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ABSTRACT Coronaviruses (CoVs) have emerged from animal reservoirs to cause se-
vere and lethal disease in humans, but there are currently no FDA-approved antivi-
rals to treat the infections. One class of antiviral compounds, nucleoside analogues,
mimics naturally occurring nucleosides to inhibit viral replication. While these com-
pounds have been successful therapeutics for several viral infections, mutagenic nu-
cleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at in-
hibiting CoVs. This has been attributed to the proofreading activity of the viral 3'-5’
exoribonuclease (ExoN). B-b-N4-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute
for Drug Development) has recently been reported to inhibit multiple viruses. Here,
we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective
concentration [EC5,] = 0.17 uM) and Middle East respiratory syndrome CoV (MERS-
CoV) (EC5, = 0.56 uM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN
proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade
or overcome ExoN activity. NHC inhibited MHV only when added early during infec-
tion, decreased viral specific infectivity, and increased the number and proportion of
G:A and C:U transition mutations present after a single infection. Low-level NHC re-
sistance was difficult to achieve and was associated with multiple transition muta-
tions across the genome in both MHV and MERS-CoV. These results point to a virus-
mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier
to NHC resistance. Together, the data support further development of NHC for treat-
ment of CoVs and suggest a novel mechanism of NHC interaction with the CoV rep-
lication complex that may shed light on critical aspects of replication.

IMPORTANCE The emergence of coronaviruses (CoVs) into human populations from
animal reservoirs has demonstrated their epidemic capability, pandemic potential,
and ability to cause severe disease. However, no antivirals have been approved to
treat these infections. Here, we demonstrate the potent antiviral activity of a broad-
spectrum ribonucleoside analogue, B-p-N*-hydroxycytidine (NHC), against two diver-
gent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC
inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor
and the CoV replicase. Further, passage in the presence of NHC generates only low-
level resistance, likely due to the accumulation of multiple potentially deleterious
transition mutations. Together, these data support a mutagenic mechanism of inhi-
bition by NHC and further support the development of NHC for treatment of CoV in-
fections.
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he emergence of severe acute respiratory syndrome (SARS) in 2002 and Middle East

respiratory syndrome (MERS) in 2012 has underscored the ability of coronaviruses
(CoVs) to cause lethal disease in humans (1, 2). MERS-CoV continues to infect humans
in the Middle East, and four additional human CoVs (HCoVs), HCoV-229E, HCoV-NL63,
HCoV-0C43, and HCoV-HKU1, continue to circulate globally and cause respiratory
disease (3-6). The continued circulation in bat populations of SARS- and MERS- like
CoVs that can replicate efficiently in primary human airway cells further demonstrates
the potential for CoVs to emerge and cause severe disease in the future (7-10). While
SARS-CoV and MERS-CoV outbreaks have been controlled, largely through public
health measures (11-13), the potential for future outbreaks highlights the need for safe
and effective therapeutics to combat CoV infections. There are currently no approved
therapeutics or vaccines for any human CoV infection. Previous efforts to treat CoV
infections with existing antivirals did not conclusively benefit clinical outcomes; thus,
the current standard of care remains mostly supportive (14-16).

Several targets for direct-acting antivirals are being investigated to treat CoV
infections (17-19). Because the viral replication machinery performs an essential role in
genome replication, therapeutics approved to treat multiple different viral infections
are aimed at this target (20). Many approved antivirals are classified as nucleoside
analogues, compounds that mimic natural nucleosides to inhibit viral replication (21).
Inhibition by nucleoside analogues can be accomplished through a variety of mecha-
nisms. Common mechanisms of action include incorporation of the analogue by the
viral polymerase to induce premature termination of strand synthesis and loss of
essential genetic information through mutagenesis (22-25). A previous study reported
that the nucleoside analogues ribavirin (RBV) and 5-fluorouracil (5-FU) did not potently
inhibit CoVs, and this finding was attributed to the proofreading capabilities of the viral
3'-5" exoribonuclease (ExoN) (26). Recent reports have demonstrated the inhibition of
wild-type (WT) CoVs by nucleoside analogues such as galidesivir (BCX4430) and rem-
desivir (GS-5734) (27-29). While these compounds have shown efficacy against CoVs,
administration of multiple compounds simultaneously may be required to effectively
treat CoV infections and control the emergence of drug resistance, as has been
demonstrated for other viral infections (30).

