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Abstract: For this invited manuscript, an in-plane single-quartz-enhanced dual spectroscopy (IP-
SQEDS)-based trace gas sensor was demonstrated for the first time. A single quartz tuning fork (QTF)
was employed to combine in-plane quartz-enhanced photoacoustic spectroscopy (IP-QEPAS) with
light-induced thermoelastic spectroscopy (LITES) techniques. Water vapor (H2O) was chosen as the
target gas. Compared to traditional QEPAS, IP-SQEDS not only allowed for simple structures, but
also obtained nearly three times signal amplitude enhancement.

Keywords: quartz tuning fork (QTF); quartz-enhanced photoacoustic spectroscopy (QEPAS); light-
induced thermal elastic spectroscopy (LITES); trace gas detection

1. Introduction

Trace gas detection has numerous significant applications in various fields, such
as biomedical analyses [1,2], combustion diagnosis [3–5], atmospheric environmental
monitoring [6–9], as well as petroleum exploration [10,11]. Gas sensing technology based on
laser absorption spectroscopy (LAS) has a number of advantages, including high sensitivity,
rapid response time, high selectivity, et al. [12]. One of the most commonly used techniques
of LAS for gas sensing is photoacoustic spectroscopy (PAS). In PAS, gas samples absorb
the modulated or pulsed laser and then release heat outward by non-radiative transition,
leading to local thermal expansion and generating acoustic waves. The intensity of external
acoustic waves is related to the concentration of gas and can be investigated using a
sensitive microphone. Nevertheless, the low resonance frequency and low Q factor (<100)
of microphones cause poor signal-to-noise ratios (SNRs) for the sensor system. In addition,
the microphone-based PAS also possesses the larger size of photoacoustic cells.

An effective improvement method for PAS techniques was firstly put forward in 2002
by taking the place of microphones with a piezoelectric quartz tuning fork (QTF) [13], in
which the QTF serves as an acoustic wave detector, whose principle is shown in Figure 1a.
This technique is called quartz-enhanced photoacoustic spectroscopy (QEPAS). QEPAS
offers a new method for trace gas detection, which provides the merits of high Q-factor
detection of QTF (~100,000 in a vacuum and ~10,000 under standard atmosphere pressure),
strong anti-noise ability, compact volume and inexpensive price. Hence, various QEPAS-
based sensors have been developed in recent years for meeting detection requirements of
different trace gases [14–19].

In-plane quartz-enhanced photoacoustic spectroscopy (IP-QEPAS) was proposed by
Ma et al. in 2020 [20]. Unlike traditional QEPAS, IP-QEPAS varies the incident position of
laser beams. The direction of the laser beam is altered from perpendicular to the QTF plane
to parallel to it. Therefore, it improves the effective interaction path length between target
gas molecules and excitation sources. Compared to traditional QEPAS, IP-QEPAS had a
signal enhancement of more than 40 times when a custom QTF was used [20].
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target gas molecules and excitation sources. Compared to traditional QEPAS, IP-QEPAS 
had a signal enhancement of more than 40 times when a custom QTF was used [20]. 

In 2018, a new technique of light-induced thermoelastic spectroscopy (LITES) was 
firstly reported [21]. In LITES, a QTF is employed to detect the absorption variation of 
light intensity [22–26]. For LITES, whose principle is shown in Figure 1b, when the quartz 
at the surface of the QTF is irradiated by an intensity modulated laser, the quartz crystal 
absorbs the laser and converts it into photothermal energy. As a result of this characteristic 
of light-thermo-elastic conversion, the QTF will undergo elastic deformation, which re-
sults in the mechanical vibration of the QTF and the generation of piezoelectric signals 
[27,28]. Moreover, the oscillation amplitude and the obtained piezoelectric signal will 
reach a maximum when the intensity-modulated frequency of light is equal to the reso-
nant frequency of one of the flexural modes of the QTF. Compared to QEPAS, LITES can 
be a non-contact measurement technique [29–31]. Therefore, it can be used in some harsh 
environments, such as combustion fields. Gold and silver are generally applied as a coat-
ing on QTFs to collect the electrical charges generated by them; they surely provide excel-
lent conductivity as well as strong reflectivity to light. In the traditional LITES technique, 
the laser is usually first illuminated on the QTF coating, and then transmitted to the 
quartz, which results in the low variation of the amount of light absorption by the quartz 
and further leads to the QTF’s low sensitivity [32,33]. It is worth noting that the standard, 
commercially available QTF is usually coated with silver only on the surface, and it is not 
coated in the middle of the two prongs [15,21]. 

