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KS-CMI: A circRNA-miRNA interaction prediction
method based on the signed graph
neural network and denoising autoencoder

Xin-Fei Wang,1 Chang-Qing Yu,1,6,* Zhu-Hong You,2,* Yan Qiao,3 Zheng-Wei Li,4 Wen-Zhun Huang,1

Ji-Ren Zhou,2 and Hai-Yan Jin5

SUMMARY

Circular RNA (circRNA) plays an important role in the diagnosis, treatment, and
prognosis of human diseases. The discovery of potential circRNA-miRNA interac-
tions (CMI) is of guiding significance for subsequent biological experiments.
Limited by the small amount of experimentally supported data and high random-
ness, existing models are difficult to accomplish the CMI prediction task based on
real cases. In this paper, we propose KS-CMI, a novel method for effectively ac-
complishing CMI prediction in real cases. KS-CMI enriches the ‘behavior relation-
ships’ of molecules by constructing circRNA-miRNA-cancer (CMCI) networks and
extracts the behavior relationship attribute of molecules based on balance the-
ory. Next, the denoising autoencoder (DAE) is used to enhance the feature repre-
sentation of molecules. Finally, the CatBoost classifier was used for prediction.
KS-CMI achieved the most reliable prediction results in real cases and achieved
competitive performance in all datasets in the CMI prediction.

INTRODUCTION

Circular RNA (circRNA) is a non-coding RNA (ncRNA) that possesses a closed-loop structure and exhibits a

high degree of conservation and stability across organisms.1 circRNA functions as the miRNA sponge and

has been found to participate in a wide range of cellular processes, including cell proliferation, metastasis,

and differentiation.2 The potential for circRNA to function as a marker for cancer diagnosis and treatment is

widely recognized and may offer new insights into the diagnosis and treatment of complex diseases.

CircRNA was first discovered in 1976,3 however, due to limited sequencing technologies and insufficient

attention, only a small fraction of circRNA was unexpectedly discovered during the following three de-

cades, which was generally regarded as background noise resulting from abnormal RNA splicing. In

2010, with the advancement of high-throughput technology and professional computing pipelines,

circRNA regained its status as an important subject of biological research. CircRNAs have higher stability

and a longer half-life than linear RNAs due to their unique cyclic closure structure.4

Recent studies have demonstrated that circRNA, as the miRNA sponge, interacts with RNA-binding protein-

driven and translational proteins, thereby playing a significant regulatory role in tumor genesis and develop-

ment. At the same time, the detectability of circRNA in human tissues, especially in blood, urine, saliva, and

other liquid biopsy samples, makes circRNA a promising diagnostic and therapeutic marker for complex dis-

eases. For example, hsa_circ_0000190 and has_circRNA_102958 have been identified as potential markers

for gastric cancer diagnosis,5 hsa_circ_0001874 andhsa_circ_0001971 potential biomarkers for oral cancer diag-

nosis,6 and prostate cancer can bediagnosed by testing circPDLIM5, circSCAF8, circPLXDC2, circSCAMP1, and

circCCNT2 in urine,7 etc. These studies demonstrate that circRNAs can provide new insights into the diagnosis

and treatment of complex human diseases. As the important role of circRNA is revealed, it is necessary to

explore more CMIs for circRNA-related research. Due to the limitations of labor, materials, and time, it is

impractical to conduct biological experiments on all known data. With the development of computer technol-

ogy, it is possible to provide the preselection range for relevant wet experiments by using calculationmethods.

The computationalmodel of ncRNA-related research has been developed for nearly 10 years, resulting inmany

excellent models.8 For example, based on the assumption of functional similarity, Chen et al. integrated mul-

tiple biological networks and predicted the potential miRNA-disease associations (MDA) by calculating the
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within and between scores.9 You et al. integrated the miRNA-disease association, miRNA functional similarity,

and disease semantic similarity into a heterogeneous graph, and used the path-based depth-first search algo-

rithm to predict the MDA.10 Lei et al. presented a review on ncRNA-disease associations, which introduced

miRNA, lncRNA, circRNA, and calculation methods for their associations with diseases in detail.11 Zhang

et al. used the association information of circRNA, miRNA, and disease to construct a weighted nuclear

normminimizationmodel, and proposed the PDC-PGWNNMmethod to predict potential circRNA-disease as-

sociations.12 Wang et al. predicted circRNA-disease association by extracting multi-source information from

biological information and using the convolution neural network to extract hidden features.13 Guo et al. pro-

posed the circ2CBA method, which can predict circRNA-RBP binding sites using only RNA sequences.14

Combining natural language processing and bidirectional LSTM to extract features, Wang et al. proposed a

framework CRPB sites that can effectively predict the binding sites of RBP on circRNA.15 Yang et al. combined

accelerated attributed network embedding to extract network features, and combined stacked autoencoder to

obtain low-dimensional features and predict potential circRNA-disease associations.16

