
����������
�������

Citation: Oborník, M. Organellar

Evolution: A Path from Benefit to

Dependence. Microorganisms 2022, 10,

122. https://doi.org/10.3390/

microorganisms10010122

Academic Editor: Michael F. Hynes

Received: 15 November 2021

Accepted: 5 January 2022

Published: 7 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Review

Organellar Evolution: A Path from Benefit to Dependence
Miroslav Oborník 1,2

1 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic;
obornik@paru.cas.cz

2 Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic

Abstract: Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their
benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic
pathway is lost, due to something other than the original beneficial function. The organellar function
essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant
metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of
metabolic functions between the organelle and host. Such biological division of metabolic labor leads
to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as
the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the
original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if
there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained
because it simply resists being eliminated or digested untill it becomes indispensable.
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1. Introduction

A eukaryotic cell is typical by hosting semiautonomous organelles, such as mitochon-
dria and plastids. These organelles are deeply integrated into the host cell; however, they
usually keep some level of independence by encoding a fraction of the organellar proteome
and RNAs in their genomes [1–4], living to some extent like endosymbiotic bacteria [5,6].
Mitochondria and plastids are, with few exceptions, essential for the host cell survival;
once the cell has captured an organelle, it can hardly get rid of it [1–4,6,7]. It is believed
that mitochondria and plastids evolved in endosymbiotic events, involving an engulfment
or invasion of a free-living organellar ancestor, followed by the endosymbiotic transfer of
genes from the captured entity to the nucleus of the host cell, with a consequent import of
nuclear-encoded proteins into the organelle [3,8,9]. Symbiosis is an intimate, long-time re-
lationship of two dissimilar organisms living together [10]. Although it is often understood
as mutualism, the state beneficial for both partners, symbiosis, in fact, involves a continuum
of relationships ranging from mutualism to parasitism [11]. The evolutionary history of
plastids by domesticating a cyanobacterium is apparent because they are evolutionarily
younger, and a cyanobacterial ancestor was likely acquired by the regular eukaryotic cell
capable of phagocytosis [3,8,9].

On the other hand, the origin of the evolutionary older mitochondrion is more elusive.
It is not straightfoward as to what kind of cell engulfed the mitochondrial ancestor, what
ancestor it was, what the original mitochondrial beneficial function was, if it had any, and
what kind of a symbiotic relationship the endosymbiotic partners had [6,12–14]. The veil of
time successfully obscures the evolutionary history of the mitochondrion.

2. The Plastid Benefit for the Host Is Photosynthesis

When talking about organelles, it is believed that benefits drive symbiotic relation-
ships. However, it can be pretty challenging to trace the original benefit for which the
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endosymbiont is retained and integrated into the host cell. It is most likely that photosyn-
thesis was the reason for adopting a cyanobacterial symbiont by a heterotrophic eukaryotic
host (Figure 1) because there is no other way to get photosynthesis into the eukaryotic cell
lacking it. Photosynthesis is managed by such complex molecular machinery that conver-
gent evolution of the machinery appears highly improbable [6]. While the lateral gene
transfer (LGT) likely stands behind the evolution of photosynthesis in prokaryotes [15–17],
it played, except the endosymbiotic LGT, no role in the evolution of photosynthesis in
eukaryotes. Instead, the evolutionary history of eukaryotic phototrophs is full of endosym-
biotic events involving prokaryotic (at least twice) or eukaryotic phototrophs (many times)
as donors of photosynthetic ability. Consequently, compartmentalization always physically
separates photosynthesis from the host cell in eukaryotes (Figure 1). Photosynthesis has
been transmitted throughout the tree of life for the apparent reason of the acquisition of a
photoautotrophic lifestyle. Although it was supposed for a long time that plastid endosym-
biotic events are rare in evolution [18,19], it recently appeared that at least two and six
independent events were likely responsible for the appearance of primary and complex plas-
tids, respectively, not counting complex plastids replacements. In addition to the primary
endosymbiotic Archaeplastida, a relatively recent event involving heterotrophic amoe-
bae and a cyanobacterium was proposed for the rhizarian Paulinella chromatophora, again
with the apparent benefit of photoautotrophy [20–24]. Complex plastids have likely been
independently acquired in Euglenophyta, Chorarachniophyta, Alveolata, Stramenopila,
Haptophyta, and Cryptophyta [25–31] (Table 1).

