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Abstract: Low Back Pain (LBP) is currently the first cause of disability in the world, with a significant
socioeconomic burden. Diagnosis and treatment of LBP often involve a multidisciplinary, individ-
ualized approach consisting of several outcome measures and imaging data along with emerging
technologies. The increased amount of data generated in this process has led to the development of
methods related to artificial intelligence (AI), and to computer-aided diagnosis (CAD) in particular,
which aim to assist and improve the diagnosis and treatment of LBP. In this manuscript, we have
systematically reviewed the available literature on the use of CAD in the diagnosis and treatment of
chronic LBP. A systematic research of PubMed, Scopus, and Web of Science electronic databases was
performed. The search strategy was set as the combinations of the following keywords: “Artificial
Intelligence”, “Machine Learning”, “Deep Learning”, “Neural Network”, “Computer Aided Diag-
nosis”, “Low Back Pain”, “Lumbar”, “Intervertebral Disc Degeneration”, “Spine Surgery”, etc. The
search returned a total of 1536 articles. After duplication removal and evaluation of the abstracts,
1386 were excluded, whereas 93 papers were excluded after full-text examination, taking the number
of eligible articles to 57. The main applications of CAD in LBP included classification and regression.
Classification is used to identify or categorize a disease, whereas regression is used to produce a
numerical output as a quantitative evaluation of some measure. The best performing systems were
developed to diagnose degenerative changes of the spine from imaging data, with average accuracy
rates >80%. However, notable outcomes were also reported for CAD tools executing different tasks
including analysis of clinical, biomechanical, electrophysiological, and functional imaging data.
Further studies are needed to better define the role of CAD in LBP care.

Keywords: low back pain; orthopaedics; artificial intelligence; deep learning; decision support
systems; computer aided diagnosis

1. Introduction

In the last few decades, Artificial Intelligence (AI) has been revolutionizing the health-
care industry thanks to innovative computational tools able to support and even substitute
human intelligence in some specific tasks [1]. To date, AI is being applied to almost any as-
pect of daily life, thanks to its capacity to handle the unprecedented amount of information
recorded every nanosecond by computer systems, e.g., vocal assistants, car security de-
vices, and smart home detectors. Due to the huge quantity of data and the ever-increasing
use of digital processing in clinical practice, the employment of AI in medical research
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has been increasingly investigated in several studies [2]. Indeed, AI-based systems have
been shown to perform automatic segmentation and data extraction from radiological
datasets [3] as well as to support diagnosis, treatment, and outcome evaluation in different
fields, including spine surgery [2].

The use of AI in spine surgery has been exploited for different tasks, including the
segmentation of spinal structures [4], identification of degenerated discs [5], detection
of vertebral fractures [6], classification of scoliotic curves [7], and several more. In a
previous systematic review on the application of Computer Vision to the management of
low back pain (LBP), we have demonstrated that AI systems achieved Sørensen–Dice scores
>90% with regard to segmentation of vertebrae, intervertebral discs (IVDs), spinal canal,
and lumbar muscles, whereas studies focusing on structure localization and identification
demonstrated an accuracy >80% [8].

LBP is primarily caused by intervertebral disc degeneration, representing the main
cause of disability in the world, with a huge impact on patients’ quality of life as well
as on socioeconomic and working conditions [9]. Diagnosing and treating LBP often
requires a multidisciplinary approach involving the acquisition of radiological images,
patient-reported outcome (PROMs) evaluation questionnaires, and angular and linear
measurements. Therefore, the ultimate decision is often guided by the elaboration of
several data using an algorithmic approach [10,11]. Computer-aided diagnosis (CAD) is
a field of AI employing machine learning methods to specifically analyze both imaging
and non-imaging data in order to classify patients’ conditions and to support clinicians
in the formulation of a correct diagnosis [12]. While having been firstly adopted for the
diagnosis of breast cancer [12], CAD systems are now utilized in several fields, including the
detection of osteoporosis [13], individuation of missed polyps during colonoscopy [14] and
many others. Applications of CAD to LBP are numerous and involve several data sources
(e.g., magnetic resonance imaging—MRI—and computed tomography—CT—datasets,
clinical notes, surface sensor and electrophysiological measurements), as well as numerous
ancillary AI tasks (e.g., segmentation, classification, regression).

The diagnosis of disc abnormalities can be easily performed by an experienced pro-
fessional, even if affected by notable variability among experts (Alomari et al. [15] report
that “there is over 50% inter- and intra-observer variability in the MRI interpretation that
urges the need for standardized mechanisms in MRI interpretation”). This aspect can be
automatized in AI systems specifically focusing on Computer Vision, with encouraging
results from preliminary studies. For example, Won et al. [16] reported: “Spinal stenosis
Grading agreement between the experts was 77.5% and 75.0% in terms of accuracy and
F1 scores”. The main advantage of CAD systems is to carry out multiple tasks on large
datasets resulting in a definite outcome with a high degree of accuracy when compared to
the human counterpart. However, the real added value of AI in CAD systems is to combine
different pieces of information (demographics, patient-reported outcome measures, clinic
notes, radiological data, etc.) in order to better predict a specific diagnosis and improve
patient outcomes. All of these aspects have been recently reviewed by Mallow et al. [17].
Briefly, although clinicians achieve high accuracy scores in some easy tasks such as de-
tecting disc bulging, AI models achieve very similar results while reducing the diagnosis
time, as well as excluding inter- and intra-observer variability. In addition, the diagnosis of
some diseases is still challenging for medical practitioners, and can actually be aided and
improved by AI.

In this review, we have systematically reviewed the available literature on the ap-
plication of CAD systems to the management of LBP. The state of the art on the present
technology and individual results of included studies will be thoroughly discussed, in or-
der to describe the actual evidence and potential future applications of these ground-
breaking tools.
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2. Materials and Methods

In order to perform an exhaustive research of AI articles related to LBP, we performed
literature research on PubMed, Scopus, and Web of Science. The search keywords utilized
for both the medical and the AI part are reported in Table 1. At least one of the search
keywords for the medical and the AI part had to be included in the title or in the abstract of
the articles.

Table 1. Summary of the search words used on the PubMed research. The words in the medical or
the AI group are connected by a logic OR, whereas the two groups of words are connected with a
logic AND.

Medical Keywords AI Keywords

Low Back Pain
Lumbar

Intervertebral disc degeneration Artificial Intelligence
Intervertebral disc displacement Machine Learning

Spine surgery AND Deep Learning
Spondylarthritis Neural Network
Spondylarthrosis Computer Aided Diagnosis
Spondylolisthesis

Disc herniation

2.1. Inclusion and Exclusion Criteria

The aim of this study was to gather all the articles concerning the utilization of AI in
the diagnosis of LBP and lumbar degenerative diseases. Straightforwardly, all the selected
articles had to meet all the following inclusion criteria:

• Chronic LBP or lumbar degenerative diseases must have been between the main
topics of the article. We included articles on the diagnosis of diseases related to chronic
LBP, and treating at least one of the structures involved in LBP (i.e., vertebrae, discs,
muscles, spinal canal);

• AI must have been used in the article. We included articles exploiting AI methods
falling in the areas of computer vision, machine learning and neural networks (NNs),
regardless of the type of data utilized (e.g., images, text data, clinical data);

• Aim of the study: all the articles included must have been focused on a CAD system;
• Subjects included in the study: all the articles must have been based on studies of

human low back and related pathology, regardless of age or employment of the
included individuals;

• Validation procedures: results must have been reported on a test set different from the
training set;

• Language: all articles must have been written in English.