B-p-N*-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development), a
cytidine analogue, has recently been shown to inhibit multiple viruses, including
chikungunya virus, Venezuelan equine encephalitis virus (VEEV), respiratory syncytial
virus (RSV), hepatitis C virus, norovirus, influenza A (IAV) and B viruses, and Ebola virus
(31-36). Previous reports have demonstrated increased introduction of transition mu-
tations in viral genomes after treatment, as well as a high genetic barrier to resistance
(31, 36). Antiviral activity of NHC has also been reported against the human a-CoV
HCoV-NL63, as well as the B-CoV SARS-CoV (43, 44). Neither the NHC mechanism of
action nor NHC resistance has been described for any CoV to date.

In this study, we investigated NHC inhibition and resistance in two divergent
B-CoVs, murine hepatitis virus (MHV) and MERS-CoV. We show that NHC potently
inhibits WT MHV and MERS-CoV with minimal cytotoxicity. We also demonstrate that
MHV ExoN proofreading activity has a limited but measurable effect on sensitivity to
NHC. We observed an NHC inhibition profile consistent with a mutagenic mechanism
of action featuring an accumulation of transition mutations, indicative of a high genetic
barrier to resistance.

RESULTS

NHC inhibits MHV and MERS-CoV replication with minimal cytotoxicity. NHC
(Fig. 1) has potent broad-spectrum antiviral activity against many RNA viral families
(31-36). We first determined if NHC also inhibits CoV replication, using a dose-response

December 2019 Volume 93 Issue 24 e01348-19

Journal of Virology

jviasm.org 2


https://jvi.asm.org

Coronavirus Inhibition by NHC

OH
HN

HO

< %,
N 2,
N 2
N 7

HO OH
FIG 1 Chemical structure of EIDD-1931, B-b-N*-hydroxycytidine.

experiment with two divergent B-CoVs: the model CoV MHV and the epidemically
circulating zoonotic CoV MERS-CoV. NHC treatment resulted in a dose-dependent
reduction in viral titers for MHV (Fig. 2A) and MERS-CoV (Fig. 2B). This inhibition resulted
in 50% effective concentrations (ECsys) of 0.17 uM for MHV (Fig. 2C) and 0.56 uM for
MERS-CoV (Fig. 2D). We detected negligible changes in DBT-9 cell viability out to
200 uM (Fig. 2E) and 50% cytotoxic concentration (CCs,) values above 10 uM in Vero
cells (Fig. 2F). The antiviral activity was not due to cytotoxicity, as the selectivity indexes
were >1,000 for MHV and >20 for MERS-CoV. Together, these results confirm potent
inhibition of B-CoVs by NHC.

The NHC inhibition profile in CoVs is consistent with mutagenesis. To better
understand the mechanism through which NHC inhibits CoV replication, we performed
a time of drug addition assay to determine at what point in the viral replication cycle
NHC acts (40). We added 16 uM (~100 times the EC,,) NHC at the indicated times pre-
or postinfection (p.i.) of cells with WT MHV at a multiplicity of infection (MOI) of 1
PFU/cell and quantified viral replication after a single infectious cycle. Compared to the
vehicle (dimethyl sulfoxide [DMSO]) control, NHC significantly inhibited MHV replica-
tion when added at or before 6 h postinfection (Fig. 3A), suggesting that NHC acts at
early stages of the viral replication cycle. We next determined the effect of NHC on MHV
RNA levels and compared it to the effect on the infectious-virus titer. RNA levels were
reduced by approximately 10-fold at the highest tested concentration of NHC in both
MHV-infected cell monolayers (Fig. 3B) and supernatants (Fig. 3C). In contrast, the viral
titer was reduced up to 5,000-fold at this concentration. We therefore calculated the
ratio of infectious virus per viral RNA genome copy number normalized to the un-
treated control (specific infectivity) after NHC treatment and found that the specific
infectivity of WT MHV was reduced in a dose-dependent manner after treatment with
increasing concentrations of NHC (Fig. 3D). Together, these data are consistent with a
mutagenic mechanism of NHC anti-CoV activity.