Table 1. Selected plastids and their characteristics in various eukaryotes. It demonstrates the reductive
evolution of plastids in eukaryotes.

Organism Supergroup Type of the Plastid Genes (Cds) Genome Reference

Arabidopsis thaliana Archaeplastida primary 85 circular [32]
Porphiridium purpureum Archaeplastida primary 224 circular [33]
Helicosporidium sp. Archaeplastida primary 26 circular [34]
Polytomella sp. Archaeplastida primary 0 circular [35]
Paulinella chromatohpora Cercozoa (SAR) primary (cyanelle) 867 circular [36]
Euglena gracilis Eugenophyta complex (secondary) 67 circular [37]
Euglena longa Eugenophyta complex (secondary) 46 circular [38]
Heterocapsa triquetra Dinophyta (SAR) complex 14 Circular (minicircles) [39]
Hematodinium sp. Dinophyta (SAR) - - - [40]
Thalassiosira pseudonana Bacillariophyta (SAR) complex 141 circular [41]
Chromera velia Apicomonada (SAR) complex 78 linear [42]
Vitrella brassicaformis Apicomonada (SAR) complex 94 circular [42]
Toxoplasma gondii Sporozoa (SAR) complex 29 circular NCBI
Cryptosoridium muris Sporozoa (SAR) - - - [43]

Photosynthesis as a beneficial function is, however, not essential for the host cell‘s
survival. Many photoautotrophic lineages became secondarily heterotrophic (Figure 1 and
Table 1). Various eukaryotes have lost photosynthesis, being either forced by the lack of
access to light or by chemical (e.g., antibiotic) disruption of the photosynthetic molecular
machine [11,31,44–50]. For example, apicomplexan parasites (Sporozoa, Apicomplexa) likely
became secondarily heterotrophic because of the easy availability of the organic carbon
from the host or by the switch of the ancestral photoparasite from translucent to the opaque
host [11]. Additionally, we have to consider that photosynthesis is not only beneficial for
the primary producer, as it is quite costly and stands behind the outstanding production
of reactive oxygen species (ROS), which can heavily damage the cell [45]. Additionally, a
strictly phototrophic lifestyle forces the organisms to live in the access to light and thus
limits their environmental distribution.
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Figure 1. Evolution of benefit and essential function in the plastid. The heterotrophic host ac-
quired a photosynthetic endosymbiotic bacterium with the function (photosynthesis) beneficial for
the host. The host cell lost the redundant function (e.g., synthesis of heme, fatty acids, and iso-
prenoids). At the same time, the delegation of the syntheses to the endosymbiont makes it essential
for host survival (eukaryotic phototrophs, e.g., Archaeplastida and Paulinella sp., and algae with
complex plastids such as Ochrophyta, Cryptophyta, Haptophyta, Dinophyta, Apicomplexa, Eu-
glenopyhta, Chlorarachniophyta [1–3,11]). The endosymbiont retained its indispensability for the
host even when it had lost photosynthesis, the original beneficial function (in nonphotosynthetic
algae, e.g., Helicosporidium sp., Polytomella sp., Euglena longa, apicomplexan parasites, for example,
Plasmodium falciparum, Toxoplasma gondii [1–3,7,11] Table 1). Switching to parasitism and scavenging
the essential compounds from the host allows the complete loss of the plastid (apicomplexan parasite
Cryptosporidium [42], parasitic dinoflagellate Hematodinium [40]).