The development of circRNA research has produced a large number of data stored in different databases, such

as the CircR2Disease v2.0 database,17 circBank database,18 CircR2Disease database,19 and circBase data-

base.20 These data provide conditions for the use of computational methods to pre-select CMI with high prob-

ability. At present, somemethods have been tried in the field ofCMI prediction,most ofwhich are basedon two

commonly used datasets. Based on the data of the circBank database,21 Guo et al. proposed WSCD predicts

potential CMI by combining natural language processing and graph embedding algorithms to obtain an AUC

of 0.8898.22 Qian et al. proposed CMASG, by extracting linear and nonlinear features of molecules for CMI pre-

diction, and obtained 0.8804 AUC.23 He et al. proposed GCNCMI, which extracts molecular features by graph

convolutional neural network and obtained the AUC of 0.9320.24 Based on the CMI-9905 dataset, Wang et al.

proposed the KGDCMImodel, which uses neural networks for feature fusion andprediction of potential CMI by

extracting sequence features and behavioral features of molecules, and finally obtained an AUC of 0.9041.25 Yu

et al. proposed SGCNCMI, using a graph convolutional neural network with the contribution mechanism to

aggregate node information for prediction, and obtained 0.8942 AUC.26 Wang et al. proposed JSNDCMI, us-

ing the sparse network multi-structure extraction framework to predict potential CMI, and obtained an AUC of

0.9003.27 However, because the number of experimentally validated CMIs is too sparse, most of the data used

in these methods are the predictions using Miranda28 and TargetScan29 techniques. Although the data used

have high confidence levels and some of them have been confirmed by subsequent experiments, it alsomeans

Figure 1. The flowchart of KS-CMI
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that thesemodels cannot be applied in real cases. There are fewmodels for CMI prediction basedon real cases.

Basedon the experimental data in the circR2Cancer database,30 theAUCof theNECMA31model is only 0.4989,

which cannot complete effective prediction. The AUCof the IIMCCMA32model is 0.6702. Although someprog-

ress has been made, the prediction effect is still uncertain.

To our knowledge, the CMI prediction in the real cases mainly has the following difficulties: (1) The data

verified by experiments are scarce, and it is difficult to extract valuable information from the network built

of known data. (2) The data for experimental verificationmainly come from relevant literature andmaterials,

which rely on manual addition, so they are disordered and do not have attributes like RNA sequence and

others. (3) Even if valuable information about molecules can be obtained, in the training of small samples,

the model lacks stability and robustness.

To address the above issues, we propose a newCMI predictionmethod, KS-CMI, which combines the balance

theory in social relations and the noise reduction method in machine learning to predict the potential CMI. In

detail, we reconstruct the circRNA-miRNA-cancer interaction (CMCI) network by adding cancer as an interme-

diary molecule in the CMI network to enrich the social relations. Next, we extract the social attribute descrip-

tors and social relationship descriptors of molecules from the reconstructed CMCI network based on balance

theory. Then, we use the denoising autoencoder33 based on machine learning to increase the robustness of

the molecular features. Finally, the CatBoost classifier34 is used for training and prediction. KS-CMI achieved

the AUC of 0.8132 in the prediction of real cases. In the case studies based on circ-ABCC10 and circ-ITCH, 13

out of 15 pairs of CMIs were accurately predicted. The flowchart of KS-CMI is shown in Figure 1.

RESULTS

Evaluation criteria

In this work, we introduce the 5-fold cross-validation (5-fold CV) to test the model performance. In the 5-fold

CV, the data are divided into five parts on average, one of which is not repeated and is predicted each time,

and the other four parts are used as training data until the prediction score of all five parts is obtained. In addi-

tion, we have introduced several evaluation criteria, including accuracy (Acc.), precision (Prec.), and F1-score

Table 1. The result of the 5-fold CV in the CMI-753 dataset

Test set Acc Prec. F1-score AUC AUPR

1 0.7517 0.7517 0.7517 0.8288 0.8218

2 0.7442 0.7447 0.7441 0.8045 0.7800

3 0.7243 0.7251 0.7243 0.8109 0.8133

4 0.6977 0.6991 0.6975 0.7928 0.7502

5 0.7608 0.7610 0.7608 0.8289 0.8028

mean 0.7357 0.7363 0.7357 0.8132 0.7936

std G0.0225 G0.0201 G0.0205 G0.0141 G0.0259

Figure 2. AUC (a) and AUPR (b) of KS-CMI in the CMI-753 dataset
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(F1), to comprehensively evaluate the performance of the model, which are calculated using the following

formulas:

Acc: =
TP+TN

TP+TN+FP+FN
(Equation 1)

Pr ec: =
TP

TP+FP
(Equation 2)

F1 � score =
2prec3 recall

prec+recall
(Equation 3)

where TP (true positive) and TN (true negative) represent the correct number of positive and negative sam-

ples predicted by the KS-CMI, respectively. FP (false positive) and FN (false negative) represent the number

of positive and negative samples that the model predicts error. In addition, we plotted the receiver oper-

ating characteristic (ROC) curve and precision-recall (PR) curve of KS-CMI to clearly show the prediction

results.

Performance evaluation

In this section, we performed a 5-fold CV based on the CMI-753 dataset to evaluate the performance of the

KS-CMI, and the experimental results are objectively recorded in Table 1.

The data in Table 1 shows that the average value of KS-CMI based on the 5-fold CV in the CMI-753 dataset

is 73.57%, 73.63%, 73.57%, 81.32%, and 79.36% respectively. In addition, we plotted the ROC and the PR

curve of KS-CMI which is shown in Figure 2. These figures are automatically generated by the program

and are reliable criteria to measure the performance of the model.