NHC treatment increases transition mutations present across the MHV ge-
nome. To directly test the effect of NHC treatment on the mutational burden, we
treated WT MHV with increasing concentrations of NHC and performed full-genome
next-generation sequencing (NGS) on viral populations released after a single round of
infection. Our data demonstrated a dose-dependent increase in mutations present at
low frequencies (<5% of the viral population) across the genome after treatment with
increasing concentrations of NHC (Fig. 4A to C). Further analysis of the types of
mutations introduced by NHC revealed an increase in the total number of transition
mutations with increasing NHC concentrations (Fig. 4D to F). The relative proportions
of G:A and C:U transitions among all observed mutations were increased by 13 to 15%
in the presence of 2 uM NHC and 36 to 40% in the presence of 4 uM NHC compared
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FIG 2 NHC inhibits MHV and MERS-CoV with minimal cytotoxicity. (A and B) Changes in MHV (A) and MERS-CoV
(B) titers relative to vehicle control after treatment with increasing concentrations of NHC. The data represent the
results of 6 independent experiments, each with 3 replicates. The error bars represent standard errors of the mean
(SEM). (C) Changes in titer data from panel A, represented as percentages of that of vehicle control. WT MHV,
EC,, = 0.17 uM. (D) Changes in titer data from panel B, represented as percentages of that of vehicle control. WT
MERS-CoV, EC,, = 0.56 uM. (E) DBT-9 cell viability as a percentage of that of DMSO control across NHC
concentrations. No cytotoxicity was detected up to 200 uM. The data represent the results of 2 independent
experiments, each with 2 replicates (MHV). The error bars represent SEM. (F) Vero cell viability as a percentage of
that of DMSO control across NHC concentrations. Less than 50% cytotoxicity was detected up to 10 uM. The data
represent the results of 2 independent experiments, each with 3 replicates. The error bars represent SEM.

to the vehicle control (Fig. 4G and H). Conversely, the relative proportions of A:G and
U:C transitions decreased with increasing NHC concentrations compared to the vehicle
control (Fig. 4G and H). Together, these results demonstrate that NHC treatment during
a single round of WT MHV infection causes predominantly G:A and C:U transition
mutations that are detectable at low frequencies across the genome. These data further
support a mutagenic mechanism of action for NHC inhibition of WT MHV.

NHC inhibition is modestly enhanced in the absence of ExoN proofreading.
Mutagenic nucleoside analogues, such as RBV and 5-FU, have been ineffective at
potently inhibiting WT CoVs due to the ExoN proofreading activity (26). A proofreading-
deficient [ExoN(—)] MHV mutant displays increased sensitivity to previously tested
nucleoside analogues, indicating that proofreading dampens inhibition by these com-
pounds (26, 37, 38). Therefore, we tested the sensitivity of ExoN(—) MHV to NHC
inhibition. Our results indicate that NHC decreases the titers of both WT and ExoN(—)
MHYV in a dose-dependent manner but that ExoN(—) MHV demonstrates a statistically
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FIG 3 The NHC inhibition profile of MHV is consistent with mutagenesis. (A) Treatment with 16 uM NHC (~100
times the EC,,) significantly inhibits MHV replication during a single infection when added before 6 h p.i. (B) Both
MHYV titer and monolayer RNA copies decrease after treatment with increasing concentrations of NHC. (C) NHC
treatment results in a decrease in supernatant MHV RNA. (D) Data from panel C represented as the ratio of
infectious WT MHV to genomic MHV RNA present in the supernatant, or specific infectivity, normalized to that of
vehicle control. NHC treatment resulted in a decrease in the specific infectivity of MHV. All the data represent the
results of 2 independent experiments, each with 3 replicates. The error bars represent SEM. Statistical significance
compared to DMSO control was determined by one-way analysis of variance (ANOVA) with Dunnett’s post hoc test
for multiple comparisons. *, P < 0.05; **; P < 0.01; ***, P < 0.001; ****, P < 0.0001.

significant increase in sensitivity to NHC inhibition compared to WT MHV (Fig. 5A).
However, this difference is reflected in only a modest decrease in the EC,, (approxi-
mately 2-fold) for ExoN(—) MHV (0.72 uM) compared to WT MHV (1.59 uM) (Fig. 5B). The
minimal change in sensitivity to NHC observed for ExoN(—) MHV indicates that NHC
potency is only marginally affected by ExoN proofreading activity.

Passage in the presence of NHC yields low-level resistance associated with
multiple transition mutations. To better understand the development and impact of
NHC resistance in CoVs, we passaged two lineages of WT MHV 30 times in the presence
of increasing concentrations of NHC and tested the sensitivity of passage 30 (p30) MHV
populations to NHC inhibition. We found that the lineage 1 (MHV p30.1) viral popula-
tion showed no change in sensitivity to NHC compared to WT MHV (Fig. 6A). However,
lineage 2 (MHV p30.2) showed a decrease in sensitivity to NHC inhibition in a titer
reduction assay, especially at higher concentrations of compound. We observed a
modest (approximately 2-fold) increase in EC,, values for MHV NHC passage viruses
(WT MHV, ECy, = 1.53 uM; MHV p30.1, ECoo = 2.61 uM; MHV p30.2, ECoo = 2.41 uM)
(Fig. 6B). This suggests that MHV passage resulted in minimal resistance to NHC. We
next sought to determine if passaging WT MHV in the presence of NHC altered the
replication capacities of these viruses. We found that both lineages showed a delay in
replication but ultimately reached peak titers similar to that of WT MHV (Fig. 6C). This
delay in replication suggests that MHV p30 is less fit than WT MHV.