Conversely, articles that were excluded did not meet the inclusion criteria for one of
the following reasons:

• A different medical problem was considered: we excluded articles which did not con-
sider chronic LBP and its related anatomical structures and medical data. For example,
we excluded studies that focused only on cervical or thoracic vertebrae, and studies
focusing on acute LBP and osteoporosis;

• AI was not considered: we excluded studies that did not utilize AI-based techniques
in the diagnosis or management of LBP;

• Diagnosis was not provided: we excluded studies using Computer-Vision-based
methods that, although focusing on LBP related structures, limited to the segmentation
or identification of lumbar structures;

• Animal studies: we excluded studies based on vertebral structures of animals, e.g., goats
or mice;
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• Results reproducibility: we excluded articles that did not use a K-fold cross-validation
procedure or reported a clear division of the dataset between a training set and a
test set.;

• Not in English: we excluded all the articles written in a language different from
English.

In our previous study, we have defined three main categories in which the utilization
of AI in LBP can be split, namely Computer Vision, CAD, and Decision Support Systems
(DSS) (Figure 1). Computer Vision is the field of AI that deals with how computers can gain
a high-level understanding from digital images or videos. With regard to LBP, its main
applications concern feature extraction and image segmentation, which have been widely
discussed in our previous systematic review [8].

Figure 1. Partitioning of the studies concerning the application of AI in LBP, presented in [8].

CAD is a group of techniques which help medical practitioners identify a pathology
or quantify the grade of a disease. It can be divided into two distinct tasks, namely
classification and regression, in which machine or deep learning models are used to assign
a predefined label or to generate a numeric output, respectively. In practice, classification is
used to identify or categorize a disease, whereas regression is used to produce a numerical
output as a quantitative evaluation of some measure [18].

DSS are systems that allow medical practitioners or patients to enhance the decision-
making process in order to improve the outcome of subjects suffering from a specific
disease. The goal of the vast majority of DSS is outcome prediction, i.e., the prediction
of the improvement that a patient would experience after exposure to a defined therapy.
By predicting the extent to which a patient would benefit from a specific treatment, DSS
may provide the physician with practical tools to assess, for example, whether or not
surgery may be preferable to conservative treatment. However, a DSS only provides a
suggestion to the physician, who is responsible for the final decision on the treatment to
be undertaken. Finally, DSS can be used for prevention, e.g., by providing the user with
recommendations or correct practice for preventing the onset of a disease [19].

2.2. Evaluation Metrics

Among the articles included, different tasks resorted to different metrics to evaluate
the performance of systems under investigation. However, considering the large amount of
studies reported in this review, different metrics were also considered within the same task.

With regard to the Classification task, we reported the results in terms of Accuracy
(Acc), where available. For brevity purposes, let us consider a binary Classification task,
e.g., Positive vs. Negative. Given a test set composed of N samples, defining the True
Positives TP as the number of Positive samples correctly classified, and the True Negatives
TN as the number of Negative samples correctly classified, Accuracy is defined as:

Acc% =
TP + TN

N
× 100 (1)
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Thus, greater values correspond to better performance. For each class, Recall and Precision
can be computed as well. Defining the False Positives FP and False Negatives FN as the
number of misclassified Positive/Negative samples, Recall and Precision are defined as:

Recall =
TP

TP + FN
Precision =

TP
TP + FP

(2)

in binary problems, Recall is also called True Positive Rate and corresponds to sensitivity,
whereas the True Negative Rate is also called specificity. In the case of multi-class problems,
accuracy is computed by considering the TP for each class, and Recall and Precision per
class can be computed. Another widely used evaluation metric is the Area Under the Curve
(AUC), which corresponds to the area under the Receiver Operating Characteristic (ROC)
curve showing the performance of a classification model at all classification thresholds,
which is plotted considering the True Positive Rate against the False Positive Rate. Its
values range from 0 to 1 (the closer to 1, the better the performance).

With regard to the Regression task, the vast majority of the studies included in this
review report the performance in terms of the Mean Absolute Error (MAE). Let us consider
a sequence of original values x(t) and a sequence of predicted values x̃(t). The MAE for a
sequence of N timestamps is defined as:

MAE =
N

∑
t=1

|x(t)− x̃(t)|
N

, (3)

Thus, the closer the value is to 0, the better the performance.
In some cases, percentage error values are used to evaluate performance, the meaning

of which varies according to the investigated task.

2.3. Quality of Evidence

The methodological quality of the included studies was assessed independently by
two reviewers (L.A. and F.R.), and any disagreement was solved by the intervention of a
third reviewer (G.V.). The risk of bias and applicability of included studies were evaluated
by using customized assessment criteria based on the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) [20]. This tool is based on four domains: patient selection,
index test, reference standard, and flow and timing. Each domain is evaluated in terms of
risk of bias, and the first three domains are also assessed in terms of concerns regarding
applicability. Fifty studies were rated on a 3-point scale, reflecting concerns about risk
of bias and applicability as low, unclear or high, as shown in Figure 2 (the details of the
analysis are presented in Tables S1 and S2 in the Supplementary Materials).

Figure 2. Summary of the methodological quality of included studies regarding the four domains
assessing the risk of bias (left) and the three domains assessing applicability concerns (right) of the
QUADAS-2 score. The portion of studies with a low risk of bias is highlighted in green, the portion
with an unclear risk of bias is depicted in blue, and the portion with a high risk of bias is represented
in orange.
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3. Results

The search was performed on 5 November 2021, and resulted in 1536 articles. Nonethe-
less, after removing duplicates and following a first screening based on the article titles and
abstracts, we reduced the number of eligible articles to 93, as many of them focused on a
different topic. A second screening phase was performed after having read the full text of
each article, which led the total amount of included articles to 57. We created a flow-chart
diagram according to the PRISMA protocol that shows the selection process of the studies
(Figure 3). The articles were screened by two independent reviewers and, in the case of
discrepancies regarding the inclusion or exclusion of an article, they discussed together
until consensus was reached. It is worth noting how the amount of published papers is
increasing year by year, and that the number of articles published in 2020 is almost double
compared to 2019. This may be due to two main reasons: first, the ever-increasing amount
of clinical images and data available to researchers and, secondly, the improvement of
computing capacity observed in recent years.

Figure 3. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram.

3.1. Computed Aided Diagnosis

Computer Aided Diagnosis (CAD) is a branch of AI that resorts to machine learning
techniques to help physicians diagnose a disease or quantify its severity. Several studies
resulted from the search utilized CAD systems, and they considered two main tasks, namely
classification and regression. CAD systems can be based on clinical and physiological data
and/or on clinical images, and, in the latter case, may be following a segmentation phase.
In this systematic review, we found a total of 57 articles employing CAD systems, 45 of
which were based on classification, and 12 were based on regression.
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3.1.1. Classification

Classification is a task that resorts to assigning an input sample to one of a finite
number of predetermined classes, and can be based on machine learning models such as
Support Vector Machines (SVM) and Decision Trees, or on deep learning models. In this
review, we identified a total of 45 papers performing a classification task as a CAD, and their
main features are reported in Table 2. Briefly, we included:

• 27 studies on clinical lumbar imaging, and in detail:

– 20 studies on MRI;
– 4 studies on X-ray images;
– 3 studies on other typologies of medical images;

• 4 studies on brain MRI (1 in combination with other physiological data);
• 14 studies on physiological data, and in detail:

– 8 studies using kinematic variables or sensor data;
– 3 studies using clinical data and text notes;
– 3 studies using electromyography (EMG) data.

Specifically, 18 out of the 45 papers focused on LBP diagnosis, 13 studies investigated
disc degeneration, 4 studied spinal stenosis, and 3 approached spondylolisthesis, whereas
the remaining studies focused on different conditions such as scoliosis, osteoarthritis, disc
and bone diseases, and routine reporting. It is worth noting that 22 studies exploited
NNs and deep learning, 22 exploited machine learning models, and 1 study exploited
both approaches.