Therefore, many phototrophs are, in fact, mixotrophs, which can still live heterotrophi-
cally. Such organisms may be prone to losing photosynthesis when getting to the nutrient-
rich environment or finding a successful heterotrophic strategy, such as predation or
parasitism. Moreover, many protists combine the phototrophic and heterotrophic lives
to overcome a reduced availability of various compounds present in host or prey but
rare in their environment, such as, for example, nitrogen, phosphorus, iron, and sul-
fur [11]. Therefore, photosynthesis was frequently lost from green parasitic algae [31,44],
euglenophytes [46], apicomplexan parasites [11,31,47–50], and dinoflagellates [48]. Various
secondarily heterotrophic strategies, including parasitism, have evolved repeatedly during
the evolution of life among former phototrophs [11,38,39]. It is worth noting that such
trophic switches are often found in the same taxonomic groups, such as, for example, in
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myozozans, group of alveolate protists, consisting of dinoflagellates, apicomplexan para-
sites, and apicomonads (chromerids and colpodellids). Apicomplexans and dinoflagellates
are also the only known algae shown to lose their plastids completely. The plastid is
absent from the apicomplexan parasitic genus Cryptosporidium [42] and gregarines [51], and
the parasitic dinoflagellates of the genus Hematodinium [40]. The plastid losses have hap-
pened exclusively in parasites thanks to their ability to scavenge the essential compounds
originally produced by plastids from the host (Table 2).

Table 2. Examples of mitochondria and MROs and their characteristics in various eukaryotes. It demon-
strates the reductive evolution of mitochondria, from mitochondrial organelles with large genomes to
hydrogenosomes and mitosomes lacking genome and eukaryotic cells without mitochondrion.

Species Taxonomy Type of Mitochondrion Genes (Cds) Genome Reference

Andalucia godoyi Jakobida Aerobic/OXPHOS 67 circular [52]
Reclinomonas americana Jakobida Aerobic/OXPHOS 66 circular [53]
Homo sapiens Metazoa (Obazoa) Aerobic/OXPHOS 13 circular [54]
Nymphaea colorata Archaeplastida Aerobic/OXPHOS 42 circular [55]
Nyctotherus ovalis Ciliophora (SAR) Anaerobic/H-producing 16 linear [56]
Plasmodium falciparum Sporozoa (SAR) Aerobic/OXPHOS 3 linear [57]
Chromera velia Apicomonada (SAR) Aerobic/OXPHOS 2 linear [58]
Amebophrya ceratii Dinophyta (SAR) Aerobic/OXPHOS 0 - [59]
Neocallimastix sp. Chytridiomycota (Obazoa) Hydrogenosome - - [60]
Giardia intestinalis Metamonada Mitosome (Fe-S clusters) - - [60]
Monocercomonoides sp. Oxymonadida - - - [61]

3. A Beneficial Function of the Mitochondrion

In contrast with plastids, the hypothetical benefit responsible for acquiring mitochon-
dria is the subject of speculation. Frankly speaking, it is not even clear if the mitochondrion
was indispensable for forming an early eukaryotic cell [12] or when it was acquired in
the course of evolution (early versus late acquisition). The discovery of the eukaryote
lacking a mitochondrion proved that the organelle is not essential for the eukaryotic cell
as it exists now when the organism is a secondary anaerobic (Figure 2) [61]. Generally,
mitochondria are great examples of reductive evolution. The diversity of this organelle in-
volves mitochondria with large circular genomes (e.g., in jakobids [52,53,62]), mitochondria
with highly reduced genomes (e.g., those in apicomplexans; [63]), mitochondria-related
organelles (MRO), e.g., mitosomes and hydrogenosomes without genomes [60], and, in the
end, completely lost mitochondrion (in oxymonads; Table 2 [61]). Consequently, various
such organelles possess diverse molecular machinery: the complete respiratory chain of
aerobic mitochondria or variously reduced respiratory chains lacking particular complexes:
complex I (myzozans, e.g., apicomplexan parasites, and some fungi), complexes III and IV,
while complexes I, II, and V retained [64], complexes I and III in chromerids [58,63] and
the dinoflagellates of the genus Amoebophrya [59]), or complexes III, IV, and ATP synthase
in (some) hydrogenosomes [60]. The missing complexes are substituted by alternative
sources of electrons (e.g., alternative NADH dehydrogenases, L- and D- lactate cytochrome
c oxidoreductases), or the electron transport chain was even completely lost (MRO).