To identify mutations associated with these phenotypes after passage, we se-
quenced complete genomes of MHV p30.1 and MHV p30.2. Both lineages passaged in
the presence NHC had accumulated over 100 consensus mutations distributed across
the genomes (Fig. 6D and E; see Table S1 in the supplemental material). In comparison,
a previous study reported that WT MHV accumulated only 23 total mutations after 250
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FIG 4 NHC treatment drives an increase in low-frequency G:A and C:U transition mutations in WT MHV during a single infection. (A to C) Distribution and
frequencies of variants across the genome detected by NGS after vehicle treatment (A), 2 uM NHC treatment (B), or 4 uM NHC treatment (C). The log,, depth
of coverage at each genomic position is depicted by the lines; the frequencies of individual mutations spread across the genome are represented by the dots.
(D to F) Numbers of mutations in WT MHV after infection in the presence of vehicle (D), 2 uM NHC (E), or 4 uM NHC (F) presented by type. Transition mutations
are shown in gray, and transversion mutations are shown in white. (G and H) Changes in relative proportions of each mutation type after treatment with 2 uM
NHC (G) or 4 uM NHC (H) compared to vehicle control. The relative proportions of G:A and C:U transitions increased with increasing concentrations of NHC
treatment and are indicated by green shading.

passages in the absence of drug (38). Further analysis of the p30 MHV mutational
profile demonstrated that slightly more of the total mutations in both lineages were
synonymous changes that did not result in an amino acid change as opposed to
nonsynonymous changes, which did alter the amino acid sequence (Fig. 6F; see
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FIG 5 Sensitivity of ExoN(—) MHV to inhibition by NHC. (A) Changes in viral titers for WT MHV and ExoN(—) MHV
relative to vehicle control after treatment with NHC. ExoN(—) MHV is more sensitive to NHC than WT MHV. The data
represent the results of 3 independent experiments, each with 3 replicates. The error bars represent SEM. Statistical
significance compared to WT MHV was determined by a Wilcoxon test. **, P < 0.01. (B) Changes in viral titer data
from panel A represented as a percentage of that in vehicle control. WT, EC,, = 1.59 uM; ExoN(—), ECo, = 0.72 uM.
ExoN(—) MHV is approximately 2-fold more sensitive to NHC than WT MHV.
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Table S1). Additionally, the vast majority of mutations in both lineages were transition
mutations resulting in a purine-to-purine or pyrimidine-to-pyrimidine change (Fig. 6G).
Both lineages contained only two transversion mutations resulting in a purine-to-
pyrimidine or pyrimidine-to-purine change. Though all possible transition mutation
types were detected in both viral-lineage populations, the majority in both passage
lineages were G:A transitions (Fig. 6H), which is consistent with the MHV NGS data (Fig.
4). To determine if the mutational profile at p30 was consistent with an earlier passage,
we analyzed the whole genomes of both lineages 1 and 2 at p19. Both lineages
demonstrated fewer mutations at p19 than at p30, but the profiles of synonymous
versus nonsynonymous changes and the transition mutations were similar (see Fig. S1
and Table S2 in the supplemental material).

To determine whether the lack of robust resistance to NHC was broadly applicable
across B-CoVs, we assessed the capacity of MERS-CoV to evolve resistance to NHC. As
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FIG 7 Resistance and mutational profiles of MERS-CoV after 30 passages in the presence of NHC. (A) Changes in viral titers relative to vehicle controls after
treatment with NHC for WT MERS-CoV passaged 30 times in the absence of drug, MERS-CoV p30.1, and MERS-CoV p30.2 relative to vehicle controls after
treatment with NHC. Both MERS-CoV p30.1 and p30.2 were less sensitive to NHC than WT MERS-CoV. The data represent the results of 2 independent
experiments, each with 3 replicates. The error bars represent SEM. (B) Changes in viral titer data from panel A represented as percentages of that of vehicle
control. WT MERS-CoV, EC,, = 1.31 uM; MERS-CoV p30.1, ECy, = 3.04 uM; MERS-CoV p30.2, ECy, = 2.12 uM. (C) Replication kinetics of NHC passage viruses.
WT MERS-CoV, MERS-CoV p30.1, and MERS-CoV p30.2 replicated with similar kinetics and reached similar peak titers. The data represent the results of 2
independent experiments, each with 3 replicates. The error bars represent SEM. (D) MERS-CoV p30.1 accumulated 27 total mutations across the genome. Of
these mutations, 14 were synonymous and 13 were nonsynonymous. (E) MERS-CoV p30.2 accumulated 41 total mutations. Of these mutations, 17 were
synonymous and 24 were nonsynonymous. (F) Both MERS-CoV p30.1 and p30.2 accumulated similar numbers of nonsynonymous and synonymous changes
during passage. (G) MERS-CoV p30.1 and p30.2 acquired predominantly transitions. (H) Types of transition mutations present in each lineage across passage.
MERS-CoV p30.1 acquired more G:A transitions, whereas MERS-CoV p30.2 acquired similar numbers of each transition type.