With regard to the studies focusing on the diagnosis of LBP, 4 articles utilized brain MRI
to identify morphological factors predicting LBP, whereas 8 studies exploited other types
of data such as EMG signals, kinematic variables or bio-mechanical measures; 3 papers
were based on clinical data and text notes, and 3 studies aimed to diagnose LBP based
on clinical images related to the lumbar region. All of the studies exploiting brain MRI
chose a Support Vector Machine (SVM) as a classifier to discriminate between healthy
and unhealthy subjects. In detail, Lee et al. [21] used brain MRI in combination with
physiological parameters of 53 subjects to discriminate between healthy and LBP subjects,
achieving an accuracy of 92.5%; Lamichhane et al. [22] searched for multimodal biomarkers
of LBP on brain MRI images of 24 patients and 27 healthy control subjects with an accuracy
of 78.7%; in addition, the same group [23] expanded the previous work by adding a Enet-
subset feature selection, improving the SVM accuracy to 83.1%. Shen et al. [24] searched for
alterations in brain functional connectivity due to chronic LBP, achieving 79.3% accuracy
on brain MRI images of 90 patients.

Among the studies that aimed to diagnose LBP based on clinical data, Mathew et al. [25]
used Inductive Learning in an early study to diagnose LBP based on clinical data from
200 subjects, achieving accuracy values ranging between 82 and 90%. Staartjes et al. [26]
performed a Fuzzy-rule based classification based on Chi’s method to diagnose LBP based
on clinical data from 262 subjects, with an accuracy of 96.2%. Parsaeian et al. [27] compared
a Feedforward NN and Logistic Regression on clinical data from more than 34,000 subjects
to diagnose LBP, achieving an equal AUC of 0.75.
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Table 2. Summary Table of the works performing Classification. If more than one structure/task were investigated in a study, the correspondent results are reported
in the same order in which the structures are presented in the “Structures involved”/“Target” column.

Author/Year Data Type # Patients Structures Involved Target Results Model

Lewandrowski, 2020 [28] MRI 17,800 discs Discs Routine reporting Acc = 85.2% Tiramisu NN and CNN

Gao, 2020 [5] MRI 500 Discs Disc degeneration Acc = 86% CNNs:VGG-M, VGG-16, GoogLeNet, and ResNet-34

Ruiz-España, 2015 [29] MRI 67 Discs Disc degeneration Acc > 90% Gradient Vector Flow, several ML models

Oktay, 2014 [30] MRI 102 Discs Disc degeneration Acc = 92.8% SVM

Alomari, 2010 [31] MRI 80 Discs Disc degeneration Acc = 91.3% Probabilistic Gibbs model

Koh, 2012 [32] MRI 70 Discs Disc degeneration Acc = 99% Ensemble of ML models

Tsai, 2021 [33] MRI 168 Discs Disc degeneration Acc = 81.1% YOLOv3 CNN

Pan, 2021 [34] MRI 500 Discs Disc degeneration Acc = 88.8% Faster Region-based CNN

Beulah, 2021 [35] MRI 93 Disc Disc degeneration Acc = 92.5% Gabor features + SVM

Sundarsingh, 2019 [36] MRI 63 Disc Disc degeneration Acc = 94.7% Random Forest

Salehi, 2019 [37] MRI 50 Discs Disc degeneration Acc = 97.9% Active Contour + K-Nearest neighbors

Šušteršič, 2020 [38] Force sensor data 33 Discs Disc degeneration Acc = 85% Decision Tree

Rankovic, 2015 [39] Force sensor data 38 Discs Disc degeneration Acc = 88.9% Adaptive Network based Fuzzy Inference System

Oyedotun, 2016 [40] Biomechanical measures UCI MLR 310 Discs Disc degeneration Acc = 92.5 and 96.8% Feedforward NN

Jamaludin, 2017 [41] MRI Genodisc 2009 Several structures Disc and bone diseases Acc = 71.5, 75.0, 95.2, 94.3, 86.3, 90.7% CNN

Jamaludin, 2017 [42] MRI 2009 Several structures Disc and bone diseases Acc = 70.1, 75.4, 95.4, 94.7, 87.5, 89.4% CNN

Lehnen, 2021 [43] MRI 146 Several structures Disc and bone diseases Acc = 87, 86, 76, 98, 91, 87.6% U-net + image comparison

Han, 2018 [44] MRI 200 Spinal canal Spinal stenosis Precision = 84.5% CNN (DMML-Net)

Huber, 2009 [45] MRI 82 Spinal canal Spinal stenosis Sensitivity = 94%, Specificity = 98% Several ML algorithms

Hallinan, 2021 [46] MRI 446 Spinal canal Spinal stenosis Acc = 96, 92 and 89% CNN

Won, 2020 [16] MRI 542 Spinal canal Spinal stenosis Acc = 83.0 or 77.9% CNN

Veronezi, 2011 [47] X-rays 206 Vertebrae Osteoarthritis diagnosis Acc = 62.9% Feedforward NN

Adankon, 2012 [48] 3D image of the back surface 165 Vertebrae Scoliosis diagnosis Acc = 95% Local Geometric Descriptors and SVM

Lin, 2007 [49] X-rays 37 Vertebrae Scoliosis diagnosis Identification rate = 84% Feedforward NN

Zhao, 2019 [50] MRI 150 Vertebrae Spondylolisthesis Acc = 89.3% Adversarial Recognition Network

Varcin, 2019 [51] X-rays 286 Vertebrae Spondylolisthesis Acc = 93.9% GoogLeNet

Varcin, 2021 [52] X-rays 2707 Vertebrae Spondylolisthesis Acc = 99.0% Yolo v3 + MobileNet

Lee, 2019 [21] Brain MRI and physiological 53 LBP LBP diagnosis Acc = 92.5% SVM

Lamichhane, 2021 [22] Brain MRI 51 LBP LBP diagnosis Acc = 78.7% SVM



Int. J. Environ. Res. Public Health 2022, 19, 5971 9 of 20

Table 2. Cont.

Author/Year Data Type # Patients Structures Involved Target Results Model

Lamichhane, 2021 [23] Brain MRI 51 LBP LBP diagnosis Acc = 83.1% Enet-subset + SVM

Shen, 2019 [24] Brain MRI 90 LBP LBP diagnosis Acc = 79.3% SVM

Mathew, 1988 [25] Clinical data 200 LBP LBP diagnosis Acc = 82 to 90% Inductive Learning

Staartjes, 2020 [26] Clinical data 262 LBP LBP diagnosis Acc = 96.2% Fuzzy rule-based classification on Chi’s method

Parsaeian, 2012 [27] Clinical data >34,000 LBP LBP diagnosis AUC = 0.75 and 0.75 Feedforward NN and Logistic Regression

Caza-Szoka, 2016 [53] EMG signals 24 LBP LBP diagnosis Acc = 80% Feedforward NN

Wang, 2019 [54] EMG signals 288 LBP LBP diagnosis Acc = 92.9% Spanning CNN

Liew, 2020 [55] EMG and kinematic variables 49 LBP LBP diagnosis AUC = 0.97 Logistic Regression

Abdollahi, 2020 [56] Kinematic variables 94 LBP LBP diagnosis Acc = 75% SVM

Bishop, 1997 [57] Kinematic variables 183 LBP LBP diagnosis Acc = 85% Feedforward NN

Hu, 2018 [58] Kinematic variables 44 LBP LBP diagnosis Acc = 97.2% LSTM

Ashouri, 2017 [59] Kinematic variables 53 LBP LBP diagnosis Acc = 96% SVM

Karabulut, 2014 [60] Biomechanical measures 310 LBP LBP diagnosis Acc = 89.7% SMOTE, logistic model tree