The results in Figure 2 shows that the AUC of KS-CMI in five independent experiments are 82.88%, 80.45%,

81.09%, 79.28%, and 82.89% respectively, with an average of 81.32%; The AUPR of the five experiments are

82.18%, 78.00%, 81.33%, 75.02%, and 80.28% respectively, with an average AUPR of 79.36%. These results

prove that KS-CMI can effectively complete the prediction task based on the CMI-753 dataset, and is a reli-

able and high-precision prediction CMI model.

Table 2. The result of the 5-fold CV is based on the CMI-9905 dataset

Test set Acc Prec. F1-score AUC AUPR

1 0.8455 0.8479 0.8453 0.9188 0.9220

2 0.8342 0.8366 0.8339 0.9080 0.9115

3 0.8281 0.8310 0.8277 0.8998 0.9101

4 0.8387 0.8410 0.8385 0.9110 0.9196

5 0.8248 0.8265 0.8246 0.9054 0.9092

mean 0.8343 0.8366 0.8340 0.9086 0.9144

std G0.0067 G0.0068 G0.0068 G0.0063 G0.0053

Table 3. The result of the 5-fold CV is based on the CMI-9589 dataset

Test set Acc Prec. F1-score AUC AUPR

1 0.8329 0.8338 0.8328 0.9209 0.9241

2 0.8405 0.8411 0.8404 0.9223 0.9221

3 0.8491 0.8492 0.8490 0.9259 0.9280

4 0.8216 0.8222 0.8216 0.9076 0.9040

5 0.8310 0.8310 0.8310 0.9132 0.9125

mean 0.8350 0.8354 0.8349 0.9179 0.9181

std G0.0084 G0.0083 G0.0084 G0.0066 G0.0087
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Comparison of different datasets

KS-CMI innovatively combined with molecular social features to predict CMI and performed well in data-

sets with experimental support (CMI-753). CMI-9905 and CMI-9589 are two datasets commonly used in the

field of CMI prediction. At present, more than 90% of CMI prediction models use these data as benchmark

Table 4. Predicted results of KS-CMI with different modules

KS-A Acc Prec. F1-score AUC AUPR

1 0.7252 0.7252 0.7252 0.7990 0.7937

2 0.7409 0.7412 0.7407 0.7875 0.7561

3 0.7309 0.7311 0.7308 0.8272 0.8281

4 0.7375 0.7380 0.7374 0.7932 0.8018

5 0.7342 0.7349 0.7340 0.7992 0.7968

mean 0.7337 0.7340 0.7336 0.8012 0.7953

Std G0.0054 G0.0055 G0.0053 G0.0136 G0.0230

KS-B Acc Prec. F1-score AUC AUPR

1 0.7252 0.7252 0.7252 0.7884 0.7341

2 0.6977 0.6981 0.6975 0.7921 0.7884

3 0.7309 0.7317 0.7306 0.8089 0.8000

4 0.7508 0.7511 0.7507 0.8289 0.8208

5 0.7674 0.7679 0.7673 0.8381 0.8348

mean 0.7344 0.7348 0.7342 0.8112 0.7956

std G0.0236 G0.0237 G0.0237 G0.0196 G0.0347

KS-C Acc Prec. F1-score AUC AUPR

1 0.6325 0.6326 0.6323 0.6569 0.6641

2 0.6346 0.6349 0.6342 0.6595 0.6384

3 0.6013 0.6014 0.6013 0.6649 0.6616

4 0.6179 0.6184 0.6177 0.6608 0.6485

5 0.6179 0.6196 0.6169 0.6541 0.6547

mean 0.6208 0.6213 0.6204 0.6592 0.6534

std G0.0120 G0.0119 G0.0119 G0.0036 G0.0093

Figure 3. Predicted performance of KS-CMI with different modules
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data. To verify the competitiveness of KS-CMI in the field of CMI prediction, in this part, we conduct exper-

iments based on these two common datasets. The experimental results based on CMI-9905 and CMI-9589

datasets are recorded in Tables 2 and 3 respectively.

The data in Tables 2 and 3 show that the average values of the five evaluation criteria of KS-CMI in the 5-fold

CV based on the CMI-9905 dataset are 83.43%, 83.66%, 83.40%, 90.86%, and 91.44% respectively; The

average values of the five evaluation criteria based on the CMI-9589 dataset are 83.50%, 83.54%,

83.49%, 91.79%, and 91.81%. The excellent results show that KS-CMI can not only complete CMI prediction

based on real cases but also has an excellent performance in the data commonly used in this field. It is worth

noting that the experimental results based on the CMI-9905 and CMI-9589 datasets are significantly better

than the CMI-753 datasets. This is because the CMI-753 is manually collected from the existing experiments

and papers. Although the data have higher reliability, they also have the characteristics of small quantity

and high contingency, so the predicted performance will be affected. In addition, due to the two commonly

used datasets used for comparison only having circRNA-miRNA interactions, in the comparative experi-

ment, we extract features from binary relations, which means that the performance of the proposed model

on the dataset is lower than its real level, but still achieves the most competitive results.

