of
distinguishing between constitutive and all alternative splice
sites. This is because the features of rarely used alternative
splice sites are much more distinct from constitutive ones
on both splice sites sequences and their relation to their
competing sites. Recent reports have shown that there could
be hundreds of exonic splicing silencers (ESSs) (35) and
exonic splicing enhancers (ESEs) (36) that involved in
regulating pre-mRNA splicing. Moreover, intronic splicing
silencers (ISSs) and intronic splicing enhancers (ISEs) are
also assumed to be involved in the regulation of many alter-
native splice events (37). All these evidences indicate that
alternative splicing is regulated by a complex system of fac-
tors that spread not only in the vicinity of the splice sites, but
also in the whole exon and intron regions. We believe that
with an increased understanding of other splicing regulators
and the mechanism governing alternative splice sites selec-
tion, the performance of our prediction approach can be fur-
ther improved.

In addition, our method can predict changes in splice site
activation level arising from mutations in its flanking
sequences. This kind of mutations usually do not significantly
change the splice site itself. It has been reported that the
activation level of a splice site can be influenced by the
strength of a flanking competitor, even though the splice
site itself is not changed (20). We successfully used our
method to predict the results of experimental splicing assays
with strong and weak mutations (20). We have also shown
that a method which considers splice site features alone
cannot correctly predict such results. Thus, our approach
represents a clear improvement over the previous method
which considers splice site alone. It should be useful for
investigating alternative splicing caused by mutations occur-
ring not only in splice site but also outside the vicinity of
splice site itself.

Accurate prediction of alternative splice sites is important
both for experimental work and for disease therapy. The
method presented here represents a first step towards ab initio
alternative splice site prediction based on its genomic
sequence alone by bringing the competition mechanism of
splice sites selection into alternative splice site prediction.
An alternative splice site which leads to exon extension/
truncation can be predicted by using this method even in
the absence of EST evidence, and the method will be a
complement to previous non-EST-based methods used to
identify alternative splice events. Moreover, several computer
programs have been developed for the prediction of gene
structure by integrating multiple sources of evidence, includ-
ing output of gene finders and transcripts information (9,38).
The use of genomically aligned transcript sequences allows
computational method for gene prediction to identify alterna-
tive isoforms which are supported by transcript evidences (9).
The method presented here can also be integrated into these
methods in order to extend the prediction to also include
alternative splice sites without supporting transcripts. The
combination of splice site sequence features and potential
competition mechanism of splice sites selection renders our
method capable of predicting both alternative splice sites
and the locations of their potential competitors. This will
provide useful clues for biological analysis of alternative
splicing and represents one step further towards computa-
tional discrimination between alternative and constitutive
splice sites, that is to say, we should not only consider the
splice sites alone but also take their potential competitors
and flanking regulatory elements as a whole.
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