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Beta oscillations in major 
depression – signalling a new 
cortical circuit for central executive 
function
Yuezhi Li1, Cheng Kang1, Zhaoguo Wei3, Xingda Qu1, Tiebang Liu3, Yunfei Zhou3 & Yong Hu2

This study aimed to examine alterations in electroencephalography (EEG) phase synchronization in 
working memory processing in depressed patients. Sixty-four-channel EEG signals were recorded from 
33 depressed patients and 32 healthy controls during a visual n-back task. Alterations in functional 
connections in the patients were investigated using event-related phase coherence in terms of the 
phase synchronization index (PSI). Compared with the control subjects, the depressed patients showed 
a lower task-dependent increase in the PSI of delta, theta, and alpha oscillations in a frontoparietal 
network, but a higher task-dependent increase in the PSI of beta oscillations in the frontoparietal 
network. Additionally, depressed patients showed a lower task-dependent decrease in the PSI of delta, 
theta, alpha, and beta oscillations in centro-parieto-occipital sites. Insufficient phase synchronization 
and desynchronization during working memory processing reflects impairments in cortical inhibition, 
memory, and attention efficiency in major depression, while the abnormal increase in phase 
synchronization in beta oscillations in the frontoparietal network may indicate a new cortical circuit 
concerned with the repair of impaired ability in attention, memory retention, and working memory 
central executive processing. These findings present a compensatory mechanism for impaired cognitive 
function in major depression, and advance our understanding of functional aspect of beta oscillations.

Major depression is characterized by dysfunctions in attention and difficulties in concentration and decision 
making. Depressed patients show an inability to inhibit neutral information access to working memory and 
restrain irrelevant information processing; leading to cognitive slowness and attentional deficits. This profile of 
major depression may be attributable to a deficit in the efficacy of the central executive component of human 
working memory1,2. An fMRI investigation into working memory in major depression found that depressed 
patients demonstrated greater activation of the lateral prefrontal cortex and the anterior cingulate while main-
taining a similar level of performance to controls during a working memory task3. Another fMRI study observed 
greater activation of the medial orbitofrontal and rostral anterior cingulate in maintenance of ‘normal’ working 
memory performance in major depression4. However, the contribution of these greater activations to perfor-
mance of working memory is not well understood. Within the above context, a network-based study to investi-
gate deficits and compensatory activation in the working memory processing network is therefore important and 
necessary, and would advance our understanding of working memory processing in major depression.

EEG oscillations are rhythmic electrical events in the brain that emerge from the interactions of large pop-
ulations of neurons5,6. Oscillatory activity has been suggested as constituting a mechanism for regulating the 
states of neuronal networks and specifying the mode of information processing7. The brain determines commu-
nication through neuronal pools at any particular moment by changing the frequency content of oscillations, 
and oscillations act as communication networks through large populations of neurons8–10. The phases of oscilla-
tions are directly related to the timing of neural activity, and the consideration of phase synchronization offers a 
basis for the understanding of the interrelations between different brain structures, which in turn emphasizes the 
functional-topographic aspect of different neuronal units11.
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Major depression is suggested to affect activity in the thalamocortical and corticocortical circuits, which is 
reflected in altered EEG oscillations7. In the resting-state condition, major depression is characterized by unique 
EEG oscillations in beta frequencies that are dominant in relation to delta, theta, and alpha oscillations7, and this 
oscillatory pattern was never seen in healthy subjects. Another study has reported increased theta and beta phase 
synchronization in major depression related to attentional deficit in the visual oddball task12. In the present study, 
we hypothesized that disorganization of oscillation synchronization with abnormal theta and beta oscillation 
synchronization would be identifiable in a neuronal network involved in working memory processing in major 
depression, and that this would provide new insights into the unstable state of cognitive processing and advance 
our understanding of functional aspect of beta oscillations in the brain.

To identify the neuronal network involved in working memory processing in patients with major depres-
sion, we measured 64-channel EEG signals during a visual n-back task that utilized 0-back and 2-back memory 
load conditions. The event-related phase coherence (ERPCOH), as defined by the phase synchronization index 
(PSI)13,14, was calculated for the network. This study analyzed the PSI of a broad EEG frequency band (1–30 Hz) 
for 64 electrode sites. Firstly, the PSI value of each electrode pair was computed for the 2-back and 0-back condi-
tions to define significant pairs. Secondly, the PSI values of significant pairs in patients with major depression and 
healthy controls were compared within the frequency ranges of 1 to 30 Hz at intervals of 1 Hz. Thirdly, a neuronal 
network was established on the basis of the PSI values, to identify the alterations in phase synchronization con-
nections in major depression.