Performance evaluation of each part of the model

According to different functions, KS-CMI can be divided into three modules: first, KS-CMI extracts the social

attribute features of molecules from the biological network (module A); then the extracted features are fused

and enhanced by DAE to form the final social attribute descriptor (module B); next, the molecular social

Table 5. Results of model extraction with different dimensions

dimensions Acc Prec. F1-score AUC AUPR time

Non-DAE 0.7344 0.7347 0.7342 0.8113 0.7956 109.62s

16 0.7334 0.7375 0.7368 0.8028 0.7916 53.63s

32 0.7357 0.7363 0.7395 0.8132 0.7936 59.86s

64 0.7290 0.7297 0.7288 0.7914 0.7734 75.46s

128 0.7107 0.7115 0.7110 0.7850 0.7757 108s

256 0.6965 0.6970 0.6964 0.7708 0.7670 174.84s

Figure 4. The visualization of the Performance in Different Dimensions of the KS-CMI
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relationship descriptor is extracted by SGCN (module C). Finally, these features are sent to the classifier for the

execution of downstream tasks; through the organic integration of all themodules, an efficient CMI prediction

model KS-CMI is formed. In this part, we verify the effectiveness of each module of the proposed model

through ablation experiments. Specifically, we remove each module in the proposed model and then keep

the other conditions unchanged for the downstream prediction task, and all the experimental data are re-

corded in Table 4. In addition, we compare the data in Table 4 with the KS-CMI through histogram Figure 3.

The data in Table 4 and Figure 3 shows that the KS-CMI model performs best in all evaluation criteria, KS-B

and KS-A are slightly lower than the proposed model, and KS-C is much lower than the proposed model.

The conclusion shows that all modules can effectively improve the prediction performance of the model.

Among all three modules, the social relationship descriptor extraction module is the module that contrib-

utes the most; DAE can effectively improve the prediction efficiency of the model with almost no loss of

accuracy; Social attribute descriptors are useful complements to model features.

Evaluation of DAE effectiveness

KS-CMI comprehensively considers the performance and efficiency of the model. The model should not

only have good prediction accuracy but also have fast prediction speed and high robustness. To meet

Figure 5. Performance comparison of the proposed model

Figure 6. Performance of KS-CMI using different classifiers

(A) for AUC comparison, (B) for AUPR comparison.
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this challenge, we introduce DAE to learn low-dimensional feature representation. In this section, we

explored the impact of DAE dimension reduction on the comprehensive performance of the model. In

detail, we use DAE to learn the feature representation of different dimensions and then use the same pa-

rameters and data to conduct experiments and record the impact of different dimensions on the model.

The experimental results are shown in Table 5. To facilitate comparison, we project the model performance

evaluation criteria (excluding time) in the table in Figure 4.

The results in Table 3 and Figure 4 shows that when the DAE adopts 16-dimensional feature extraction, the

model has the fastest prediction speed (53.63s), but some prediction accuracy is lost; When

256-dimensional feature extraction is used, the prediction speed of the model is even slower than that

without DAE, and the prediction accuracy of the model is greatly reduced.

Considering the computing speed and efficiency, KS-CMI uses 32 dimensions as the best DAE extraction

dimension. Due to the special iterative mechanism of machine learning, the low dimension may lead to the

smooth transition of features, so although it improves the calculation speed, it will also affect the prediction

accuracy; On the contrary, the long dimension will bring more noise, which not only increases the predic-

tion time but also cannot effectively maintain the original value of features.

Performance comparison of signed graph neural networks

This paper proposes an efficient prediction model for CMI prediction in real cases. This model applies the

balance theory in social theory to CMI biological networks through signed graph convolutional neural net-

works (SGCN), and effectively completes CMI in real cases predict. The SGCN used in the proposed model

combines the chain of social associations based on the graph neural network, which is an extension of the

graph convolutional neural network (GCN). In this part, we evaluate the superiority of SGCN. In detail, we

keep other parts of the model unchanged and use GCN (KG-CMI) to perform prediction tasks in the same

dataset, then we compare the KG-CMImodel with the proposedmodel in the radar chart Figure 5 to reflect

the advantages of the proposed model.

The data in Figure 5 show that in the AUC of the 5-fold cross-validation, KG-CMI is close to the proposed

model with 2 folds, and the proposed model is much higher than KG-CMI in the 3-fold AUC and the

average value. The experimental results show that the performance of the proposed model using SGCN

is better than that of GCN. This is because SGCN has added a chain social relationship based on balance

theory, which not only considers negative samples but also extracts the chain combination relationship of

positive and negative samples, so SGCN performs better when targeting the same sparse dataset.

Compare with different classifiers

KS-CMI uses the CatBoost classifier for the training and classification task of the data. To verify the most

effective classification strategy, we compare several classifiers. In detail, keeping the trained data and other

conditions constant, we used Random Forest (RF),35 Logistic Regression (LR),36 KNN,37 and Linear Regres-

sion (LinR)38 to replace the CatBoost classifier in KS-CMI for a 5-fold CV, respectively, to compare the clas-

sification ability of different classifiers. The experimental results are automatically generated by the pro-

gram as shown in Figure 6.