Mitochondria host a wide range of metabolic functions, with oxidative phosphoryla-
tion being the most prominent (Figure 2), although it is found only in classical mitochondrial
organelles, and lost from highly reduced MROs. In addition to that, mitochondria can be
responsible for the metabolism of amino acids and nucleotides, steroid biosynthesis, heme
synthesis, fatty acid catabolism, iron-cluster biogenesis, and many others [60,65–68]. Such
metabolic complexity makes the search for the original beneficial function of the mitochon-
drion difficult. Various hypotheses have been formulated to explain the primary reason for
acquiring a mitochondrion. It is further complicated by extensive genetic rearrangements
of the organelle during organellogenesis because a substantial part of the mitochondrial
proteome does not originate from the supposed mitochondrial ancestor [60].
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Figure 2. The traditional view on the evolution of benefit and essential function in the mitochon-
drion. Anaerobic host acquired a facultatively anaerobic endosymbiotic bacterium with the function
beneficial for the host, presumably detoxifying oxygen. It became essential for the host in aerobic
conditions. The redundant function was lost from the host (e.g., synthesis and assembly of Fe-S
clusters). At the same time, the delegation of the synthesis to the endosymbiont makes it essential for
host survival. The endosymbiont retained its indispensability for the host even when it had lost the
original beneficial function by adaptating to anaerobic conditions. The acquisition of bacterial Fe-S
clusters synthesis and assembly in the cytosol of oxymonads through HGT allowed the loss of the
mitochondrion (MRO) [61].

The hydrogen hypothesis [69] proposed that the primary benefit of pre-mitochondrial
symbiont was hydrogen production for the host, methanogenic Archaea. Some eukaryotes,
such as Acanthamoeba castellanii (Amoebozoa), Brevimastigomonas motovehiculus (Rhizaria),
Blastocystis spp. (Stramenopila), Nyctotherus ovalis (Alveolata) still contain hydrogen-producing
mitochondria with complete (Acanthamoeba) or reduced respiratory chains [60,64,70]. Oth-
ers host hydrogenosomes, organelles believed to represent modified hydrogen-producing
mitochondria [13,60], which have lost the ATP generating part of the respiratory chain and
retain just complex I (NADH hydrogenase), or complex II (succinate dehydrogenase) or
both [56]. Martin et al. [13] also claim that the mitochondrial ancestor was a facultatively
anaerobic bacterium.

Another possible beneficial function of a pre-mitochondrion was proposed by Thomas
Cavalier-Smith [71], who speculated that the ancestor of mitochondrion was a photosyn-
thetic purple bacterium, and the primary benefit was photoautotrophy, similar to plastids.
This hypothesis assumes that both symbiont and host were facultative aerobes and that
the host already has oxidative phosphorylation. A phototrophic symbiont would have
an immediate intracellular synergy between a photosynthetic symbiont fixing CO2 and
respiring and a phagotrophic host using oxygen and excreting CO2 [71].
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Other hypotheses suppose that the primary benefit of the mitochondrion is related to
dealing with free oxygen in the environment, preferring aerobic heterotrophic respiring bac-
terium as a mitochondrial ancestor [60]. Oxygen appeared in higher levels during the Great
Oxidation Event between 2.4 and 2.1 Bya (billion years ago) [72]. If we take into account
the possibility of early acquisition of mitochondrion, the oldest estimates of its appearance
touch 2.1 Bya (1655–2094 Mya), while the youngest move around 1 Bya (943–1102 Mya) [73].
One of the earliest views on mitochondrial evolution supposes that the mitochondrion-free
anaerobic eukaryotic ancestor acquired aerobic mitochondrion to detoxify oxygen accumu-
lated in the environment after the Great Oxidation Event [74,75]. This scenario would even
fit the timing of appearance of eukaryotes between 1 and 2 Bya. However, geochemical
data indicate relatively low oxygen levels during the diversification of eukaryotes [72,76].
Moreover, Zimorski et al. [76] argued that those are metabolic processes in the mitochon-
drion, particularly electron transport chain generating reactive oxygen species, which may
harm the cell and must be detoxicated. Therefore, oxidative phosphorylation can hardly
be the primary benefit, at least in light of the oxygen detoxification hypothesis. However,
we cannot ignore the fact that there is no eukaryote without classical mitochondrion with
oxidative phosphorylation known that can permanently live in the presence of oxygen.
The use of enzymes that can react with free oxygen does not allow obligate anaerobes
to inhabit an oxygen environment. When looking at strictly anaerobic bacteria, they rely
on low-potential flavoproteins used for anaerobic respiration. Exposure to oxygen likely
causes superoxide and hydrogen peroxide production. They inactivate enzymes with
these functional groups through the oxidation of dehydratase iron-sulfur clusters and sul-
phydryls. However, anaerobes utilize several classes of dioxygen-sensitive enzymes absent
from aerobes, which maintain the redox balance during anaerobic fermentation. Their
reaction mechanisms require exposure of the solvent of radicals or low-potential metal
clusters to the oxygen that can react with it. Additionally, hydroxyl radicals damaging DNA
and other biomolecules are generated because hydrogen peroxide oxidizes free iron [77].
Analogously, we can expect that oxygen could not be tolerated by anaerobes involved as
the host cell in the early eukaryotic endosymbiotic events. A mitochondrial ancestor could
eventually invade the host cell as an energy parasite. The proposed intracellularly parasitic
ancestor of the mitochondrion was predicted to bear the ATP/ADP translocase importing
ATP from the host. In such a case, there was no beneficial function behind a selection of an
endosymbiont (parasite) in the event because the benefit was provided by the host cell [78].