Methods
Participants.  Thirty-two healthy subjects were recruited from the hospital or university staff, while 33 
patients with major depression were recruited from the Depression and Anxiety Disorders Clinic at Shenzhen 
Kangning Hospital. All subjects were screened by two senior psychiatrists with more than 10-years experience, 
using Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-CV)15, the 17-item 
Hamilton Depression Rating Scale, and the Hamilton Anxiety Rating Scale. In the control group, all subjects 
passed the SCID-CV examination without history of depression. In the patient group, subjects with anxiety dis-
order, or a history of head trauma were excluded. Seventeen of the 33 patients were naive to antidepressants 
and no patient had received antidepressant treatment within the 4 weeks before the study. The patients were 
ever treated with either paroxetine (20–40 mg/day), venlafaxine (75–225 mg/day), or citalopram (20–40 mg/day). 
Table 1 shows the characteristics of the subjects. This study was performed in accordance with relevant guidelines 
and regulations approved by the institutional review board of Shenzhen University and written informed consent 
was obtained from each subject before the experiment.

The n-back Task.  A letter variant version of the n-back task was used in this experiment. All subjects per-
formed 2-back and 0-back versions of the n-back task, which involved the subjects observing stimuli on a 23 
inch computer monitor and responding by pressing a button with the index finger for a match (target stimulus), 
and with the middle finger for a mismatch (nontarget stimulus). In the 0-back condition, subjects were asked to 
identify the single pre-specified letter ‘X’, while in the 2-back condition, subjects were asked to identify whether 
a letter presented on a screen matched the letter presented 2 trials back. Presented letters were randomly selected 
from English consonants. All blocks consisted of a pseudo-random sequence of 30 consonants (10 target and 20 
nontarget stimuli). Letters were presented for 0.5 s and were separated from one another by a 2-s delay. The total 
duration of a given block was 75 s, with each condition consisting of 8 blocks. Blocks were separated from one 
another by a 45-s interval. The different condition blocks were also presented pseudo-randomly. The task was 
programmed using E-prime software (Psychology Software Tools, Pittsburgh, PA). The subjects were instructed 
to respond as quickly and accurately as possible, and their responses (reaction time and response accuracy) were 
recorded, with only those trials with correct responses being included in the EEG analysis. The subjects were 

Depressed patients (n = 33) Control subjects (n = 32)

Age (years) 32.8 (8.9) 29.5 (6.2)

Education (years) 15.9 (2.6) 16.8 (1.8)

Sex ratio 14 F/9 M 11 F/11 M

HDRS-17 23.0 (4.3) 2.3 (1.7)

HARS 11.8 (4.9) 4.6 (1.5)

0-back

 Accuracy (%) 97.5 (3.3) 98.6 (1.4)

 Reaction times (ms) 529.1 (87.8) 544.5 (73.4)

2-back

 Accuracy (%) 78.2 (14.6) 83.3 (9.7)

 Reaction times (ms) 833.5 (184.6) 809.8 (176.1)

Table 1.  Demographic and clinical characteristics and n-back task performance of depressed patients and 
control subjects. The severity of depression and anxiety was quantified by using HDRS-17 and HARS. HDRS-
17 = Hamilton Depression Rating Scale (17 items); HARS = Hamilton Anxiety Rating Scale. There were no 
significant differences in age (t63 = 1.730; P = 0.095) or education level (t63 = 1.618; P = 0.116) across groups, and 
all groups had equivalent gender distribution.
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allowed to practice the tasks before the experiment using a practice block containing 30 trials; this could be 
repeated until the subjects were convinced that each condition in the task was clear. The response accuracy and 
reaction times were compared between the depression and control groups using Student’s t-tests.

EEG Recording.  Sixty-four-channel EEG signals were recorded using a BrainAmp amplifier (Brain Products, 
Munich, Germany). The electrodes were placed according to the 10–20 System and intermediate sites. An addi-
tional electrode, Iz, was placed on the infraorbital ridge of the right eye to record the vertical electrooculogram. 
All channels were referenced during recording to electrode FCz with a forehead ground (AFz). Electrode imped-
ance was maintained below 5k Ω throughout the experiment. The EEG and electrooculogram were recorded 
without filtering, and digitized at a sampling rate of 1000 Hz.

EEG Data Analysis.  The EEG was digitally filtered with a band-pass filter of 0.16–50 Hz (24 dB/Octave). 
Electrooculogram artifacts were corrected by ocular correction using the independent components analysis 
algorithm in Brain Vision Analyzer software (Brain Products). EEG data referenced to FCz were recalculated 
against the average reference, and a time epoch for each event of 2500 ms (200 ms pre-stimulus and 2300 ms 
post-stimulus) was used. For each epoch, a baseline correction was performed according to the data 200 ms prior 
to the stimulus. To avoid eye movement and other artifacts, all epochs exceeding ±120 μV in any channel were 
excluded from additional analysis.

To remove the effects of volume conduction and reference signals on the phase synchronization meas-
urements13,14, EEG signals were transformed to the scalp current density at each electrode site by applying a 
spherical Laplace operator to the voltage distribution on the scalp using Brain Vision Analyzer software. This 
transformation was performed using the following settings, order of the splines = 4, maximum degree of the 
Legendre polynomial = 10, precision = 10−5,16. After the signals of scalp current density at each electrode site 
were down-sampled to 500 Hz and exported to EEGLAB, The following further analysis was performed within 
the MATLAB environment (Mathworks, Natick, MA, USA).