Table 6. Performance of different models in the CMI-9905

Methods KGDCMI SGCNCMI JSNDCMI KS-CMI

AUC 0.8930 0.8942 0.9003 0.9086

AUPR 0.8767 0.8887 0.8999 0.9144

Table 7. Performance of different models in the CMI-9589

Methods CMIVGSD SGCNCMI KGDCMI GCNCMI JSNDCMI KS-CMI

AUC 0.8804 0.8942 0.9041 0.9320 0.9415 0.9179

AUPR 0.8629 0.8887 0.8937 0.9396 0.9403 0.9181
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In Figure 6, the results using the CatBoost classifier are 19% higher than the second highest classifier, which

may be due to the CatBoost classifier’s ability to handle multiple types of data more flexibly, and the opti-

mization for gradient bias and prediction shift, which improves the prediction ability and robustness of the

classifier. In addition, the introduction of DAE into the KS-CMI model also reduces the high computational

overhead of ensemble learning, making KS-CMI efficient and reasonable.

Compare with related models

In this part, we compare the three datasets (CMI-9905, CMI-9589, and CMI-753) and the seven most

advanced models in the field (KGDCMI,25 SGCNCMI,26 JSNDCMI,27 CMIVGSD,39 GCNCMI,24 NECMA,31

and IIMCCMA32) of CMI prediction to prove the competitiveness of KS-CMI. Specifically, we use CMI-

9905, CMI-9589, and CMI-753 as the benchmark dataset of KS-CMI for prediction, and then we count

the results of all models using this dataset from existing articles and record them in Tables 6, 7, and 8

for comparison. To ensure the fairness of the comparison, all experimental data are generated by the

same cross-validation.

Table 6 shows that KS-CMI outperforms all known models in the CMI-9905 dataset. KS-CMI can effectively

improve the value of molecules in the network by extracting social relationship attributes from the CMCI

network, even in relatively sparse networks. Therefore, for the CMI-9905 dataset with better connectivity,

the advantages of KS-CMI are also more obvious.

In Table 7, the performance of KS-CMI based on the CMI-9589 dataset is second only to GCNCMI and

JSNDCMI. Although KS-CMI is mainly aimed at the CMI prediction model in real cases, the reasonable

feature extraction method and classification strategy make KS-CMI still have excellent performance in com-

mon data.

The comparison data used in Table 8 are from IIMCCMA.32 To ensure the fairness of the comparison, we use

the same 10-fold cross-validation. In addition, due to different versions of databases, the data used in the first

fourmodels are 756 pairs of the relationship between 514 circRNAs and 461miRNAs, and theCMI-753 used by

KS-CMI is 753 pairs of the relationship between 515 circRNAs and 469 miRNAs. Although the data are slightly

Table 8. Performance of different models in the CMI-753

Methods NECMA GCNCMI CMIVGSD IIMCCMA KS-CMI

AUC 0.4989 0.5679 0.5755 0.6702 0.8187

AUPR 0.0003 0.0004 0.0007 0.0009 0.8081

Table 9. The result of the case study based on circ-ABCC10 and circ-ITCH

Num circRNA miRNA Prediction score Evidence Cancer detection method

1 circ-ABCB10 miR-1271 0.9100 PMID:31381507 epithelial ovarian cancer qRT-PCR

2 circ-ABCB10 miR-1252 0.6187 PMID: 31381507 epithelial ovarian cancer qRT-PCR

3 circ-ABCB10 miR-203 0.9849 PMID: 31381507 epithelial ovarian cancer qRT-PCR

4 circ-ABCB10 miR-340-5p 0.9539 PMID:32196586 hepatocellular carcinoma qRT-PCR, Western blot, etc

5 circ-ABCB10 miR-452-5p 0.9537 PMID:32196586 hepatocellular carcinoma qRT-PCR, Western blot, etc

6 circ-ABCB10 let-7a-5p 0.6443 PMID:32273769 breast cancer qRT-PCR

7 circ-ABCB10 miR-556-3p 0.5396 PMID:31931771 lung cancer RT-qPCR

8 circ-ITCH miR-214 0.8908 PMID:30509108 triple-negative breast cancer qPCR

9 circ-ITCH miR-17 0.9333 PMID:30509108 triple-negative breast cancer qRT-PCR

10 circ-ITCH miR-10a 0.9807 PMID: 30556849 epithelial ovarian cancer qPCR

11 circ-ITCH miR-22 0.7951 PMID: 31387405 osteosarcoma qRT-PCR

12 circ-ITCH miR-145 0.9691 PMID: 30243714 ovarian carcinoma qPCR

12 circ-ITCH miR-224 0.6884 PMID: 29386015 bladder cancer qRT-PCR

14 circ-ITCH miR-17-5p 0.4164 PMID: 31827402 prostate cancer RT-qPCR

15 circ-ITCH miR-93-5p 0.4059 PMID: 31993998 cervical cancer qRT-PCR
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different, CMI-753 is an extension of the original data, so it has a certain reference value. Due to different nega-

tive sample constructionmethods, this comparison only refers to AUC. The data in Table 7 shows that the AUC

of KS-CMI is 81.87%, far higher than 67.02% in the secondplace. Although KS-CMI uses 3 pairs of data less than

other models, the result of the huge gap still shows the excellent competitiveness of KS-CMI under real data.