with MHV, we passaged two lineages of MERS-CoV 30 times in the presence of
increasing concentrations of NHC and tested the sensitivities of the lineages to inhi-
bition by NHC. Compared to WT MERS-CoV passaged in the absence of drug, both
MERS-CoV NHC p30.1 and p30.2 exhibited decreased sensitivity to NHC inhibition (Fig.
7A). This correlated with modestly increased EC,, values for the passage lineages (WT
MERS-CoV, ECoo = 1.31 uM; MERS-CoV p30.1, ECo, = 3.04 uM; MERS-CoV p30.2, ECoy =
2.12 uM) (Fig. 7B), corresponding to approximately 2-fold resistance. Similar to MHV, we
observed no substantial shift in the dose-response curve for MERS-CoV, indicating
minimal acquired resistance. NHC p30 viruses replicated similarly to WT p30 MERS-CoV
(Fig. 7C). We sequenced both lineages of the MERS-CoV p30 population and detected
27 consensus mutations in MERS-CoV NHC p30.1 (Fig. 7D; see Table S3 in the supple-
mental material) and 41 consensus mutations in MERS-CoV NHC p30.2 (Fig. 7E; see
Table S3) that were randomly distributed across the genome. Both MERS-CoV NHC
p30.1 and MERS-CoV NHC p30.2 accumulated nonsynonymous and synonymous mu-
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tations in roughly equal proportions (Fig. 7F). As in MHV, the mutations detected in
MERS-CoV p30 lineages were predominantly transition mutations (Fig. 7G). Further
analysis of these mutations revealed that the predominant type of transition was
lineage dependent. The majority of transition mutations in MERS-CoV NHC p30.1 were
G:A transitions, as was observed in both p30 MHV lineages, whereas MERS-CoV NHC
p30.2 contained similar numbers of each type (Fig. 7H). These results indicate that
MERS-CoV can achieve low-level resistance to NHC and that development of resistance
is associated with the accumulation of multiple transition mutations. Together, our data
suggest NHC acts as a mutagen and that it poses a high genetic barrier to resistance
for B-CoVs.

DISCUSSION

In this study, we demonstrate that NHC potently inhibits the divergent B-CoVs MHV
and MERS-CoV. Our data are consistent with a virus-mutagenic mechanism of action, as
evidenced by a decrease in specific infectivity and an increase in G:A and C:U transition
mutations present at low frequencies across the genome after treatment with NHC. We
also demonstrate that robust resistance to NHC is difficult to achieve in both MHV and
MERS-CoV. Both WT MHV and ExoN(—) MHYV are sensitive to NHC inhibition, suggesting
that NHC is able to overcome ExoN-mediated proofreading to inhibit WT CoVs and that
it interacts with CoVs differently than other previously tested nucleoside analogues.

Utility of the broad-spectrum antiviral NHC as a pan-CoV therapeutic. Early
work with NHC focused on the mutagenic effects of the compound in multiple bacterial
systems (39, 41, 42). More recently, the antiviral properties of the compound have been
reported for multiple RNA viruses, including chikungunya virus, Venezuelan equine
encephalitis virus, respiratory syncytial virus, hepatitis C virus, norovirus, influenza A
and B viruses, and Ebola virus (31-36). NHC has also been shown to potently inhibit
SARS-CoV and HCoV-NL63 (43, 44), suggesting potential utility in treating CoV infec-
tions (17). Based on previous studies, NHC appears to primarily inhibit viral replication
by mutagenesis (31, 34). Serial passaging in the presence of NHC led to low-level
resistance for VEEV, but no detectable resistance for RSV, IAV, or bovine viral diarrhea
virus, indicating a high barrier to resistance (31, 34, 36). Consistent with the previous
studies, we demonstrated that NHC is mutagenic in CoVs and that serial passaging
yields low-level, approximately 2-fold resistance. Low-level resistance has also been
observed for remdesivir, another nucleoside analogue that potently inhibits CoVs.
Approximately 6-fold resistance to remdesivir is conferred by two mutations in the CoV
RNA-dependent RNA polymerase (RdRp) (37). This study further expands the known
antiviral spectrum of NHC to include MHV and MERS-CoV, two genetically divergent
B-CoVs, and supports NHC development as a broad-spectrum CoV antiviral.