The signal of the scalp current density was convoluted by a complex Morlet’s wavelet w(f, t):
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17. For computation in EEGLAB, the number of wavelet cycles was set to 0.5, and the lowest frequency time 
window to 0.5 s; this resulted in a lowest analysis frequency of 1 Hz, with the number of wavelet cycles used for 
higher frequencies continuing to expand using the fixed time window of 0.5 s. Sk
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where n is the number of available trials. PSIl,m(f, t) is computed in 1 Hz steps from 1 Hz to 30 Hz. The set of 
PSIl,m(f, t) is termed PSI below.

To identify the task-dependent modulation of the PSIs, the time series samples of PSIl,m(f, t = [0 ms, 2300 ms]) 
from each individual subject were compared between the 2-back and 0-back conditions using two-sample 
t-tests. A one-sample t-test was performed on the acquired t-values from the two-sample t-tests to determine the 
task-dependent modulation of the PSIs across the subjects. A bootstrap procedure was then used to estimate the 
confidence interval for the one-sample t-values as follows13,18, thus removing the requirement for unverifiable 
assumptions on the probability distribution of the data. The t-values of each individual subject were re-computed 
using two bootstrapped re-samples obtained from PSIl,m(f, t) in the 2-back and 0-back conditions. The one-sample 
t-test was then performed on the bootstrapped two-sample t-values to obtain statistical t-value across the sub-
jects. The bootstrap procedure was repeated 2000 times to generate a distribution of the statistical t-values that 
allowed determination of the threshold of the t-value (bootstrap p < 0.05) (Fig. 1). The number of electrode pairs 
with a t-value greater than the threshold was counted for each frequency.

To test the significance of the difference in the number of significant electrode pairs (i.e., electrode pairs with 
significant modulation of PSIs) between the depression and control subjects for the delta band (1–3 Hz), theta 
band (4–7 Hz), alpha band (8–13 Hz), and beta band (14–30 Hz), a bootstrap procedure was used. The boot-
strapped depression and control subjects were re-sampled from all the subjects in both groups, and the difference 
in the number of significant electrode pairs between the surrogated groups was re-computed for each frequency 
band. The bootstrap procedure was repeated 1000 times to generate a distribution for the difference that allowed 
determination of significance of the difference in the real number of significant electrode pairs.

To test the significance of the difference in the task-dependent modulation of the PSIs of significant electrode 
pairs between the depression and control groups, the sums and average values of the PSIs increase/decrease of all 
significant electrode pairs were compared between the depression and control groups for each frequency using 
two-sample t-tests.
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EEG Phase Synchronization Clustering.  The significant electrode pairs were categorized using corre-
lation coefficients (Fig. 1). Firstly, the correlation coefficients of the PSI time series between every two electrode 
pairs were computed for each subject. The overall mean of the correlation coefficients across the subjects was then 
calculated. Subsequently, difference between the correlation coefficients of every two significant electrode pairs 
and the overall mean was examined by using one sample t-tests across the subjects (one-tailed p < 0.05). On the 
basis of the correlation coefficients of the PSI time series, the significant electrode pairs were categorized into a 
set of clusters14. In particular, the two significant electrode pairs were categorized into the same cluster if the PSIs 
between them had a correlation coefficient higher than the overall mean. In other words, in a resultant cluster, 
each electrode pair had significant correlation of PSI with at least one other electrode pair (i.e., their correlation 
coefficient was significantly higher than the overall mean), and electrode pairs in one cluster did not have signifi-
cant correlations of PSI with electrode pairs in any other cluster. In addition to a threshold for the significance of 
the correlation coefficient, a threshold for the number of electrode pairs within a cluster was used, to reduce the 
risk of a type I error. A statistical procedure was performed to determine the threshold of the number of electrode 
pairs within a cluster as follows. (1) 100 electrode pairs was randomly taken from all electrode pairs without 
replacement; (2) a group of subjects was randomly taken from the depression and control groups; (3) a frequency 
value f was randomly sampled from all frequencies between 0–30 Hz; (4) the sampled 100 electrode pairs were 
clustered on the basis of correlation coefficients of the PSIl,m(f, t) between them. The number of electrode pairs 
within the cluster was obtained; (5) the above procedure was repeated 1000 times to generate a distribution of 
the cluster sizes that allowed determination of the threshold of the numbers of electrode pairs within a cluster 
(bootstrap p < 0.05).

Correlation Analysis of PSI.  The time series of PSIs at the frequencies of interest in the 2-back task were 
used to compute the correlation coefficient with the following equation:

Figure 1.  Processing flow for identification of significant electrode pairs, clustering and cluster-based statistical 
analysis.
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where r(τ) is the correlation coefficient at the time lag τ between two PSI time series fi and gi; N is the number of 
time points in the time series, and f  and g  are the mean values of the time series fi and gi respectively.

The correlation coefficient r(0) between two PSI time series was utilized for PSI clustering. Additionally, to 
quantify the average correlation coefficient of electrode pairs within a cluster, all correlation coefficients com-
puted over the time series of PSIs in the cluster were averaged on an intra-subject basis. The averaged correlation 
coefficients were then averaged across the subjects.