In this invited article, an in-plane single-quartz-enhanced dual spectroscopy (IP-
SQEDS) gas detection technique is reported for the first time, in which the laser beam is 
made parallel to the QTF plane and finally incident to the uncoated quartz at the bottom 
of the QTF, so that QEPAS and LITES signals are simultaneously excited in a single QTF. 
An in-plane configuration was adopted to take full advantage of SQEDS. Water vapor 
(H2O) was adopted as the analyte to evaluate the IP-SQEDS-based sensor performance. 

 
Figure 1. Functional block diagram: (a) QEPAS; (b) LITES. 

  

Figure 1. Functional block diagram: (a) QEPAS; (b) LITES.

In 2018, a new technique of light-induced thermoelastic spectroscopy (LITES) was
firstly reported [21]. In LITES, a QTF is employed to detect the absorption variation
of light intensity [22–26]. For LITES, whose principle is shown in Figure 1b, when the
quartz at the surface of the QTF is irradiated by an intensity modulated laser, the quartz
crystal absorbs the laser and converts it into photothermal energy. As a result of this
characteristic of light-thermo-elastic conversion, the QTF will undergo elastic deformation,
which results in the mechanical vibration of the QTF and the generation of piezoelectric
signals [27,28]. Moreover, the oscillation amplitude and the obtained piezoelectric signal
will reach a maximum when the intensity-modulated frequency of light is equal to the
resonant frequency of one of the flexural modes of the QTF. Compared to QEPAS, LITES can
be a non-contact measurement technique [29–31]. Therefore, it can be used in some harsh
environments, such as combustion fields. Gold and silver are generally applied as a coating
on QTFs to collect the electrical charges generated by them; they surely provide excellent
conductivity as well as strong reflectivity to light. In the traditional LITES technique, the
laser is usually first illuminated on the QTF coating, and then transmitted to the quartz,
which results in the low variation of the amount of light absorption by the quartz and
further leads to the QTF’s low sensitivity [32,33]. It is worth noting that the standard,
commercially available QTF is usually coated with silver only on the surface, and it is not
coated in the middle of the two prongs [15,21].

In this invited article, an in-plane single-quartz-enhanced dual spectroscopy (IP-
SQEDS) gas detection technique is reported for the first time, in which the laser beam is
made parallel to the QTF plane and finally incident to the uncoated quartz at the bottom of
the QTF, so that QEPAS and LITES signals are simultaneously excited in a single QTF. An
in-plane configuration was adopted to take full advantage of SQEDS. Water vapor (H2O)
was adopted as the analyte to evaluate the IP-SQEDS-based sensor performance.

2. Experimental Section

The experimental setup of the IP-SQEDS sensor is displayed in Figure 2. A standard,
commercially available QTF with a length of 6 mm, a width of 0.6 mm, a thickness of
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0.36 mm, and a gap between the two prongs of 0.3 mm was adopted. The laser beam
output from the pigtail of a CW-DFB diode laser was collimated by a fiber collimator (FC).
Subsequently, as shown in Figure 2a, in order to improve the effective interaction path
length between target gas molecules in the QEPAS technique and excitation sources and
enhanced light absorption of QTFs in the LITES technique, the laser beam was passed
through the space between the two prongs of the QTF and eventually made incident
to the uncoated quartz at the bottom of the QTF. The generated acoustic wave and the
periodically absorbed laser energy produced QEPAS and LITES signals, respectively. In
order to confirm that the total signal was produced by processes of both QEPAS and LITES,
the experimental setup containing only IP-QEPAS was designed by replacing Figure 2a
with Figure 2b. A tin foil was placed near the bottom of the QTF and used to only eliminate
the LITES signal. In contrast, in the traditional QEPAS sensor, as shown in Figure 2c, the
laser beam was collimated by a fiber collimator (FC), and then focused and passed through
the optimal location of 0.7 mm below the top of the two prongs of the QTF [18] to obtain
the strongest response.
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Figure 2. Schematic diagram of experimental design: (a) IP-SQEDS; (b) IP-QEPAS; (c) traditional
QEPAS.

H2O naturally exists in the atmosphere and is non-toxic and harmless [34]. Therefore,
at room temperature, H2O with a volume concentration of 1.73% naturally existing in the
air was adopted as the analyte to evaluate the performance of this IP-SQEDS-based sensor.
According to the HITRAN-2016 database [35], the line strength of H2O and CO2 located
between 1335 nm and 1385 nm was simulated and is shown in Figure 3. It can be seen that
the absorption line of H2O situated at 1368.60 nm (7306.74 cm−1) has a strong line strength
while avoiding the interference from CO2.