Case study

In this part, we conduct case studies based on circ-ABCC10 and circ-ITCH to prove the predictive ability of

KS-CMI in the real case. Specifically, we take the 15 pairs of the relationship of circ-ABCC10 and circ-ITCH

as the test set, and the remaining data as the training set to train the model to obtain the score of the test

set. The experimental results are recorded in Table 9.

Table 9 shows that of the 15 pairs of CMIs involving 10 kinds of cancers and three biological experimental

verification methods, 13 pairs were accurately predicted by KS-CMI. These results show that KS-CMI can

effectively predict the potential CMI, and it can provide a pre-selection range for relevant experiments

and accelerate the research of related diseases.

DISCUSSION

The existing research shows that circRNA is a potential biomarker of many diseases and can provide a new

perspective for the generation, treatment, and diagnosis of human complex diseases. Therefore, it is ur-

gent to accelerate the biological research of circRNA. The use of computational methods can provide a

preselected range for biological experiments, thus saving time and resources, and speeding up the prog-

ress of related research. Limited by the small number of data verified by experiments and high randomness.

Although some methods have been tried, it is still difficult to complete the CMI prediction in real cases.

This paper proposes a reliablemodel, KS-CMI, that can predict in real cases. KS-CMI reconstructs the CMCI

network to increase the behavior features of molecules in the network, and then integrates the chain social

relations of molecules with the balance theory, effectively solving the problem of difficult feature extraction

in sparse networks. Next, we combine the machine learning method of noise reduction and the classifica-

tion strategy in ensemble learning to complete the CMI prediction task quickly and efficiently. KS-CMI

achieved AUC of 81.32% in the prediction task of real cases and, in the case study, 13 pairs of CMI based

on real research were successfully predicted. These results mean that KS-CMI is one of the few methods

that can efficiently complete CMI prediction in real cases.

Limitations of the study

KS-CMI introduced the balance theory and the idea of strengthening individual characteristics in social net-

works into biomolecular networks, and completed the prediction task that could not be completed by pre-

vious work. However, this does not mean that all community network algorithms can apply to biological

networks and need to be reasonably improved. In addition, due to data limitations, the negative samples

used in this work are randomly generated. Due to the unique chain social relationship feature extraction,

different negative samples will produce large training differences that may lead to different experimental

results.

However, there is no doubt that KS-CMI provides valuable experience in methods and data for

CMI prediction research in real cases, and is currently one of the most competitive CMI prediction

models.
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The raw data, analytic methods, and study materials will be publicly available as online-only Supplemental

information. Study materials will be provided after a reasonable request. Inquiries can be directed to the

lead contact, Changqing Yu (xaycq@163.com).

Materials availability

All materials reported in this paper will be shared by the lead contact upon request.

Data and code availability

d Data reported in this paper will be shared by the lead contact upon request. This paper analyzes existing,

publicly available data. These accession numbers for the datasets are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Dataset

In this work, we downloaded the latest version of 1439 circRNA-cancer positive pairs from the circR2Cancer

database.30

Database: circR2Cancer is a manually managed database that provides known associations between circR-

NAs and cancers. The data in this database are collected from existing literature and related materials, and

all of them have experimental support. Because of the biological property of circRNAs competitively bind-

ing miRNAs and thus causing diseases such as cancer, circRNA-cancer experiments also include circRNA-

miRNA samples. After secondary collation, we finally obtained 753 circRNA-miRNA positive pairs between

515 circRNAs and 469 miRNAs, and we named this dataset CMI-753 for ease of representation.

In this study, we used CMI-753 as the positive sample. To construct a balanced dataset, we used 753 pairs of

unidentified CMIs as negative samples. Ultimately, the experimentally constructed data contained 1,506

pairs of CMIs.

Construction of molecular social attribute descriptors

KS-CMI reconstructs the CMCI network by adding the cancer molecule and extracting the social attribute

descriptors from it. Specifically, the social attribute descriptors extract the molecular functional similarity as

the main feature, the molecular Gaussian interaction profile kernel (GIPK) as a useful complement, and

finally uses DAE to learn the robust feature representation. The social attribute descriptors focus on the

local topology of the molecule in the network, but not on the position of the molecule in the network

and the neighbor relationship.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

CMI-9905 KGDCMI https://github.com/1axin/KGDCMI

CMI-9589 Database: circBank http://www.circbank.cn/

The latest version of circRNA-cancer data Database: circR2Cancer http://www.biobdlab.cn:8000/

Other

Materials This paper N/A

Data and code This paper N/A
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CircRNA-MiRNA-Cancer interactions (CMCI) network construction

The scarcity of CMI data with experimental support is one of the challenges in the field of CMI prediction.

Considering the biological property of circRNAs competitively binding miRNAs leading to cause disease,

KS-CMI constructs CMCI by adding cancer as an intermediary in the CMI network to enrich the ’social re-

lationships’ of molecules in the network. The structural parameters of the CMI network and CMCI network

are shown in below table.

In addition, we visualize the CMI network and CMCI network as in figure below. Figure below shows that

cancer as an intermediary molecule can effectively connect the CMI network and increase the "social rela-

tionship" of the molecule in the network, thus improving the effectiveness of the molecule’s features in the

network.