Ketola, 2020 [61] MRI 518 LBP LBP diagnosis Acc = 83% Texture feature extraction and Logistic Regression

Torrado, 2021 [62] PET imaging 33 LBP LBP diagnosis AUC = 0.88 Random Forest

Sanders, 2000 [63] Pain drawings 250 LBP LBP diagnosis Sensitivity = 49% Feedforward NN

Abbreviations: Magnetic Resonance Imaging (MRI), Electromyography (EMG), Positive Emission Tomography (PET), Low Back Pain (LBP), Accuracy (Acc), Area Under the Curve
(AUC), Natural Language Processing (NLP), Convolutional Neural Network (CNN), Machine Learning (ML), Neural Network (NN), Support Vector Machine (SVM), Long Short-Term
Memory (LSTM), Synthetic Minority Oversampling TEchnique (SMOTE).
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Among the studies that aimed to diagnose LBP exploiting EMG signals and kine-
matic/biomechanical measures, Caza-Szoka et al. [53] performed a surrogate analysis of
fractal dimensions from sEMG sensor array in order to identify a predictor of chronic LBP
in 24 subjects, using a Feedforward NN with an accuracy of 80%. Wang et al. [54] proposed
DeepLap, a system for the automatic diagnosis of LBP-symptomatic muscles. The system
includes a belt for sEMG recording of lumbar muscles, and exploits a Spanning CNN for the
recognition of symptomatic muscles; the model was validated on data of 288 patients with
92.9% accuracy. Liew et al. [55] used Logistic Regression on EMG signals and physiological
parameters of 49 subjects for classifying LBP achieving an AUC of 0.97. Abdollahi et al. [56]
used kinematic variables from a motion sensor to categorize 94 nonspecific LBP patients,
using an SVM with an accuracy of 75%. Bishop et al. [57] used a Feedforward NN to
classify 183 LBP patients using dynamic motion characteristics and achieving 85% accuracy.
Hu et al. [58] used a Long Short-Term Memory (LSTM) NN on static-standing physiological
variables of 44 subjects to diagnose LBP with an accuracy of 97.2%. Ashouri et al. [59] used
an SVM to evaluate LBP from inertial sensor data of 53 subjects achieving an accuracy of
96%. Karabulut et al. [60] used Synthetic Minority Over-sampling TEchnique (SMOTE)
preprocessing and Logistic Model Tree to predict LBP from biomechanical measures of
310 subjects with an accuracy of 89.7%.

Among the studies that aimed to diagnose LBP based on medical images related to
the lumbar region, Ketola et al. [61] performed texture Feature Extraction and applied
Logistic Regression on MRI images of 518 subjects to identify predictors of LBP, achieving
an accuracy of 83%. Torrado-Carvajal et al. [62] used a Random Forest to state thalamic
neuroinflammation as a discriminating signature for chronic LBP from Positive Emission
Tomography (PET) images of 33 subjects, achieving an AUC of 0.88. Sanders et al. [63]
used a Feedforward NN to develop an automated scoring of patients pain drawings of
250 subjects to identify LBP, achieving 49% sensitivity for a 5-class problem.

With regard to disc degeneration, the majority of the included studies used MRI
imaging. Gao et al. [5] gave MRI images of 500 patients as an input to different CNNs,
namely VGG-M, VGG-16, GoggleNet, and ResNet-34, in order to quantify disc degener-
ation, achieving a maximum accuracy of 86%. Ruiz-España et al. [29] extracted features
from MRI images of 67 patients using Gradient Vector Flow, and tested several Machine
Learning models to classify degenerated IVDs achieving accuracies greater than 90%. Ok-
tay et al. [30] used MRI images of 102 patients as input for an SVM to classify degenerative
disc diseases with an accuracy of 92.8%. Alomari et al. [31] used MRI images of 80 subjects
to develop three Probabilistic Gaussian models related to disc appearance, location and con-
text, in order to generate the inputs for a Gibbs probabilistic model to discriminate between
healthy and unhealthy IVDs. Koh et al. [32] gave MRI images of 70 subjects as input to an
ensemble of machine learning models composed of a perceptron classifier, a least mean
square classifier, an SVM, and a k-Means, using a weighted sum of the models outputs in
order to detect lumbar disc herniation, achieving 99% detection accuracy. Tsai et al. [33]
trained a YOLO v3 CNN to detect lumbar disc herniation on MRI images of 168 subjects,
achieving 81.1% accuracy after data augmentation. Pan et al. [34] used MRI images from
500 subjects to train a faster R-CNN to automatically diagnose disc bulging and hernia-
tion, with a mean accuracy of 88.8% over the five lumbar IVDs, after having performed
IVDs localization and identification. Salehi et al. [37] used MRI images of 50 subjects to
detect disc herniation using a K-nearest neighbor after having extracted features from the
region of interest using Active Contour snakes and K-Means, achieving 97.9% accuracy.
Beulah et al. [35] automatically segmented IVDs and extracted Gabor features from MRI
images of 93 patients to discriminate between degenerated and healthy discs, achieving
92.5% accuracy using an SVM. Sundarsingh et al. [36] proposed Local Sub-Rhombus Bi-
nary Relation Pattern techniques to extract features from MRI images of 63 subjects to
discriminate between healthy, bulging and desiccated discs. They achieved an average
94.7% accuracy feeding such features to a Random Forest classifier. Three additional studies
diagnosed disc degeneration without using MRI imaging: Šušteršič et al. [38] used features
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extracted from force sensors embedded in a foot force platform in order to diagnose the
type of disc herniation in 33 patients. They tested several machine learning models and
achieved the best accuracy of 85% using a decision tree. Rankovic et al. [39] used measures
extracted through the medium of a platform for the detection of foot pressure distribu-
tion in order to diagnose disc herniation on four different discs levels. They trained an
adaptive network-based fuzzy inference system on data of 29 patients, correctly grading
the side and level of herniation of 8 out of the 9 test subjects. Oyedotun et al. [40] used
biomechanical measures of 310 subjects in the UCI Machine Learning Repository to train a
feedforward NN to discriminate between healthy subjects and those suffering from disc
herniation or spondylolistehesis. They achieved 92.5% accuracy on the three-class task,
whereas they achieved 96.8% accuracy on the task of discriminating between healthy and
unhealthy subjects.

With regard to the diagnosis of spinal stenosis, Han et al. [44] used a CNN named
DMML-Net on MRI of 200 patients to diagnose lumbar neural foraminal stenosis with an
average precision of 84.5%. Huber et al. [45] tested several machine learning algorithms for
the lumbar spinal stenosis grading on 82 MRI, achieving 94% sensitivity and 98% specificity.
Hallinan et al. [46] used a CNN to segment the spinal canal on MRI images of 446 patients,
followed by a further CNN to detect different types of spinal stenosis, achieving accuracy
scores of 96%, 92% and 89% for central canal stenosis, lateral recess, and neural foraminal
stenosis, respectively. Won et al. [16] used a CNN to automatically grade spinal stenosis on
MRI images of 542 patients achieving accuracy scores of 83.0% and 77.9% with respect to
the ground truth evaluated by two different physicians.

With regard to the studies that addressed spondylolisthesis, Zhao et al. [50] used
a Faster Adversrial Recognition Neural Network to detect vertebrae on MRI images of
150 patients, and used such detection system to grade spondylolisthesis, achieving 89.3%
accuracy. Varcin et al. [51] used GoogLeNet, and compared its results to those achieved
using AlexNet on X-ray images of 286 patients to diagnose the presence of spondylolisthesis,
achieving 93.9% accuracy on images of 48 patients kept as the test set. In addition, the same
group extended the study [52] by using a transfer learning-based CNN for spondylolisthesis
detection; they extracted features from a total of 2707 images with a Yolo v3, and thus fed
them to a fine-tuned MobileNet, achieving 99% test diagnosis accuracy.