4. Accumulation of Benefits

The origin of semiautonomous organelles cannot be seen in a static model. It is an
evolutionary dynamic system in which an organelle is not in the cell forever; they can be
replaced and lost, leaving leftovers in the genome and metabolism or can even disappear
without a trace. Learning from the complex plastids, we see that the plastid replacing
the old one partially uses the metabolic equipment of the former cell tenant [68,79]. This
mechanism forms a highly evolutionary mosaic metabolic net, particularly in organisms
passing through serial endosymbiotic events [7,80–83]. When applied to the origin of the
mitochondrion (Figure 3), such hypothetical serial events can explain the evolutionary
highly variable mitochondrial proteomes, where only a minor part of it fits, evolutionarily
speaking, to the supposed mitochondrial ancestor [60].

Since every symbiont in the series could have a different beneficial function, it is rather
challenging to specify the original benefit of current mitochondria. Even more, some of the
symbionts (maybe most of them) may have been parasites [10], with no benefit for the host
at the time of the invasion. There could also be theoretically more than a single symbiont
present in the host cell at a time because multiple endosymbioses stimulate the evolution
of what we see as a mutualistic partnership [6].
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mitochondria. Partners in the process are bacteria (B), transformed into symbionts (S). The symbiont
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5. Benefit and Essential Function

Although the beneficial function such as photosynthesis is not necessarily essential
for the host cell survival in general, it can be crucial in certain conditions or indispensable
for life on a global scale. Thus, for example, an organism living in the absence of organic
substances in the environment needs photosynthesis serving as the source of organic
carbon and thus became essential for its survival. Although lithotrophic bacteria can also
fix CO2, they likely play a minor role in the global carbon cycle [84]. On the global scale,
photosynthesis is essential for life on Earth as we know it because it is the only way that
the energy of sunlight can be transformed to the energy of chemical bond utilizable by all
living organisms, including heterotrophs. There is no doubt about the fact that, without
photosynthesis, life on Earth, if it could exist, would be present on an incomparably smaller
scale than it is now. Therefore, the essentiality of the metabolic function always depends
on the particular environmental conditions.