Molecular functional similarity construction

In the construction of molecular functional similarity, we introduce an important concept in graph theory,

’degree’ (the number of edges connected to a particular node) as a measure of molecular functional sim-

ilarity. Specifically, we consider that two molecules have similar functional structures if they have the same

degree; if the adjacent nodes of these two molecules also have the same degree, the functional structures

of these two molecules are more similar. It is worth noting that the functional similarity of molecules only

focuses on whether the molecules have similar functional structures, and does not consider where the mol-

ecules are located in the network, and whether the neighboring nodes are the same.

In this work, we introduced the struc2vec40 algorithm to extract the functional similarity features of

molecules.

For nodes m and n, struc2vec first defines a structural distance D between n andm that is no greater than d:

Ddðm;nÞ = Dd� 1ðm;nÞ + JðSðRdðmÞÞ;SðRdðnÞÞÞ;dR0; jRdðÞ > 0j (Equation 4)

The information on the CMI network and CMCI network

dataset pairs circRNA miRNA disease Average degree

CMI 753 515 477 non 1.5273

CCA 648 515 Non 72 2.2003

MCA 731 non 477 72 2.6437

CMI Network and CMCI Network (each line in the figure represents a pair of relationships, and the node size is

proportional to the degree.)

(A) CMI Network and (B) CMCI Network.
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where Rd(m) denotes the set of vertices at distance d from node m, and J() is a function measuring the dis-

tance of the ordered degree sequence, and after combining Dynamic Time Warping (DTW) optimization, J

can be expressed as:

jðm;nÞ =
maxðm; nÞ
minðm;nÞ � 1 (Equation 5)

Based on the structural distance D, we construct a weighted graph G with a hierarchical structure for node

walk sampling. Graph G connects the same vertex of different layers (k) with weighted directed edges, and

the edge weight w is defined as:

wðmk ;mk+1Þ = logðtkðmÞ + eÞ (Equation 6)

Where tk() is the sum of the number of edges in layer k with the edge weight connected to m greater than

the average edge weight.

Struc2vec samples in graph G through the biased randomwalk. The probability of walking from vertex m to

vertex n in layer k is:

Pðm;nÞ =
e�Dk ðm;nÞ

NkðmÞ (Equation 7)

Where Nk() is calculated as:

NkðmÞ =
X

n˛N;nsm

e�Dk ðm;nÞ (Equation 8)

The probability of sampling different layers is:

Pkðmk ;mk+1Þ = wðmk ;mk+1Þ
wðmk ;mk+1Þ+wðmk ;mk� 1Þ

Pkðmk ;mk� 1Þ = 1 � wðmk ;mk+1Þ
wðmk ;mk+1Þ+wðmk ;mk� 1Þ

(Equation 9)

Through this walking method, struc2vec ensures that the local topological structure similarity of sampling

nodes is maximized, without paying attention to the position of nodes in the graph.

Molecular Gaussian interaction profile kernel construction

The Gaussian interaction profile kernel is based on the assumption that molecules with similar targets may

have the same functions, often as a useful complement to molecular features.

In the CMI-753 dataset, we constructed a c 3 m binary graph Xcm to store the associations, and when

circRNA ci correlates with miRNAmj, Xij is set to 1 and vice versa to 0. For matrix X, the Gaussian interaction

profile kernel of circRNA X(ci) and X(cj) can be calculated as follows:

G
�
ci; cj

�
= exp

�
� xc

��XðciÞ � X
�
cj
���2� (Equation 10)

Where xc controls the kernel bandwidth and is defined as:

xc = 1

, 
1

nc

Xnc
i = 1

kXðciÞk2
!

(Equation 11)

Similarly, the GIPK of miRNA X(mi) and X(mj) is defined as

G
�
mi;mj

�
= exp

�
� xm

��XðmiÞ � X
�
mj

���2� (Equation 12)

xm = 1

, 
1

nm

Xnm
i = 1

kXðmiÞk2
!

(Equation 13)

Denoising autoencoder

KS-CMI uses DAE33 to simulate human thinking mode to learn the robust representation of molecular fea-

tures. In short, DAE forces the neural network to learn the high-level representation of the original features
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from the original features after corrosion, and the features obtained are not only of lower dimensions but

also more representative. The flowchart of DAE is shown in below figure. First, the DAE obtains the

corroded feature ~A by adding Gaussian noise to the original input feature A. The project ~A into a new hid-

den representation Yc through the function F.

Yc = qa;lð ~AÞ = FðW $ ~A + bÞ (Equation 14)

Similarly, the reconstruct uncorroded features Y as:

Y = qb;bðAÞ = FðW 0 $A + b0Þ (Equation 15)

The function F can be represented as:

FðxÞ =
1

ð1+e� xÞ (Equation 16)

Then DAE continuously optimizes parameters (qa,l, qb,b) by minimizing the average reconstruction error

lo; bo = argmin
lb

1

j

Xj

i = 1

S
�
AðmÞ; tðmÞ

�
= argmin

lb

1

j

Xj

i = 1

S
�
AðmÞ;qb;b

�
qa;l

�
~AðmÞ

��� (Equation 17)

Where j is the number of train data, l0, b0 is the optimal values of l, b. S is the reconstruction error which is:

S = � 1

j

Xj

n = 1

yn $ log byn + ð1 � ynÞ $ logð1 � bynÞ (Equation 18)

The flowchart of DAE
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Molecular social relationship descriptors

Previous work has focused on capturing the behavior features of nodes from constructed binary networks.