However, some articles did not fall in any of the aforementioned categories. In the
frame of routine clinical reporting, Lewandrowski et al. [28] used a Tiramisu NN and a
CNN for reporting of 17,800 IVDs from MRI related to IVDs and spinal canal, achieving an
accuracy of 85.2% for disc herniation. In the frame of scoliosis diagnosis, Adankon et al. [48]
used 3D images of the surface of the human back of 165 patients, extracting features with
local geometric descriptors, and feeding them to a least-squares SVM for the classification of
scoliosis curve types, achieving 95% accuracy; Lin [49] fed X-ray images of 37 subjects to a
Feedforward NN to diagnose scoliosis, with an identification rate of 84%. Veronezi et al. [47]
used a Feedforward NN on X-ray images of 206 subjects to diagnose osteoarthritis, achiev-
ing an accuracy of 62.9%.

Finally, three articles aimed at the detection and classification of different lumbar
structures and abnormalities at once: Jamaludin et al. [41,42] presented a CNN, namely
SpineNet that achieved a detection accuracy of 71.5% for disc degeneration, 75.0% for
disc narrowing, 95.2% for spondylolisthesis, 94.3% for stenosis, 86.3% for endplate defects,
and 90.7% for marrow changes; Lehnen et al. [43] proposed a U-net for the identification of
IVDs on MRI images of 146 subjects, and exploited measurement differences between the
original and the segmented image for the detection of abnormalities, achieving an accuracy
of 87% for disc herniation, 86% for disc extrusions, 76% for disc bulging, 98% for spinal
canal stenosis, 91% for nerve root compression, and 87.6% for spondylolisthesis.

3.1.2. Regression

Regression is a task that resorts to assign a numerical value to any input sample.
Differently from classification, the number of classes is not predetermined; in other words,
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regression can be looked at as a classification task with an infinite number of classes. In this
review, we identified a total of 12 papers performing a regression task as a CAD, and their
main characteristics are reported in Table 3. In detail:

• 6 studies used MRI imaging;
• 4 studies utilized X-ray images (1 of which in combination with Moire images);
• 1 study employed CT images;
• 1 study exploited clinical data.

Vertebrae were the most investigated structures (5 papers), whereas other studies
focused on IVDs, muscles, definition and quantification of LBP-related measures. In more
detail, three studies focused on spinal deformity, three studies focused on the measurement
of lumbar structures, two studies focused on the quantification of LBP, one investigated
spondylolisthesis, and one assessed intramuscular fat quantification. It is worth noting that
eight studies resorted to NNs and deep learning, two studies resorted to machine learning
models, whereas two exploited threshold methods.

Table 3. Summary of the works performing regression.

Author/Year Data Type # Patients Structures Involved Task Results Model

Pang, 2019 [64] MRI 215 30 lumbar spinal indices Structure measurement Total MAE = 1.22 mm CARN

Neubert, 2014 [65] MRI 7 Discs Structure measurement Errors: height = 4.1%, area = 0.1% Active shape modeling

Niemeyer, 2021 [66] MRI 1599 Discs Pfirrmann grading MAE = 0.08 CNN

Sneath, 2021 [67] MRI 60 Discs Disc ageing assessment Age difference < 11 years Ensemble of ML models

Natalia, 2020 [68] MRI 515 Discs and spinal canal Structure measurement MAE = 0.9 mm SegNet and Contour Evolution Algorithm

Sari, 2012 [69] Clinical data 169 LBP LBP quantification Pain intensity error = 4% Feedf. NN & Neuro-Fuzzy inference

Fortin, 2017 [70] MRI 30 Muscles Fat quantification Reliability coefficient = 97–99% Threshold

Chae, 2020 [71] CT images 40 Vertebrae Spinal deformity Mean abs. Deviation = 1.4 to 3.5° Decentralized CNN

Watanabe, 2019 [72] Moire images + X-rays 1996 Vertebrae Spinal deformity Cobb angle MAE = 3.42° CNN

Cho, 2020 [73] X-rays 629 Vertebrae Lordosis MAE = 8.055° U-net

Garcia-Cano, 2018 [74] X-rays 150 Vertebrae Spinal deformity Cobb angle MAE = 4.79° Ind. Comp. Analysis and Random Forest

Nguyen, 2021 [75] X-rays 1000 Vertebrae Spondylolisthesis Mean deviation = 1.76° CNN

Abbreviations: Cascade Amplifier Regression Network (CARN), Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), Low Back Pain (LBP), Mean Absolute Error (MAE), Neural Network (NN), Machine Learning
(ML), Convolutional Neural Network (CNN).

With regard to papers focusing on spinal deformity, Chae et al. [71] developed a
Decentralized CNN to evaluate spinal deformity on CT images of 40 subjects, achieving
mean absolute deviation values ranging from 1.4 to 3.5°. Watanabe et al. [72] used a CNN
to estimate spinal alignment on 1996 Moire images, with a Cobb angle MAE of 3.42°.
Cho et al. [73] used a U-net for the automated Segmentation and measurement of lumbar
lordosis on X-ray images of 629 patients, achieving an MAE on the curve angle of 8.06°.
Garcia-Cano et al. [74] extracted features from X-ray images of 150 patients through the
medium of Independent Component Analysis, and used Random Forest Regression to
predict the spinal curve progression in adolescents with idiopathic scoliosis, achieving a
Mean Absolute Error (MAE) of 4.79° for the Cobb angle.

With regard to the studies focusing on the measurement of lumbar structures,
Pang et al. [64] used a Cascade Amplifier Regression Network (CARN) on MRI of 215
subjects for the quantification of 30 lumbar spinal indices, achieving an overall MAE of
1.22 mm. Neubert et al. [65] used Active Shape Modeling for the measurement of IVDs
from MRI of seven patients, achieving estimate error of 4.1% and 0.1% for disc height and
area, respectively. Natalia et al. [68] used a SegNet and a Contour Evolution Algorithm
to measure anteroposterior diameter and foraminal widths in MRI images of 515 patients
suffering from lumbar spinal stenosis with a mean error of 0.9 mm. Nguyen et al. [75] used
a CNN trained on X-ray images of 1000 spondylolisthesis patients to measure structure
deviation, achieving a mean deviation angle on 20 further test patients of 1.76°.

With regard to the studies focusing on LBP quantification, Sari et al. [69] tested
a Feedforward NN and an Adaptive Neuro-Fuzzy inference system for the objective
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assessment of LBP intensity, using as input skin resistance and visual analog scale of
169 patients and achieving a pain intensity error of 4%.

In addition, Fortin et al. [70] used a threshold algorithm for Segmentation and quan-
tification of paraspinal muscle composition with a reliability coefficient ranging between 97
and 99%. Niemeyer et al. [66] developed a CNN to frame the grading of the Pfirrmann as
a regression problem, achieving an MAE of 0.08 on MRI images of 1599 subjects. Finally,
Sneath et al. [67] proposed an ensemble of machine learning models to calculate a predicted
“age estimate” for the age-related changes based on MRI images of 60 subjects, achieving a
“predicted age” differing from the true subject age by less than 11 years in 80% of cases.

4. Discussion

The management of patients affected by spine-related problems, first LBP, is a de-
manding process which often involves gathering a thorough patient’s history, conducting a
structured physical examination, and combining multiple imaging sources to accurately
formulate the diagnosis and plan an appropriate treatment [76]. The use of multiple scales
and measurement, as well as different imaging technologies, generates a vast amount
of data which, while being fundamental to individualize the treatment approach, often
becomes difficult to handle and fully interpret.