NHC inhibition may circumvent ExoN-mediated proofreading. NHC is the first
mutagenic nucleoside analogue demonstrated to potently inhibit proofreading-intact
CoVs. Previous studies have demonstrated that viruses lacking ExoN proofreading
activity [ExoN(—) viruses] are more sensitive to inhibition by nucleoside analogues,
especially RBV and 5-FU (26, 37, 38, 45). This increased sensitivity has been attributed
to the inability of ExoN(—) viruses to efficiently remove incorrect nucleosides (46).
However, we observed a minimal change in NHC sensitivity between WT MHV and
ExoN(—) MHV, especially by EC,,. This suggests that NHC interacts with the CoV
replicase differently than other previously tested nucleoside analogues. One explana-
tion is that NHC may evade removal by the proofreading ExoN. Studies investigating
nucleosides that inhibit DNA viruses have suggested an inability of the viral exonu-
clease to efficiently excise some nucleoside analogues (47, 48). Further, a previous study
suggested that the T4 DNA exonuclease activity was incapable of removing NHC (49).
While the SARS-CoV ExoN efficiently removes 3'-terminal mismatches regardless of
type (46, 50), the effect of NHC on this activity has not been investigated. Interestingly,
mismatches readily observed during single-nucleotide elongation by the SARS-CoV
polymerase in the absence of drugs correspond to mismatches that would lead to the
G:A and C:U transitions observed after NHC treatment (46). This suggests that the CoV
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polymerase could be naturally more prone to make these types of errors, which are
then magnified by NHC. This could lead to a scenario where ExoN cannot prevent
dipping below the error threshold, ultimately resulting in lethal mutagenesis and
similar inhibition of both WT MHV and ExoN(—) MHV (51).

Several nucleosides, including the mutagenic RBV, have multiple demonstrated
mechanisms other than direct incorporation into the genome (52, 53). Thus, another
explanation for the unique potency of NHC in the presence of an active proofreading
ExoN is that it may inhibit viral replication by additional mechanisms beyond mutagen-
esis. Indeed, previous reports have suggested that NHC may also interfere with the RNA
secondary structure or virion release to cause inhibition (31, 36). Further, exogenous C
or U in the presence of NHC could rescue viral replication in HCV, chikungunya virus,
RSV, and influenza A virus (32, 34, 36), indicating that NHC competes with exogenous
nucleosides at some stage prior to viral inhibition. These results raise the possibility that
NHC could inhibit a process that results in similar inhibition of these viruses by a
mechanism unrelated to ExoN. Thus, future studies will be important to investigate the
role of proofreading in NHC inhibition of CoVs to shed light on the intricacies of NHC
inhibition of the CoV replication complex.

NHC mutagenesis may hinder emergence of robust resistance to NHC. The de-
crease in specific infectivity, along with the accumulation of transitions across the CoV
genome, supports a mutagenic mechanism of action for NHC in CoVs. NHC resistance
in CoVs was modest and difficult to achieve, as we obtained approximately 2-fold
resistance after 30 passages. Resistance was associated with multiple mutations. Inter-
estingly, MERS-CoV accumulated fewer mutations over 30 passages than MHV. While
differences in viral mutation rates could be the driver of this difference, previous studies
have suggested that MHV does not have a higher mutation rate than MERS-CoV
(54-56). The differences in mutation accumulation between MHV and MERS-CoV may
be a product of different passage conditions. While MHV was passaged with a consis-
tent transfer volume, MERS-CoV passage volumes were adjusted over time to sustain
viral replication under escalating selection for drug resistance. The constant-volume
passaging conditions may have more severely bottlenecked MHV populations and fixed
more mutations in the genome than the variable-volume passaging conditions applied
to MERS-CoV (57). Alternatively, this difference could also reflect a difference in
mutational robustness of the MHV and MERS-CoV genomes, though this proposition
needs to be investigated further (58, 59). While a portion of the mutations that
accumulated during passage likely contribute to NHC resistance, mutations in proteins
dispensable for viral replication in cell culture, such as ns2 and nsp2, may be merely
tolerated because of their limited effect on viral fitness in the context of our passage
conditions (60-62). Few common mutations arose in both MHV and MERS-CoV passage
series (see Tables S1 to S3), suggesting that multiple pathways to low-level NHC
resistance exist in CoVs. Interestingly, for both MHV and MERS-CoV, the p30 lineage that
demonstrated a greater change in sensitivity to NHC was the lineage that had fewer
overall mutations (Fig. 6 and 7). Both MHV passage lineages replicated less well than
WT MHYV, suggesting that the accumulation of mutations during passage may nega-
tively impact viral fitness and the ability of MHV to evolve robust resistance to NHC.
Further, the MHV lineage that did not result in changed sensitivity to NHC by p30 (MHV
p30.1) had fewer mutations present at consensus by p19 than the other lineage (see
Fig. S1). Thus, it is possible that the accumulation of deleterious mutations counteracts
the potential benefits of resistance mutations (63). If this is the case, mutations
promoting NHC resistance would need to arise early during passage to help mitigate
the accumulation of excess deleterious mutations. Alternatively, the inability to evade
inhibition by NHC may lead to the accumulation of a greater number of NHC-associated
transitions and ultimately a higher mutational burden that may impact viral fitness (64,
65). Together, our results support the hypothesis that establishment of resistance to
NHC in CoVs requires a delicate balance of resistance-promoting mutations, viral
fitness, and accumulation of deleterious mutations. Thus, defining the roles of individ-
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ual NHC resistance-associated mutations will be an important goal for future studies.
Overall, our results support further development of NHC as a broad-spectrum antiviral
for treatment of CoV infections and contribute new insights into important aspects of
CoV replication.