Cluster-based Statistical analysis.  For each obtained phase synchronization cluster, the cluster value 
was derived from the sum of statistical t-values of all significant electrode pairs in the cluster. Then, the cluster 
values were used for a permutation test to examine the significance of effects (Fig. 1). The permutation was exe-
cuted 1000 times. In each permutation, the PSIl,m(f, t) in the 0-back and 2-back conditions were interchanged. 
Then, two-sample t-tests for each individual subjects followed by one-sample t-test across the subjects were 
re-performed to obtain statistical t-values for all electrode pairs in the cluster, and the cluster value was acquired 
accordingly. For all 1000 permutations, a new distribution of the cluster values was determined. Based on this 
distribution, the significance of the initial cluster value can be determined. Therefore the p-values resulting from 
the permutation test were corrected for multiple comparisons. If a cluster cannot survive the permutation test, 
we will use a stringent threshold (e.g. p < 0.01) to re-determine significant electrode pairs (Fig. 1) followed by the 
re-clustering and cluster-based statistical procedures again.

Because there might be multiple clusters for significance testing, we used a Holm-Bonferroni method to con-
trol the family-wise error rate (p < 0.05).

Results
Behavioral data.  For the 0-back task, neither response accuracy (t63 = 1.740, p = 0.092) nor reaction time 
(t63 = 0.766, p = 0.449) showed a significant difference between the two groups. Similarly, response accuracy 
(t63 = 1.650, p = 0.110) and reaction times (t63 = 0.536, p = 0.596) for the 2-back task did not differ significantly 
between the two groups.

Phase synchronization results.  The pairs of electrodes that showed significant PSI modulations between the 
2-back and 0-back conditions from 1 Hz to 30 Hz (P < 0.05) were counted. For example, in the depression group, 
the maximum significance of PSI increase was found between the C4 and CP1 electrodes at 27 Hz (Fig. 2A,B).

In the depression group, the number of electrode pairs exhibiting a significant PSI increase in the beta band 
was larger than that of the control group (p < 0.01). Conversely, in the delta, theta, and alpha bands, the number 
was significantly lower in the depression group than in the control group (all with p < 0.01; Fig. 3A,B). The num-
bers of electrode pairs exhibiting a significant PSI decrease in the delta, theta, and beta bands were lower in the 
depression group than in the control group (all with p < 0.01; Fig. 3E,F).

We also investigated differences in PSI modulation between the two groups for all significant pairs. The sum of 
PSI increase among all significant pairs in the depression group was higher than that in the control group in the 
beta (e.g. at 27 Hz, t63 = 4.8860, p < 0.001) band (Fig. 3D), but was lower than that in the control group in the delta 

Figure 2.  In the depression group. (A) Maximum significance of PSI increase during the 2-back condition 
compared to the 0-back condition was found between C4 electrode and CP1 electrode at 27 Hz. (B) t statistical 
values for the difference of the PSI between the 2-back condition and 0-back condition for the pair (C4-CP1) 
across subjects. At this pair, the PSI was higher in the 2-back condition than in the 0-back condition with a peak 
at 27 Hz. Greenband represents the 95% confidence interval constructed using the bootstrap method. Red line 
represents the t values of one sample t-test.
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(e.g. at 3 Hz, t63 = 2.7421, p < 0.01), theta (e.g. at 7 Hz, t63 = 4.4536, p < 0.001) and alpha (e.g. at 8 Hz, t63 = 4.3080, 
p < 0.001) bands. There was no significant group effect on the average value of the PSI increase among all signif-
icant pairs (Fig. 3C). Additionally, in cases where the subjects showed a significant PSI decrease, the sum of PSI 
decrease among all significant pairs in the depression group (Fig. 3H) was lower than that in the control group 
in the delta (e.g. at 3 Hz, t63 = 6.9211, p < 0.001), theta (e.g. at 4 Hz, t63 = 5.2431, p < 0.001), alpha (e.g. at 13 Hz, 
t63 = 5.4367, p < 0.001) and beta (e.g. at 15 Hz, t63 = 7.6551, p < 0.001) bands. There was no significant group effect 
on the average value of the PSI decrease (Fig. 3G). The PSIs at the above frequencies in the delta, theta, alpha 
and beta bands that showed the most significant difference were used for clustering. Additionally, because the 
frequencies may not be adequately discriminated from each other using the wavelet convolution methods, the 
PSIs at some adjacent frequencies that showed significant differences (p < 0.01) were also selected for clustering.

Topology of Clusters with PSI Increase.  A threshold of 9 electrode pairs within a cluster was obtained 
by the statistical procedure.

Delta Phase Synchronization.  For phase synchronization at 3 Hz, the connections in the control group could 
be classified into one significant cluster. This cluster ‘A’ (Fig. 4Ac) linked 29 pairs of electrodes, and primarily 
included long-range connections between the left frontal and right centroparietal sites, and between the right 
frontal and left centroparietal sites. It also included interhemispheric centroparietal connections. For phase syn-
chronization at 1 Hz, the cluster ‘A1’ (Fig. 5Ac) included connections between the frontal and bilateral centropari-
etal or temporoparietal sites. The connections in the depression group (Figs 4Aa and 5Aa) could not be classified 
into one cluster. The control group showed more connections between the frontal and centroparietal sites, and 
more interhemispheric centroparietal connections than the depression group.