The advent of AI has been revolutionizing several research and clinical fields, including
spine surgery, in which the development of automated systems may increase the accuracy
and repeatability of the execution of tasks critical to the diagnostic process [2]. More
specifically, the application of such tools—namely CAD systems—has been extensively
reported in the recent literature with application to both conventional datasets (e.g., clinical
data, lumbar MRI) and innovative technologies (e.g., brain fMRI, kinematic sensors).
In this review, most included studies were focused on classification, through which AI
systems are able to assign a numerical value to any input sample within a finite number
of predetermined classes. Lumbar MRI was the main input source in the majority of
studies. Indeed, investigated CAD systems were able to diagnose intervertebral disc
degeneration based on IVD intensity at sagittal T2-weighted MRI images, with an accuracy
of 86–92.8% [5,29–31]. In addition, several studies proposed different models for automatic
classification of IVD degenerative changes based on the Pfirrmann grading system [5,29],
while the preliminary manuscript from Oktay et al. [30] described a machine learning
system able to discriminate between normal and degenerated IVDs only. Collectively,
these studies showed an accuracy rate between 86% and 92.8%. Similarly, three studies
showed a significantly high accuracy in detecting disc bulging and herniation, with rates of
81.1–99% [32–34]. Lewandrowski et al. [28] trained deep neural networks with a dataset of
17,800 IVDs and implemented it with a natural language processing (NLP) module capable
of performing a sort of routine reporting for each disc level, achieving an accuracy of 81% for
the diagnosis of foraminal stenosis, 86.2% for central stenosis, and 85.2% for disc herniation.
In addition, other studies displayed CAD systems able to detect and rate central canal
stenosis as well as foraminal and lateral recess stenosis, with an almost perfect or at least
significantly high inter-reader agreement [44–46]. Jamaludin and colleagues developed a
CNN capable of segmenting vertebrae and IVDs (with an accuracy of 95.6%) and to identify
disc narrowing, marrow changes, endplate defects, spondylolisthesis, central canal stenosis
as well as to perform Pfirrmann grading, with accuracy rates ranging from 70.1% to 95.4%.
Furthermore, this model can directly mark disc and vertebral abnormalities in the form of
heatmaps, namely “evidence hotspots” [41,42]. Similarly, Lehnen et al. [43] showed a CNN
trained to segment the IVDs and detect disc herniation, extrusion, bulging, spinal canal
stenosis, nerve root compression, and spondylolisthesis, with accuracy scores between
76 and 100%. In a study from Ketola and colleagues [61], a machine learning system
showed accuracy, specificity, and sensitivity scores >80% in classifying patients as either
symptomatic or nonsymptomatic based on LBP-related degenerative changes. However,
the high incidence of false positives (asymptomatic individuals with disc degenerative
changes) significantly impacted on the precision performance of the system.
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X-rays were utilized as an input source only in two studies [47,49]. Veronezi et al.
reported a significantly lower accuracy (62.85%) in recognizing osteoarthritic changes
of the lumbar spine compared to other studies, due both to the heterogeneity of digital
images and the low number of images used for training the system [47]. In another study,
lumbar X-rays of scoliotic patients were utilized to build a 3D spine model and a multilayer
feed-forward, back-propagation (MLFF/BP) Artificial NN was developed to identify the
pattern of the scoliotic deformity [49]. However, AI applications for CAD are not limited
to radiological images of the spine. Indeed, Lee et al. [21] have developed a system able
to predict the intensity of LBP based on the integration of brain fMRI data and heart rate
variability. The model demonstrated to anticipate the exacerbation of LBP in patients
showing an increase of cerebral blood flow in the thalamus, prefrontal and posterior
cingulate cortices and an increment of heart rate variability with an accuracy of 92.5%. In a
similar study, Lamichhane and colleagues [22] showed that a machine learning approach
was able to associate the reduction of cortical thickness in specific areas of the brain
deputed to the elaboration of pain, emotions and vision in patients affected by LBP with an
accuracy of 74.51%. In a subsequent analysis, the same authors tested a new hybrid feature
selection technique (namely Enet-subset) to extract local graph measures from functional
connectomes and determine their capacity to predict LBP using an SVM, achieving an
average classification accuracy of 83.1% [23]. The alteration of visual network connectivity
in individuals with chronic LBP was also documented by Shen et al. [24], who reported an
accuracy rate of 79.3% in distinguishing patients with LBP in their machine learning study.
On the other hand, Torrado-Carvajal and coauthors demonstrated the accumulation of the
glial activation marker 18 kDa translocator protein (TSPO) in the thalamus of patients with
chronic LBP using PET imaging and a Random Forest system [62].

The use of AI has been exploited in the diagnosis of LBP from clinical data as well.
A preliminary study from Mathew et al. [25] showed that AI was able to outperform clin-
icians in the differential diagnosis of LBP, sciatica, or other spinal pathology already in
1988. Other studies have demonstrated the possibility of training AI systems to anticipate
the diagnosis of lumbar disc herniation, lumbar spinal stenosis and chronic LBP based
on patients’ performances during the five-repetition sit-to-stand test [26], predict the risk
factors associated with LBP from a population survey [27], refine the diagnosis and per-
sonalize the treatment of LBP in a primary care context using free-text clinical notes [77]
and automatically score pain drawings [63]. Additional inputs utilized to develop CAD
systems for LBP diagnosis include sEMG during weightlifting [55] or an endurance test [53],
as well as spinopelvic parameters [40,60] and kinematic data during static standing [58],
trunk flexion/extension and lateral bending [56,57,59], which were able to detect LBP in
affected patients with an accuracy >80%. Šušteršič et al. [38] tested five different classifier
algorithms to diagnose the side and level of disc herniation based on the force exerted
during normal standing or leaning either towards the forefeet or the heels. Using a Random
Forest algorithm, the system reached an accuracy of 87.9%. Adankon and colleagues [48]
proposed an SVM able to classify a scoliotic deformity based on a 3D model of patients’
spines built with four optical digitizers, reaching an overall accuracy of 95%.

Several studies have described the use of CAD systems for regression tasks, such
as calculation of radiological indexes and LBP quantification. The investigations from
the groups of Pang [64] and Neubert [65] presented automated systems able to extract
numerous quantitative measurements from lumbar spine MRI, including vertebral height
as well as disc height and area, whereas Natalia et al. [68] reported a model capable of
calculating foraminal width and canal diameter following automatic segmentation of the
surrounding structures. In each of these studies, the mean average error was not higher
than 1.22 mm. Similarly, the system presented by Niemeyer et al. [66] showed to perform
intervertebral disc degeneration grading with an average sensitivity >90%. An interesting
study by Sneath et al. utilized a machine learning technique to gather degenerative changes
of the spine and surrounding structures in order to perform an estimation of patients’ age,
which eventually was within 11 years of the subjects’ physical age [67]. In addition, the AI
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systems proposed by Chae [71] and Cho [73] were able to automatically calculate several
spinopelvic parameters predictive of lumbar spine deformity using lumbar X-rays, reaching
an average error range of 1.45–3.51° in the former and 8.055° in the latter. With regard
to scoliosis, Watanabe et al. [72] utilized a CNN able to estimate vertebral position, Cobb
angle, and vertebral rotation using a combination of X-rays and Moirè topography, with a
mean average error of 5.4 mm, 3.42° and 2.9°, respectively. In another study, 3D models of
scoliotic spines were built from X-rays and updated every three months for 18 months to
check for curve progression. Subsequently, a Random Forest system was trained with such
a dataset and demonstrated to predict curve progression with a difference <5° compared
to the real curvature [74]. Differently, Fortin and colleagues were the only ones to analyze
paraspinal muscle composition in patients with LBP, reaching an intra-rater reliability
coefficient of 0.95–0.99 [70]. Another study has described an AI-based model able to predict
the severity of LBP based on skin resistance and pain expressed through visual analog scale
(VAS) with an error of 4% [69].