MATERIALS AND METHODS

Cell culture. Murine astrocytoma delayed brain tumor (DBT) (66) and Vero (ATCC CCL-81) cells were
maintained at 37°C in Dulbecco’s modified Eagle medium (DMEM) (Gibco) supplemented with 10% fetal
bovine serum (FBS) (Invitrogen), 1% penicillin and streptomycin (Gibco), and 0.1% amphotericin B
(Corning).

Viruses. All work with MHV was performed using the recombinant WT strain MHV-A59 (GenBank
accession number AY910861 [67]). MERS-CoV stocks were generated from cDNA clones (GenBank
accession number JX869059 [68]).

Compounds and cell viability studies. NHC was synthesized at the Emory Institute for Drug
Development and prepared as a 20 mM stock solution in DMSO. Cell viability was assessed using
CellTiter-Glo (Promega) in 96-well plates according to the manufacturer’s instructions. DBT and Vero cells
were incubated with the indicated concentrations of compound at 37°C for 24 h (DBT) or 48 h (Vero). Cell
viability was determined using a Veritas Microplate luminometer (Promega) or GloMax (Promega), with
values normalized to those of vehicle-treated cells.

Nucleoside analogue sensitivity studies and generation of EC,, curves. Subconfluent monolay-
ers of DBT cells were infected with MHV at an MOI of 0.01 PFU per cell for 1 h at 37°C. The inoculum was
removed and replaced with medium containing the indicated compound concentration. Cell superna-
tants were harvested 24 h postinfection. Titers were determined by plaque assay as described previously
(69). Subconfluent monolayers of Vero cells were infected at an MOI of 0.01 PFU/cell of MERS-CoV. After
virus adsorption for 30 min at 37°C, the inoculum was removed. The cells were washed with PBS and
incubated with medium containing the indicated concentrations of NHC or DMSO (vehicle control). After
48 h, the supernatant was collected and titers were determined by plaque assay as described previously
(70). EC5, and EC,, values and curves were generated using the nonlinear regression curve fit in
GraphPad (La Jolla, CA) Prism software.

Time of drug addition assay. Subconfluent monolayers of DBT cells were treated with medium
containing DMSO or 16 uM NHC (~100 times the EC;,) at the indicated times pre- or postinfection. The
cells were infected with WT MHV at an MOI of 1 PFU/cell for 1 h at 37°C. The virus inoculum was removed
and replaced with fresh medium. Culture supernatant was harvested 12 h postinfection, and the viral titer
was determined by plaque assay.

Quantification of viral genomic RNA. Subconfluent DBT cells were infected with WT MHV at an MOI
of 0.01 PFU/cell. The inoculum was removed after 1 h of incubation at 37°C, and medium containing the
indicated concentration of NHC was added. Total RNA from cells and supernatant RNA were harvested
using TRIzol reagent (Invitrogen) after 20 h. Both total RNA and supernatant RNA were extracted by
phase separation. Total RNA was purified by ethanol precipitation, and supernatant RNA was purified
using a PureLink RNA minikit (Invitrogen) according to the manufacturer’s protocol. Total RNA was
reverse transcribed using SuperScript Ill (Invitrogen) to generate ¢cDNA, which was quantified by
quantitative PCR (qPCR) as previously described (26). Data are presented as 2-22¢7, where AAC; denotes
the change in the threshold cycle for the viral target (nsp10) normalized to the control (glyceraldehyde-
3-phosphate dehydrogenase [GAPDH]) before and after drug treatment. The supernatant RNA was
quantified using one-step quantitative reverse transcriptase PCR (qRT-PCR) as previously described (45).
The data are presented as the fold change in genome RNA copies normalized to vehicle control.