It is even possible that in eukaryotic organellogenesis, we face two fundamentally
different endosymbiotic processes. The first type, presumably leading to the evolution of the
mitochondrion, may not need the host cell capable of phagocytoses because it can be based
on an active symbiont invasion into the host [6,74]. Since many (maybe most) symbiotic
bacteria are or were parasitic in their evolutionary history [6,10], they were likely able to
attack and penetrate the host cell and live as intracellular parasites. There was no benefit to
the host in such a case, but the relationship was driven by an advantage to the symbiont.
Such parasitic relationships could evolve to mutual dependence through the defense of the
host cell against the parasite followed by organellogenesis. The second type represented
by plastids is based on the phagocytic engulfment of a phototroph which is supposed to
retain in the host (originally predatory) cell due to the benefit of photoautotrophy (Figure 4).
It is even possible that the symbiotic relationship of a plastid was also not necessarily
driven by the benefit of phototrophy but by the resistance of symbiont against digestion by
the predatory host cell. Through the stage of kleptoplastidy, non-permanent symbionts,
which are, in the end, digested by the host, evolved into permanent plastids [85]. They
are, however, kind of “gradually digested” anyway by the host using primary metabolites
exported from the symbiont; this process is analogous to the domestication of animals by
humans, something like milking cows. Nevertheless, even the permanent plastids are in
most eukaryotic phototrophs sometimes lyzed by the host cell, allowing mRNA release to
the host cytosol, followed by reverse transcription and the endosymbiotic gene transfer to
the host nucleus. Thus, the endosymbiotic gene transfer is an ongoing and never-ending
process. Therefore, we can identify differences in the organellar gene repertoires even in
groups with conserved plastid (plants) [86] or mitochondrial (animals) genomes [87].
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Figure 4. Two possible types of endosymbiotic events. In the first type, the endosymbiont (a–c) is a
parasitic bacterium, which actively invades the host cell (a). The defense of the host ((b), blue arrows)
against parasitic endosymbiont (red arrows) transformed the parasitic relationship to mutualism (c).
Endosymbiotic gene transfer, together with gradual losses of redundant pathways, led to the mutual
dependence of the host and symbiont. The second type of event (d–f) is based on hunting. The
cyanobacterial prey is engulfed by phagocytosis (d). The bacterium resists (blue arrows) digestion
(red arrows) (e). The photosynthetic endosymbiont provides primary metabolites (M) to the host cell
in a mutualistic relationship. This type of organellogenesis resembles domestication. In both cases,
the endosymbiont provides (non-essential) benefit to the host.

Although endosymbiotic organelles are going through a reductive evolution, con-
structive evolution also plays a role in the formation of mitochondria and plastids. The
protein composition of photosystems (PS) is highly reduced in complex plastids, with
the highest level of reduction referred to in chromerids. Although protein subunits have
been lost from their photosystems, new ones appeared. Thus, in the apicomonad alga
Chromera velia, two superoxide dismutases are unprecedentedly permanently attached to
the PSI. In addition, three novel subunits with no sequence homology in the databases and
unknown functions were found in the PSI of C. velia [88].

While primary plastids of plants are pretty conserved in their structure and genomes [86],
complex plastids in algae display quite diverse functions, and they also can be different
in the ultrastructure. For example, while many amino acids s (e.g., glutamate/ glutamine,
cysteine, lysine, branched-chain, and aromatic amino acids) are synthesized in the diatom
plastid, similar to plants [89], chromerids locate their amino acid synthesis dominantly to the
cytosol [90].

Mitochondria are somewhat evolutionarily frozen in their function and structure
in some groups, such as, for example, animals. In protists, they are highly diverse, as
shown in Table 2. Despite the dominant reductive evolution of mitochondria, we can
also find, similar to plastids, constructively evolving characters in their genomes. For
example, kinetoplastids (e.g., Trypanosoma and Leishmania) evolved an extremely complex
mitochondrial RNA-editing system for the extensive posttranscriptional repair of mRNAs
to the translatable form [91].
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6. Organelle or Symbiotic Bacterium?

Two kinds of biological objects of endosymbiotic origins, mitochondria, and plastids,
are currently classified as organelles. Despite their deep genetic, cellular, and metabolic
integration into the host cell, they mostly still keep some aspects of individual biological
entity: they encode part of the proteome in their own DNA, multiply by regular fission,
and move inside the host cell. In my opinion, there is no strictly defined border between
organelles and endosymbionts. It looks as though there is a continuum between endosym-
bionts and organelles, and the term “organelle” is just historically defined, with no solid
biological relevance [6].