Collectively, the majority of included studies showed a high degree of accuracy and
accordance with conventional techniques while opening new perspectives in the diagnosis
and treatment of LBP, as well as boosting time-consuming tasks and providing new insight
from otherwise unused data. The identification and grading of lumbar degenerative
changes remain the most investigated task with the highest performance rates compared
to other studies [5,28–34,41–46,61,65–68,70]. Nonetheless, several studies have employed
CAD systems to elaborate data from different sources, including functional imaging [22–24],
biosensors [38,48,56–59], clinical data [38,48,56–59], etc., with significant results.

With regard to the classification task, most studies addressed LBP diagnosis or disc
degeneration. Figure 4 reports the accuracy of methods aiming at the diagnosis of LBP
or, in other words, at the classification of whether or not a subject is suffering from LBP.
The reported results differ on the type of data considered as model input, and on whether
machine or deep learning techniques were utilized. The accuracy results are all greater
than 75%, and three studies achieved accuracy greater than 95%, reaching a human-level
diagnosis capability. Two of them exploited kinematic or biomechanical measures [58,59],
whereas one exploited clinical data [26]. It is worth noting how the best performance was
achieved by a deep LSTM net [58], although the majority of studies exploited machine
learning techniques. Figure 5 presents a boxplot that reports the accuracy of the disc
degeneration classification task. This boxplot considers nine studies that used machine
learning (median accuracy = 92.5%), and four studies that used deep learning (median
accuracy = 88.8%) techniques. Briefly, machine learning techniques achieved slightly better
results, both in terms of median accuracy and best performance. However, it must be taken
into account that the number of studies performing such a task was not sufficient to provide
a thorough statistical analysis, and the same applies to the LBP diagnosis task. Thus, these
results should be intended as a preliminary effort to identify the most promising approach
in the frame of CAD applications to LBP. Finally, with regard to regression, there is no one
task that is addressed more than the others, but rather each research group focused on
a characteristic task. Nonetheless, some technically-sound studies have been presented,
and their results are noteworthy when considering a specific task.
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Figure 4. Accuracy of the LBP diagnosis task of studies using different features, reported on the
vertical axis, and both deep learning (red asterisks), machine learning (blue circles) or both (black
square) approaches.

Figure 5. Boxplot reporting the accuracy of the disc degeneration classification task of studies that
used machine learning (left) or deep learning (right) approaches.

The implementation of AI systems in healthcare, particularly in terms of tools imply-
ing a direct clinical repercussion in the formulation of diagnosis or clinical decisions, is
undoubtedly determining a paradigm shift, with significant ethics and regulatory issues [2].
More specifically, although apparently autonomous, such systems must be always accompa-
nied by the judgement of the clinicians with regard to the diagnostic process. Furthermore,
exceptional care should be taken considering the huge amount of personal data used to
train AI systems in order to avoid the unintended divulgation of private information.

This study has some limitations. First of all, the significant heterogeneity across
studies in terms of methodology, data source and outcomes prevented a meta-analysis to be
performed. Second, as the search included English manuscripts only, we may have missed
articles written in other languages matching with our inclusion criteria.

5. Conclusions

AI is undoubtedly revolutionizing medical research and patient care with its multiple
applications in several fields, including spine surgery. In this study, we have systematically
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reviewed the available literature on the use of AI, and more specifically CAD, in supporting
the diagnostic process in patients affected by LBP. The majority of included studies showed
a high degree of accuracy and low margins of error in performing various tasks, most
frequently identification of degenerative changes (disc degeneration or herniation, stenosis
of the central canal and foramina, spondylolisthesis) while also presenting promising
results from innovative data acquisition techniques. In this picture, the use of AI and CAD
may effectively improve the diagnostic process and consequently patients’ outcomes.
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assessing applicability concerns of the QUADAS-2 score.
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52. Varçın, F.; Erbay, H.; Çetin, E.; Çetin, İ.; Kültür, T. End-To-End Computerized Diagnosis of Spondylolisthesis Using Only Lumbar
X-rays. J. Digit. Imaging 2021, 34, 85–95. [CrossRef]

53. Caza-Szoka, M.; Massicotte, D.; Nougarou, F.; Descarreaux, M. Surrogate analysis of fractal dimensions from SEMG sensor array
as a predictor of chronic low back pain. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 6409–6412. [CrossRef]

54. Wang, N.; Zhang, Z.; Xiao, J.; Cui, L. DeepLap: A deep learning based non-specific low back pain symptomatic muscles
recognition system. In Proceedings of the 2019 16th Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), Boston, MA, USA, 10–13 June 2019; pp. 1–9. [CrossRef]

55. Liew, B.X.; Rugamer, D.; De Nunzio, A.M.; Falla, D. Interpretable machine learning models for classifying low back pain status
using functional physiological variables. Eur. Spine J. 2020, 29, 1845–1859. [CrossRef]

56. Abdollahi, M.; Ashouri, S.; Abedi, M.; Azadeh-Fard, N.; Parnianpour, M.; Khalaf, K.; Rashedi, E. Using a Motion Sensor to
Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach. Sensors 2020, 20, 3600. [CrossRef]

57. Bishop, J.B.; Szpalski, M.; Ananthraman, S.K.; McIntyre, D.R.; Pope, M.H. Classification of low back pain from dynamic motion
characteristics using an artificial neural network. Spine 1997, 22, 2991–2998. [CrossRef] [PubMed]

58. Hu, B.; Kim, C.; Ning, X.; Xu, X. Using a deep learning network to recognise low back pain in static standing. Ergonomics 2018,
61, 1374–1381. [CrossRef] [PubMed]

59. Ashouri, S.; Abedi, M.; Abdollahi, M.; Manshadi, F.D.; Parnianpour, M.; Khalaf, K. A novel approach to spinal 3D kinematic
assessment using inertial sensors: Towards effective quantitative evaluation of low back pain in clinical settings. Comput. Biol.
Med. 2017, 89, 144–149. [CrossRef] [PubMed]

60. Karabulut, E.M.; Ibrikci, T. Effective automated prediction of vertebral column pathologies based on logistic model tree with
SMOTE preprocessing. J. Med. Syst. 2014, 38, 1–9. [CrossRef] [PubMed]

61. Ketola, J.H.; Inkinen, S.I.; Karppinen, J.; Niinimäki, J.; Tervonen, O.; Nieminen, M.T. T 2-weighted magnetic resonance imaging
texture as predictor of low back pain: A texture analysis-based classification pipeline to symptomatic and asymptomatic cases. J.
Orthop. Res. 2020, 39, 2428–2438. [CrossRef]