Determination of specific infectivity. Subconfluent DBT cells were infected with WT MHV at an MOI
of 0.01 PFU/cell. The inoculum was removed after 1 h of incubation at 37°C, and medium containing the
indicated concentration of NHC was added. Supernatant RNA was harvested using the TRIzol reagent
(Invitrogen) after 20 h, followed by extraction and quantification as described above. The viral titer was
determined by plaque assay. The specific infectivity was calculated as the number of PFU divided by the
supernatant genome RNA copy number. This ratio was then normalized to that of the vehicle control.

NGS studies. Subconfluent DBT cells were infected with WT MHV at an MOI of 0.01 PFU/cell and
treated with the indicated concentrations of NHC. The supernatant was collected 24 h postinfection.
Purified viral RNA was submitted to Genewiz (South Plainfield, NJ) for library preparation and sequencing.
Briefly, after quality controls, viral RNAs were randomly fragmented using heat. Libraries were prepared
and sequenced on the lllumina HiSeq platform.

Genewiz performed base calling and read demultiplexing. Trimmomatic was used to trim adapter
contaminants and reads shorter than 36 bp and to filter low-quality bases (Q score < 30) (71). The
paired-end fastq reads were then aligned with the MHV genome using Bowtie2 to generate a SAM file
(72). SAMtools was used to process the resultant alignment file and to calculate the coverage depth at
each nucleotide, generating a sorted and indexed BAM file. LoFreq was used to call substitution variants,
including low-frequency variants, and to generate a variant file (73). The Bash shell and Excel were used
to further process and analyze the resultant vcf file. A frequency of 0.001 was used as a cutoff for variants,
consistent with previous reports (74). Absolute numbers of mutations are reported for each NHC
treatment. The percentage of the total mutations for each specific mutation type was calculated using
these numbers. The difference in percentage for each class of mutation after treatment compared with
vehicle control is referred to as the relative proportion of these mutations.
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MHYV population passage in the presence of NHC. WT MHV was passaged in triplicate in increasing
concentrations of NHC from 1 uM to a maximum of 5 uM. Infection was initiated for passage 1 at an MOI
of 0.1 PFU/cell. Viral supernatants were harvested from each viral lineage and frozen when the cell
monolayer demonstrated 80% cytopathic effect (CPE) or after 24 h. A constant volume of 16 ul was used
to initiate subsequent passages. All three lineages were maintained until passage 16, when lineage 3
demonstrated no visible CPE upon multiple attempts at varying concentrations. Lineages 1 and 2 were
maintained until passage 30. After each passage, total RNA was harvested from infected cell monolayers
using the TRIzol reagent. Viral RNA was extracted from passage 19 and passage 30 samples and reverse
transcribed using SuperScript I, followed by generation of 12 PCR amplicons to cover the whole
genome. Dideoxy amplicon sequencing was performed by Genewiz and analyzed to identify mutations
present at greater than 50% of the total using MacVector. Viral mutation maps depicting the identified
mutations were generated using MacVector.

MERS-CoV population passage in the presence of NHC. Three parallel independent passage series
of WT MERS-CoV were performed on Vero cells in the presence of gradually increasing concentrations of
NHC up to a maximum concentration of 6.5 uM to select for drug-resistant mutant viruses. Virus
adaptation to NHC-supplemented complete culture medium was assessed by monitoring the progres-
sion of characteristic MERS-CoV CPE. The volumes of transferred culture supernatants were adjusted
empirically to balance continuous selective pressure against culture extinction. Each of triplicate lineages
in the MERS-CoV passage experiment was sustained through passage 30. However, the third lineage was
severely impaired in replication and was excluded from further analysis. Total infected-cell MERS-CoV
RNA purified from monolayers infected with terminal-passage (p30) culture supernatant was used to
generate RT-PCR products for consensus Sanger sequencing of the complete viral genome (Genewiz).
Changes in passaged virus nucleotide and deduced amino acid sequences were identified via alignment
with the WT parental virus genomic sequence using MacVector.

Virus replication assays. Subconfluent monolayers of DBT (MHV) or Vero (MERS-CoV) cells were
infected with WT or NHC-passaged viral populations at an MOI of 0.01 PFU/cell for 1 h (MHV) or 30 min
(MERS-CoV). Inocula were removed, and the cells were washed with PBS before addition of prewarmed
medium. Supernatants were harvested at the indicated times postinfection, and titers were determined
by plaque assay.

Statistics. Statistical tests were performed using GraphPad (La Jolla, CA) Prism 7 software as
described in the respective figure legends.
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