Theta Phase Synchronization.  For the phase synchronization at 7 Hz, the connections in the control group could 
be classified into one significant cluster. This cluster ‘B’ (Fig. 4Bc) linked 36 pairs of electrodes, and primarily 
included connections between the left frontal sites and right centroparietal sites, and between the frontopolar 
sites and left centroparietal sites. It also included interhemispheric centroparietal connections. For phase syn-
chronization at 6 Hz, the connections of the cluster ‘B1’ (Fig. 5Bc) were similar to those of the cluster ‘B’. The 
connections in the depression group (Figs 4Ba and 5Ba) could not be classified into one cluster. The control group 

Figure 3.  Task-dependent increase and decrease of EEG phase synchronization indices across all subjects. (A) 
The number of electrode pairs exhibiting greater PSI during the 2-back condition than that during the 0-back 
condition in the depression group. (B) The number of electrode pairs exhibiting greater PSI during the 2-back 
condition than that during the 0-back condition in the control group. (C) Comparison of the average value of 
the PSI increase among all significant pairs in the depression group with that in the control group using a two-
sample t-test. (D) Comparison of the overall PSI increase among all significant pairs in the depression group 
with that in the control group using a two-sample t-test. (E) The number of electrode pairs exhibiting lower PSI 
during the 2-back condition than that during the 0-back condition in the depression group. (F) The number of 
electrode pairs exhibiting lower PSI during the 2-back condition than that during the 0-back condition in the 
control group. (G) Comparison of the average value of the decrease of PS among all significant pairs in the 
depression group with that in the control group using a two-sample t-test. (H) Comparison of the overall PSI 
decrease among all significant pairs in the depression group with that in the control group using a two-sample 
t-test. Note:  indicates p < 0.05 (uncorrected) and  indicates p < 0.01 (uncorrected). Besides the most 
significant frequencies in the delta, theta, alpha and beta bands, the frequencies marked with  were also used 
for clustering.
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showed more connections than the depression group between the frontal and centroparietal scalp sites and more 
interhemispheric centroparietal connections.

Alpha Phase Synchronization.  For the phase synchronization at 8 Hz, the connections in the control group could 
be classified into one significant cluster. This cluster ‘C’ (Fig. 4Cc) linked 23 pairs of electrodes, and primarily 
included connections between the left frontal and right centroparietal sites, and between the right frontal and left 
centroparietal sites. For phase synchronization at 9 Hz, the cluster ‘C1’ (Fig. 5Cc) included connections between 
the frontal and left central or temporoparietal sites, and between the left frontal and right central or frontocentral 
sites. The connections in the depression group (Figs 4Ca and 5Ca) could not be classified into one cluster. The 
depression group exhibited less links between the frontal and bilateral centroparietal sites than the control group.

Figure 4.  Clustering of the most significantly increased phase synchronization indices in the delta, theta, 
alpha, and beta bands for both the depression and control groups based on the correlation coefficient of phase 
synchronization indices during the 2-back task. Lines represent significant PSI increase during the 2-back 
condition relative to that during the 0-back condition (P < 0.05). (Aa, Ba, Ca, Da) Significant PSI increase 
for the depression group. (Ab, Bb, Cb, Db) Significant PSI increase for the control groups. Ac: Cluster A. Bc: 
Cluster B. Cc: Cluster C. Dc: Cluster D. Cluster A, B and C identified in the control group were significant using 
a control of family-wise error rate at the level of α = 0.05; Cluster D identified in the depression group was 
significant with p < 0.05 (corrected for multiple comparisons). Drawing is the top view of the scalp. Each black 
spot signifies an electrode that was used for measurement. (Ad, Bd, Cd and Dd) are correlation coefficient of 
phase synchronization within corresponding clusters.
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Beta Phase Synchronization.  For the phase synchronization at 27 Hz, the connections in the depression group 
could be classified into one significant cluster. This cluster ‘D’ (Fig. 4Dc) linked 60 pairs of electrodes, and pri-
marily included connections between the frontal and right temporoparietal or centroparietal sites, between 
the frontocentral and left temporoparietal sites, and within the frontal sites. There were also interhemispheric 
temporoparietal connections. The connections in the control group could not be classified into one cluster. The 
depression group showed more connections than the control group between the frontal and temporoparietal 
or centroparietal sites, more connections within the frontal sites, and more interhemispheric temporoparietal 
connections.