However, there have been many attempts to find the feature discriminating an or-
ganelle from a symbiont [4,6]. The revolutionary but widely accepted definition was
proposed by Thomas Cavalier-Smith in 1985 [92]: the organelle exported, by endosymbiotic
gene transfer (EGT), its genes to the host nucleus and imports their products from the
host. The endosymbiotic gene transfer and nuclear-encoded proteins in the organellar
metabolism seem to define organelles. Later, Archibald and Keeling expanded the def-
inition of organelles by three aspects: genetic (EGT and targeting of proteins into the
organelle), cellular (synchronization with the host’s cell cycle), and metabolic integration
of endosymbiotic partners [4,93]. However, they clearly say that their criteria are soft
and that the border between organelles and symbionts will “never be completely unam-
biguous.” Various symbiotic relationships are understandable as possible evolutionary
intermediates from symbionts to organelles. Reyes-Prieto and colleagues [94] introduced
the term “symbionelle” for symbionts of insects with highly reduced genomes and conse-
quent metabolic integration to the host. Facultative plant-endosymbiotic nitrogen-fixing
bacteria (Rhizobia) import peptides encoded in their plant’s symbiotic partners [95]. The
aphid’s γ-proteobacterial symbiont Buchnera is enclosed in the host-derived membrane
vesicles and imports nuclear-encoded proteins via the secretory pathway. However, no
gene transfer from the endosymbiont to the insect cell nucleus has been reported [96].
Finally, it was shown by Husník and colleagues [97] that the mealybug’s endosymbiotic
β-proteobacterium Tremblaya princeps hosting its own γ-proteobacterial endosymbiont
Moranella endobia, is supported by 22 nuclear-encoded proteins originating from various
bacteria, except for Tremblaya. Many of the above-mentioned symbiotic bacteria more or
less meet the definition of organelles. However, some of them still keep a higher level of
autonomy and do not integrate more with the host, likely because they would lose the
benefit of possible transmission into new hosts or a new generation.

On the other hand, the photosynthetic dinoflagellates called “dinotoms” [68,98–101]
host diatom tertiary endosymbionts responsible for their phototrophic lifestyle. These
symbionts function as regular plastids; however, they are almost complete diatom cells
containing the nucleus, mitochondrion, and the four membraned diatom chloroplasts. The
symbiont is separated from the host cell just by a single membrane. Likely due to the single
membrane bounding, the symbiont cannot import nuclear-encoded proteins, which may
stand behind its unprecedented evolutionary conservation.

The diversity of endosymbiotic relationships in nature is marvelous. It comprises, for
example, symbiotic assemblies from facultative nitrogen-fixing symbionts of diatoms and
haptophytes [98,99], through nitrogen-fixing bacteria in plants, endosymbionts of insects,
bacterial symbionts of various protists [94–103], and diverse forms of mitochondria [56], to
cyanelles of Paulinella chromatophora [36,96], and primary and complex plastids of eukaryotic
phototrophs and secondary heterotrophs [1–3,7,11,30].

7. Conclusions

It is believed that the evolution of endosymbiotic organelles is driven by a benefit to
the endosymbiotic partners. While the benefit of photosynthesis seems to be obvious in the
case of plastids, the original beneficial function of mitochondrion is the subject of discussion.
The mosaic evolutionary origin of mitochondrial proteome opens a possibility of serial
endosymbiotic events behind the current mitochondria, analogous to that of complex plas-
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tids. Plastids and mitochondria can represent two different types of endosymbiotic events:
invasion of the alphaproteobacterial intracellular parasite into the pre-eukaryotic host and
predation on the cyanobacterial ancestor of plastids. In the mitochondrial evolution, the
host has adapted to the presence of the parasite, with a gradual transition of the parasitic
symbiosis to a mutualism. Plastids evolved from cyanobacterial prey resistant to digestion
by the host cell. In both these models, a benefit for the host was not a driving force for
organellogenesis.
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