62. Torrado-Carvajal, A.; Toschi, N.; Albrecht, D.S.; Chang, K.; Akeju, O.; Kim, M.; Edwards, R.R.; Zhang, Y.; Hooker, J.M.; Duggento,
A.; et al. Thalamic neuroinflammation as a reproducible and discriminating signature for chronic low back pain. Pain 2021,
162, 1241–1249. [CrossRef]

http://dx.doi.org/10.1109/BIBE.2015.7367687
http://dx.doi.org/10.3233/THC-151126
http://dx.doi.org/10.1016/j.media.2017.07.002
http://dx.doi.org/10.1007/s00586-017-4956-3
http://dx.doi.org/10.3390/diagnostics11050902
http://dx.doi.org/10.1007/s12021-018-9365-1
http://www.ncbi.nlm.nih.gov/pubmed/29450848
http://dx.doi.org/10.1016/j.ejrad.2019.02.023
http://www.ncbi.nlm.nih.gov/pubmed/31005175
http://dx.doi.org/10.1148/radiol.2021204289
http://www.ncbi.nlm.nih.gov/pubmed/33973835
http://dx.doi.org/10.1590/S0102-36162011000200014
http://dx.doi.org/10.1016/j.artmed.2012.07.002
http://www.ncbi.nlm.nih.gov/pubmed/23017984
http://dx.doi.org/10.1109/TBME.2007.894831
http://dx.doi.org/10.1016/j.media.2019.101533
http://dx.doi.org/10.1109/IDAP.2019.8875988
http://dx.doi.org/10.1007/s10278-020-00402-5
http://dx.doi.org/10.1109/EMBC.2016.7592195
http://dx.doi.org/10.1109/SAHCN.2019.8824868
http://dx.doi.org/10.1007/s00586-020-06356-0
http://dx.doi.org/10.3390/s20123600
http://dx.doi.org/10.1097/00007632-199712150-00024
http://www.ncbi.nlm.nih.gov/pubmed/9431637
http://dx.doi.org/10.1080/00140139.2018.1481230
http://www.ncbi.nlm.nih.gov/pubmed/29792576
http://dx.doi.org/10.1016/j.compbiomed.2017.08.002
http://www.ncbi.nlm.nih.gov/pubmed/28800443
http://dx.doi.org/10.1007/s10916-014-0050-0
http://www.ncbi.nlm.nih.gov/pubmed/24753003
http://dx.doi.org/10.1002/jor.24973
http://dx.doi.org/10.1097/j.pain.0000000000002108


Int. J. Environ. Res. Public Health 2022, 19, 5971 20 of 20

63. Sanders, N.W.; Mann, N.H., III. Automated scoring of patient pain drawings using artificial neural networks: Efforts toward a
low back pain triage application. Comput. Biol. Med. 2000, 30, 287–298. [CrossRef]

64. Pang, S.; Su, Z.; Leung, S.; Nachum, I.B.; Chen, B.; Feng, Q.; Li, S. Direct automated quantitative measurement of spine by cascade
amplifier regression network with manifold regularization. Med. Image Anal. 2019, 55, 103–115. [CrossRef]

65. Neubert, A.; Fripp, J.; Engstrom, C.; Gal, Y.; Crozier, S.; Kingsley, M.I. Validity and reliability of computerized measurement of
lumbar intervertebral disc height and volume from magnetic resonance images. Spine J. 2014, 14, 2773–2781. [CrossRef]

66. Niemeyer, F.; Galbusera, F.; Tao, Y.; Kienle, A.; Beer, M.; Wilke, H.J. A deep learning model for the accurate and reliable
classification of disc degeneration based on MRI data. Investig. Radiol. 2021, 56, 78–85. [CrossRef]

67. Sneath, R.J.; Khan, A.; Hutchinson, C. An Objective Assessment of Lumbar Spine Degeneration/Ageing Seen on MRI Using
An Ensemble Method—A Novel Approach to Lumbar MRI Reporting. Spine 2021, 47, E187–E195. [CrossRef] [PubMed]

68. Natalia, F.; Meidia, H.; Afriliana, N.; Young, J.C.; Yunus, R.E.; Al-Jumaily, M.; Al-Kafri, A.; Sudirman, S. Automated measurement
of anteroposterior diameter and foraminal widths in MRI images for lumbar spinal stenosis diagnosis. PLoS ONE 2020,
15, e0241309. [CrossRef] [PubMed]

69. Sari, M.; Gulbandilar, E.; Cimbiz, A. Prediction of low back pain with two expert systems. J. Med. Syst. 2012, 36, 1523–1527.
[CrossRef]

70. Fortin, M.; Omidyeganeh, M.; Battié, M.C.; Ahmad, O.; Rivaz, H. Evaluation of an automated thresholding algorithm for the
quantification of paraspinal muscle composition from MRI images. Biomed. Eng. Online 2017, 16, 61. [CrossRef] [PubMed]

71. Chae, D.S.; Nguyen, T.P.; Park, S.J.; Kang, K.Y.; Won, C.; Yoon, J. Decentralized convolutional neural network for evaluating
spinal deformity with spinopelvic parameters. Comput. Methods Programs Biomed. 2020, 197, 105699. [CrossRef] [PubMed]

72. Watanabe, K.; Aoki, Y.; Matsumoto, M. An application of artificial intelligence to diagnostic imaging of spine disease: Estimating
spinal alignment from moire images. Neurospine 2019, 16, 697. [CrossRef] [PubMed]

73. Cho, B.H.; Kaji, D.; Cheung, Z.B.; Ye, I.B.; Tang, R.; Ahn, A.; Carrillo, O.; Schwartz, J.T.; Valliani, A.A.; Oermann, E.K.; et al.
Automated measurement of lumbar lordosis on radiographs using machine learning and computer vision. Glob. Spine J. 2020,
10, 611–618. [CrossRef] [PubMed]

74. Garcia-Cano, E.; Cosío, F.A.; Duong, L.; Bellefleur, C.; Roy-Beaudry, M.; Joncas, J.; Parent, S.; Labelle, H. Prediction of spinal curve
progression in adolescent idiopathic scoliosis using random forest regression. Comput. Biol. Med. 2018, 103, 34–43. [CrossRef]

75. Nguyen, T.P.; Chae, D.S.; Park, S.J.; Kang, K.Y.; Yoon, J. Deep learning system for Meyerding classification and segmental motion
measurement in diagnosis of lumbar spondylolisthesis. Biomed. Signal Process. Control 2021, 65, 102371. [CrossRef]

76. Knezevic, N.; Candido, K.; Vlaeyen, J.; Van Zundert, J.; Cohen, S. Low Back Pain. Lancet 2021, 398, 78–92. [CrossRef]
77. Miotto, R.; Percha, B.L.; Glicksberg, B.S.; Lee, H.C.; Cruz, L.; Dudley, J.T.; Nabeel, I. Identifying acute low back pain episodes in

primary care practice from clinical notes: Observational study. JMIR Med. Inform. 2020, 8, e16878. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0010-4825(00)00013-5
http://dx.doi.org/10.1016/j.media.2019.04.012
http://dx.doi.org/10.1016/j.spinee.2014.05.023
http://dx.doi.org/10.1097/RLI.0000000000000709
http://dx.doi.org/10.1097/BRS.0000000000004159
http://www.ncbi.nlm.nih.gov/pubmed/34224512
http://dx.doi.org/10.1371/journal.pone.0241309
http://www.ncbi.nlm.nih.gov/pubmed/33137112
http://dx.doi.org/10.1007/s10916-010-9613-x
http://dx.doi.org/10.1186/s12938-017-0350-y
http://www.ncbi.nlm.nih.gov/pubmed/28532491
http://dx.doi.org/10.1016/j.cmpb.2020.105699
http://www.ncbi.nlm.nih.gov/pubmed/32805697
http://dx.doi.org/10.14245/ns.1938426.213
http://www.ncbi.nlm.nih.gov/pubmed/31905459
http://dx.doi.org/10.1177/2192568219868190
http://www.ncbi.nlm.nih.gov/pubmed/32677567
http://dx.doi.org/10.1016/j.compbiomed.2018.09.029
http://dx.doi.org/10.1016/j.bspc.2020.102371
http://dx.doi.org/10.1016/S0140-6736(21)00733-9
http://dx.doi.org/10.2196/16878
http://www.ncbi.nlm.nih.gov/pubmed/32130159

	Introduction
	Materials and Methods
	Inclusion and Exclusion Criteria
	Evaluation Metrics
	Quality of Evidence

	Results
	Computed Aided Diagnosis
	Classification
	Regression


	Discussion
	Conclusions
	References