Topology of Clusters showing a PSI Decrease.  Delta Phase Desynchronization.  For the phase desyn-
chronization at 3 Hz, the connections in the depression group could be classified into one significant cluster. This 
cluster ‘E’ (Fig. 6Ac) linked 14 pairs of electrodes, and primarily included connections between the left central 
and left parietal or parieto-occipital sites. In the control group, the connections could be classified into cluster 
‘F’. This cluster (Fig. 6Ad) linked 55 pairs of electrodes, and primarily included connections between the fron-
tocentral and parieto-occipital or occipital sites, and connections within the left frontocentral region. For the 

Figure 5.  Clustering of some significantly increased phase synchronization indices in delta, theta, alpha, 
and beta bands for both the depression and control groups. Lines represent significant PSI increase during 
the 2-back condition relative to that during the 0-back condition (p < 0.05). (Aa, Ba, Ca, Da) Significant PSI 
increase for the depression group. (Ab, Bb, Cb, Db) Significant PSI increase for the control groups. Ac: Cluster 
A1. Bc: Cluster B1. Cc: Cluster C1. Dc: Cluster D. Cluster A1, B1 and C1 identified in the control group were 
significant using a control of family-wise error rate at the level of α = 0.05; Cluster D identified in the depression 
group was significant with p < 0.05 (corrected for multiple comparisons).
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Figure 6.  Clustering of the most significantly decreased phase synchronization indices in delta, theta, alpha, and 
beta bands for both depression and control groups based on the correlation coefficient of phase synchronization 
indices during the 2-back task. Lines represent significant PSI decrease during the 2-back condition relative to that 
during the 0-back condition (P < 0.05). (Aa, Ba, Ca, Da) Significant PSI decrease for the depression group. (Ab, Bb, 
Cb, Db) Significant PSI decrease for the control group. Ac: Cluster E. Ad: Cluster F. Bc: Cluster G. Bd: Cluster H. 
Cc: Cluster I. Cd: Cluster J. Dd: Cluster K. Df: Cluster L. Cluster E, G and I identified in the depression group were 
significant using a control of family-wise error rate at the level of α = 0.05; Cluster F, H, J, K and L identified in the 
control group were significant using a control of family-wise error rate at the level of α = 0.05. Ae, Af, Be, Bf, Ce, 
Cf, Dc and De are correlation coefficient of phase synchronization within corresponding clusters. Note: The sum 
of the PSI decreases among all significant electrode pairs was compared between Cluster E and F, between Cluster 
G and H, and between Cluster I and J using two-sample t-tests. The overall PSI decrease among all significant pairs 
in Cluster E was lower than that in Cluster F (t63 = 4.4536, p < 0.001), in Cluster G was lower than that in Cluster H 
(t63 = 4.3080, p < 0.001), and in Cluster I was lower than that in Cluster J (t63 = 4.8860, p < 0.001).
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phase desynchronization at 2 Hz, the cluster ‘E1’ (Fig. 7Ac) included connections within the frontal regions. The 
connections of the cluster ‘F1’ (Fig. 7Ad) were similar to those of the cluster ‘F’.

The control group showed more connections in both hemispheres between the frontocentral sites and 
parieto-occipital or occipital sites, and more connections within the left frontocentral regions than the depression 
group.

Theta Phase Desynchronization.  For the phase desynchronization at 4 Hz, the connections in the depression 
group could be classified into one significant cluster. This cluster ‘G’ (Fig. 6Bc) linked 26 pairs of electrodes, and 
primarily included connections between the central or centroparietal and parietal or parietal-occipital sites in the 
left hemisphere, and between the middle frontocentral or central and right parietal sites. In the control group, the 
connections could be classified into cluster ‘H’. This cluster (Fig. 6Bd) linked 60 pairs of electrodes, and primarily 
included connections between the frontal or frontocentral and right parieto-occipital or occipital sites, between 
the right frontocentral or central and left parieto-occipital sites, and between the middle frontal or frontocentral 
and centroparietal regions. The depression group showed less links than the control group between the frontal or 
frontocentral and parieto-occipital or occipital sites, and less links between the middle frontal or frontocentral 
and centroparietal regions.

Alpha Phase Desynchronization.  For the phase desynchronization at 13 Hz, the connections in the depression 
group could be classified into one significant cluster. This cluster ‘I’ (Fig. 6Cc) linked 12 pairs of electrodes, and 
primarily included connections between the middle central and left parietal sites, and between the right frontoc-
entral and right parietal sites. In the control group, the connections could be classified into cluster ‘J’. This cluster 
(Fig. 6Cd) linked 43 pairs of electrodes, and primarily included connections between the middle central regions 
and right parietal sites, and between the left central or centroparietal and left parieto-occipital or parietal sites. 
For the phase desynchronization at 12 Hz, the connections of the cluster ‘I1’ (Fig. 7Cc) were similar to those of the 
cluster ‘I’, and the connections of the cluster ‘J1’ (Fig. 7Cd) were similar to those of the cluster ‘J’.

The depression group showed less links than the control group between the left central or centroparietal and 
left parieto-occipital or parietal sites, and between the middle central and right parietal sites.

Beta Phase Desynchronization.  For the phase desynchronization at 15 Hz, the connections in the depression 
group could not be classified into one cluster. In the control group, the connections could be classified into cluster 
‘K’ and ‘L’. The cluster ‘K’ (Fig. 6Dd) linked 14 pairs of electrodes, and primarily included connections between the 
middle central regions and bilateral parietal sites, and between the right frontal sites and left centroparietal sites. 
The cluster ‘L’ (Fig. 6Df) linked 9 pairs of electrodes, and included connections between the left frontocentral sites 
and temporoparietal or parietal sites. The control group showed more connections than the depression group 
between the middle central and bilateral parietal sites, and between the right frontal and left centroparietal sites.