A continuous wave (CW), distributed feedback (DFB), fiber-coupled diode laser emit-
ting at 1368.60 nm was applied as the excitation source. The wavenumber and output
power as a function of the injection current are shown in Figure 4a,b, respectively. The
working temperature and injection current of this CW-DFB laser was set to 26 ◦C and 70 mA,
respectively, to ensure that its emission wavelength matched the absorption wavenumber
at 7306.74 cm−1 of H2O. The emitted optical power was ∼19.72 mW.
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wavenumber as a function of injection current at four different temperatures; (b) optical output power
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Wavelength modulation spectroscopy (WMS) was performed to modulate the output
wavelength of the diode laser, and second-harmonic (2f ) detection technology was utilized
to demodulate the produced signals from the QTF. The above functions were implemented
by employing a Zurich lock-in amplifier. On the one hand, the lock-in amplifier generated
a saw-tooth signal and a sine signal. The signal obtained by superposition of the two
signals was transmitted onto the laser controller to modulate the output wavelength of
the diode laser. On the other hand, the lock-in amplifier extracted the target signal with a
particular frequency. These methods effectively maximized the amplitude of the 2f signal
and minimized the low-frequency and irrelevant noise of the experimental system.

3. Results and Discussion

Firstly, the properties of the QTF were determined. The resonance curve of the QTF
was measured and is shown in Figure 5. The inherent resonant frequency f 0 of the QTF
was measured as 30,702.4 Hz by using an optical excitation approach, while full width
∆f was 2.49 Hz at half-maximum. Based on the formula, Q = f 0/∆f, the quality factor
(Q-factor) was determined as 12,330. The frequency of the sine signal provided by the
lock-in amplifier was set as f 0/2 = 15,351.2 Hz to obtain the maximum 2f signal amplitude.
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Lorentz function.

Figure 6 reflects the relationship between laser wavelength modulation current and
IP-SQEDS signal amplitude. As the modulation current depth increased, the IP-SQEDS
signal amplitude rose at first, but then tended to flatten, and finally declined slowly. The
maximum signal was obtained when the modulation current depth was 12.66 mA. As a
result, this value was considered as the optimal modulation current and continued to be
applied in the subsequent research.

The 2f signals for IP-SQEDS, IP-QEPAS and traditional QEPAS are shown in Figure 7;
the experimental configurations of Figure 2a–c were respectively adopted and the time
constant of the lock-in amplifier was set as 20 ms. The maximum 2f signal amplitude of
IP-SQEDS and traditional QEPAS were measured as 77.11 and 27.24 µV, respectively. The
noise was determined when the laser wavelength was far away from the H2O absorption
line. The 1σ noise levels of traditional QEPAS and IP-SQEDS were almost the same and
measured as 63.83 and 64.87 nV, and their SNRs were 426.76 and 1188.69, respectively.
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Figure 7. 2f signals of IP-SQEDS, IP-QEPAS and traditional QEPAS.

In order to verify that the signal level of 77.11 µV contained both IP-QEPAS and LITES,
a slim tin foil was utilized as the obstacle and placed near the bottom of the QTF to maintain
the IP-QEPAS signal and eliminate the LITES signal. Experimental results are shown in
Figure 7. The maximum IP-QEPAS 2f signal amplitude was measured as 52.95 µV. It is
proven that the signal amplitude of 77.11 µV was generated from IP-QEPAS and LITES
together. Compared to traditional QEPAS, IP-SQEDS had a signal enhancement of nearly
three times. It can be calculated that the minimum detection limit (MDL) of the H2O
IP-SQEDS sensor was ~14.55 ppm.

4. Conclusions

In summary, this paper proposed a method of IP-SQEDS for the first time, which
combines IP-QEPAS and LITES by using a single QTF. H2O with a volume concentration
of 1.73% was selected as the target gas and the absorption line located at 1368.60 nm
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(7306.74 cm−1) was chosen. A standard, commercially available QTF with a resonant
frequency of 30,702.4 Hz and a Q factor of 12,330 was adopted in the experiments. The
maximum 2f signal amplitude of IP-SQEDS was measured as 77.11 µV, while that of the
traditional QEPAS was 27.24 µV. In addition, a slim tin foil was chosen as an obstacle
and placed near the bottom of the QTF for eliminating only the LITES signal. It is proven
that the signal of 77.11 µV contained both IP-QEPAS and LITES. Compared to traditional
QEPAS, this IP-SQEDS sensor possessed a simply constructed and compact structure and
resulted in a signal enhancement of nearly three times. In the future, on the premise of
maintaining the U-shaped structure of QTFs, further improvements in the performance of
IP-SQEDS can be expected by optimizing the structure of the QTF, such as the length of the
two prongs and the size or form of uncoated quartz between them.
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and agreed to the published version of the manuscript.
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Abbreviations

LAS Laser Absorption Spectroscopy
PAS Photoacoustic Spectroscopy
QTF Quartz Tuning Fork
QEPAS Quartz-Enhanced Photoacoustic Spectroscopy
IP-QEPAS In-plane Quartz-Enhanced Photoacoustic Spectroscopy
LITES Light-induced Thermoelastic Spectroscopy
IP-SQEDS In-plane Single-Quartz-Enhanced Dual Spectroscopy
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