Discussion
In the visual n-back tasks, in comparison with healthy subjects, the depressed patients demonstrated lower 
enhancement of lower-frequency delta, theta, and alpha phase synchronization, but higher enhancement of beta 
phase synchronization (Fig. 3D). It is suggested that these differences are related to memory retention and work-
ing memory central executive processing. Meanwhile, lower phase desynchronization in the delta, theta, alpha, 
and beta bands was found in depressed patients (Fig. 3H). We suggest that this reflects impaired ability in cortical 
inhibition, with abnormally increased beta phase synchronization in major depression being associated with a 
new functional circuit to repair the impaired abilities in attention control, memory retention, and central execu-
tive processing that are required in demanding working memory tasks.

Phase Synchronization in Control Subjects.  Healthy subjects showed a significant PSI increase in the 
2-back condition versus the 0-back condition in all oscillation bands (1–30 Hz). This finding was most evident 
in theta (e.g. 6 Hz) and beta (e.g. 21 Hz) oscillations (Fig. 3), and is consistent with previous studies that reported 
increased theta phase synchronization as a function of memory demand14,19,20, as well as previous reports that 
increased beta oscillations may be related to attention and top-down control14,21,22.

Compared to the 0-back condition, healthy subjects performing the 2-back condition showed enhanced phase 
synchronization in all frequency ranges, primarily between the prefrontal and bilateral centroparietal sites, and 
between the left and right centroparietal sites (e.g. cluster A, B, and C; Fig. 4Ac,Bc,Cc), regions that are denoted 
as the ‘frontoparietal network’. The present findings on this synchronization network are in line with previous 
studies3,4. Additionally, because functional imaging and patient data indicate that central executive functions 
are associated with frontal areas, whereas short-term memory storage is related to posterior frontal and parietal 
areas11,23, the frontoparietal network may present the framework for short-term memory storage and working 
memory central executive processing.

Phase Synchronization in Major Depression.  In comparison with healthy subjects, depressed patients 
showed less pronounced enhancement of synchronization in delta, theta, and alpha oscillations (Fig. 3D; Fig. 8), 
which indicates an impaired ability to implement working memory processing through the frontoparietal circuits 
by means of these oscillatory activities. In particular, the patients showed the least pronounced enhancement in 
theta synchronization, while coherent theta oscillations are believed to reflect central executive functions24–27 that 
are important for the interactions between posterior association cortices (where sensory information is thought 
to be stored) and prefrontal regions (where relevant current information is held and continuously updated). This 
might reflect impairments in memory retention and working memory central executive processing, which are 
supposed to result in deteriorations in task performance.
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Figure 7.  Clustering of some significantly decreased phase synchronization indices in delta, theta, alpha, 
and beta bands for both the depression and control groups. Lines represent significant PSI decrease during 
the 2-back condition relative to that during the 0-back condition (p < 0.05). (Aa, Ba, Ca, Da) Significant PSI 
decrease for the depression group. (Ab, Bb, Cb, Db) Significant PSI decrease for the control group. Ac: Cluster 
E1. Ad: Cluster F1. Bc: Cluster G. Bd: Cluster H. Cc: Cluster I1. Cd: Cluster J1. Dd: Cluster K. Df: Cluster L. 
Cluster E1, G and I1 identified in the depression group were significant using a control of family-wise error 
rate at the level of α = 0.05; Cluster F1, H, J1, K and L identified in the control group were significant using a 
control of family-wise error rate at the level of α = 0.05. Note: The sum of the PSI decreases among all significant 
electrode pairs was compared between Cluster E1 and F1, between Cluster G and H, and between Cluster I1 
and J1 using two-sample t-tests. The overall PSI decrease among all significant pairs in Cluster E1 was lower 
than that in Cluster F1 (t63 = 5.2530, p < 0.001), in Cluster G was lower than that in Cluster H (t63 = 4.3080, 
p < 0.001), and in Cluster I1 was lower than that in Cluster J1 (t63 = 4.130, p < 0.001).
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Large alpha oscillations may relate to the inhibition and disengagement of task-irrelevant cortical areas. 
However, alpha oscillations are also enhanced during the short-term and working memory retention period; 
short-term and working memory related alpha oscillations in the frontoparietal network during the memory 
retention period are an essential constituent of the network activity that sustains the neuronal representations of 
memorized items28–30. Accordingly, the present finding of less pronounced alpha synchronization in the fronto-
parietal network may reflect impaired working memory and short-term memory retention in major depression.

Figure 8.  Clusters in the delta, theta, alpha, and beta bands obtained from Figs 5 and 7 showed the significant 
phase synchronization and desynchronization during the 2-back tasks and the difference between the 
depression and control subjects. Red lines represent significant phase synchronization; blue lines represent 
significant phase desynchronization.
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A question can be asked as to how can depressed patients with impaired memory retention and central execu-
tive processing functions maintain normal levels of performance in effortful working memory tasks? Compared 
with healthy subjects, we found that depressed patients showed more pronounced enhancement of beta phase 
synchronization between the frontal and bilateral temporoparietal sites, and between the left and right tempo-
roparietal sites. This is a similar frontoparietal framework to that found in healthy subjects, but contains more 
short-range frontal connections. This result can be interpreted within the context of previous studies regarding 
the role of rhythmic oscillations in regulating brain activity. Lower frequency oscillations operate at a broader 
level across the brain, binding more distant areas into functional units, while faster (higher frequency, e.g. beta 
band) oscillations operate at a shorter level, binding local functional units31.

Previous studies have reported that beta oscillations may be related to attentional processes (top-down con-
trol) and the maintenance of the current cognitive state21,22,32,33. In this light, the enhanced beta synchronization 
in the frontoparietal network may reflect increased attentional control and task engagement in major depres-
sion22. Furthermore, as we found no significant between-group difference in either performance or reaction 
time, we suggest that the beyond-normal enhancement of beta phase synchronization plays an important role 
in compensating for impaired ability in memory retention and working memory central executive processing. 
This faster synchronous oscillatory network, which includes more interhemispheric temporoparietal connections 
and short-range frontal connections, presents a new cortical circuit that substitute for disrupted long-range and 
slower synchronous oscillatory networks in major depression.

Phase Desynchronization in Control Subjects.  For all oscillation frequencies, electrode pairs were also 
demonstrated a significant PSI decrease in the 2-back condition versus the 0-back condition, which was most 
evident in delta (e.g. 3 Hz) and alpha (e.g. 11 Hz) oscillations (Fig. 3). Alpha oscillations have shown desynchro-
nization in many tasks11, reflecting an increase in attention demands. The Delta frequency band is predomi-
nant during deep sleep, and this frequency range is associated with motivational processes and brain reward 
systems34,35. The PSI decrease in delta oscillations may reflect a brain state that was more aroused in the 2-back 
condition than in the 0-back condition.

Compared with the 0-back condition, healthy subjects in the 2-back condition showed decreased PSI between 
the central and parieto-occipital sites in all bands (clusters F, H, J, K; Fig. 6). Thus, the attenuated phase syn-
chronization in the centro-parieto-occipital regions was associated with demanding working memory tasks. 
Both phase synchronization and desynchronization can be interpreted within the context of previous studies 
which found both blood oxygen level dependent (BOLD) increases in the inferior/middle frontal gyri and infe-
rior/superior parietal lobules, and BOLD decreases in regions including the medial frontal gyrus, precentral 
gyrus, posterior cingulate gyrus, cuneus, and middle occipital gyrus, as working memory demands increased4. 
Decreased BOLD responses reflecting the suppression of neuronal activities relative to the reference state13 are 
in line with the present findings of decreased phase synchronization. We propose that the demanding working 
memory processing was physiologically implemented by releasing task-relevant areas from inhibition through 
phase synchronization, and suppressing task-irrelevant regions through phase desynchronization30,36. Therefore, 
the finding of phase desynchronization may reflect an adjustment through interaction/competition between 
the centro-parieto-occipital regions and the frontoparietal short-term memory and working-memory related 
regions, which indirectly contributes to the enhancement of phase synchronization in the short-term memory 
and working-memory related frontoparietal network37,38.

Additionally, in a previous n-back memory study, alpha and beta ERD were observed in posterior recording 
sites, and these rose in association with increasing working memory load39. Consistently, our finding of alpha and 
beta phase desynchronization in the centro-parieto-occipital regions demonstrated increased attention/memory 
demands, while delta phase desynchronization may reflect a more aroused brain state.

Phase Desynchronization in Major Depression.  Compared with healthy subjects, depressed patients 
showed less pronounced attenuation of phase synchronization in all bands in the central-parieto-occipital regions 
(Fig. 3H; Fig. 8). Less pronounced delta and alpha phase desynchronization might be related to inadequate corti-
cal inhibition. Based on our aforementioned interpretation, less pronounced phase desynchronization in depres-
sion may lead to reduced enhancement of phase synchronization in delta, theta, and alpha oscillations, due to 
insufficient suppression of the centro-parieto-occipital regions and release of the frontoparietal network from 
inhibition. While the enhancement of phase synchronization was insufficient, particularly in theta and alpha 
oscillations, the beyond-normal enhancement of beta phase synchronization was able to create a new functional 
pathway for memory retention and central executive processing.

In summary, the insufficient phase desynchronization in the centro-parieto-occipital regions may indicate 
that depressed individuals suffered impaired cortical inhibition abilities, and that the reduced inhibitory control 
impacts negatively upon working memory and attention efficiency1,2,40. New functional connections by means of 
faster beta oscillations and their synchronous activities were created to maintain indispensable cognitive control. 
However, this functional compensation by employing more short-range frontal and interhemispheric temporo-
parietal connections may impair cognitive capacity in the brain, which implies a deterioration of flexibility in 
cognitive processing.

Conclusion
In the visual n-back task, although the insufficient phase synchronization and desynchronization in major 
depression were identified reflecting impaired memory and attention efficiency, abnormally enhanced beta phase 
synchronization containing more short-range frontal connections and interhemispheric temporoparietal connec-
tions, reflects the creation of new cortical circuits to repair the memory retention and working-memory central 
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executive functions. This adaptive compensatory mechanism is also reflected in a deterioration of flexibility in 
cognitive control.
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