These methods treat known positive samples as related but ignore negative samples and the rich chain re-

lationships in the relational network.

In this paper, we introduce the concept of social relationships in the KS-CMI and extract the social relation-

ship representation of molecules from the CMCI network by the signed graph convolution neural network

(SGCN),41 combined with the balanced path.

Social relationship building

Social relationships describe networks from the point of view of friends and foes. Similarly, we recon-

structed the relational network form of the data, in which the known positive sample N+ in the data N is

defined as 1, i.e., friend, and the negative sample N- is defined as -1, i.e., foe.

N = N+WN� (Equation 19)

N+ XN� = B (Equation 20)

Interestingly, social relationships are not just first-order relationships. For example, friends of a friend can still be

friends, and foes of a friend can be foes. Bioinformatically speaking, ifmolecule 1 andmolecule 2 are related (i.e.,

the two molecules are friends) and molecule 2 is related to molecule 3, then molecule 1 and molecule 3 have

similar functions or binding sites (i.e., a friend of a friend is still a friend). If molecule 1 is related to molecule 2,

but molecule 2 is not related to molecule 3 (i.e., the two are foes), then molecule 1 is unrelated to molecule 3

(i.e., the enemy of a friend is still a foe). Using the balanced path approach can significantly improve the connec-

tion betweenmolecules in a sparse network, forming a unique ‘chain association’. Such anexplanation is not only

scientific but also allows for the extraction of additional hidden features from social relationships. To effectively

describe multi-order relationships, we defined balanced paths in conjunction with balance theory.

The balanced path is shown in below figure. Simply put, in a balanced path of L length, the path containing

an even number of negative connections is considered to be balanced, i.e., friends and the path containing

the odd number of negative connections are unbalanced, i.e., foes. We can recursively define a balanced

path of L+1 length as follows:

Balanced path of central node based on the balance theory
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L>1

PuðL+ 1Þ = �xu��xk ˛PuðLÞandxu ˛N+
k

	
W
�
xu
��xk ˛GuðLÞandxu ˛N�

k

	
GuðL+ 1Þ = �xu��xk ˛GuðLÞandxu ˛N+

k

	
W
�
xu
��xk ˛PuðLÞandxu ˛N�

k

	 (Equation 21)

Where Pu(L+1) represents the neighbor set of the balanced path from xu and Gu(L+1) represents the

neighbor set of the unbalanced path from xu.

Social relationship extraction

The construction of social relations is based on the graph structure data propagation of traditional graph

neural networks. First, the node itself is used as the central node to aggregate the first-order neighbor in-

formation adjacent to it to obtain the feature representation of the central node, and then data propaga-

tion is performed on the graph structure by superimposing a multilayer network structure to obtain the

multi-order neighbor information of the central node.

The difference is that in social networks, the neighbors of the central node have their social attributes.

SGCN does not maintain a single representation of each node but integrates positive and negative link in-

formation through a balanced path that simultaneously preserves the social relationships of multiple-order

neighbors. The aggregation process is shown in below figure.

For each node n in the CMCI, we initialize the eigenvectors of each node first. In KS-CMI, to demonstrate

the impact of social characteristics on model ability, we used SVD-derived characteristic d as the initial

feature of the node.

Next, in the social relationship graph composed of nodes with initial features, the first layer of convolutional

aggregation for any central node u by w() is as follows:

HPð1Þ
i = m

0@wPð1Þ

24X
j;N+

i

Hð0Þ
j

jN+j

35;Hð0Þ
i

1A (Equation 22)

The aggregation process of SGCN
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HGð1Þ
i = m

0@wGð1Þ

24X
c;N�

i

Hð0Þ
c

jN�j

35;Hð0Þ
i

1A (Equation 23)

Where H
ð0Þ
i is the initial features of u, HP(1) and HG(1) is the friend feature representation and foe feature rep-

resentation of u respectively, and m() is the activation function.

As the number of aggregation layers in the model increases, when layer l>1, the aggregation function is

recursively defined as:

l > 1

HPðlÞ
i = m

0@wPðlÞ

24X
j;N+

i

HPðl� 1Þ
j��N+

i

�� ;
X
c;N�

i

HGðl� 1Þ
c��N�

i

�� ;HPðl� 1Þ
i

351A

HGðlÞ
i = m

0@wGðlÞ

24X
j;N+

i

HGðl� 1Þ
j��N+

i

�� ;
X
c;N�

i

HPðl� 1Þ
c��N�

i

�� ;HGðl� 1Þ
i

351A
(Equation 24)

After L iterations of computation, the friend representation and foe representation of the central node u are

updated to H
PðlÞ
i , H

GðlÞ
i .

Next, two feature representations of the learned central node u are connected as a single feature

representation.

To make the node feature fully represent the multi-order social relation of the node, we use the objective

function F to optimize and obtain the final feature representation. Target function F is defined as:

F
�
bw ;bMLG

�
=

� 1

S

X
ðui ;uj ;rÞ˛ S

ar log
exp

�

zi; zj

�
bMLG
r

�P
q˛ f+;� ;?g

exp
�

zi; zj

�
bMLG
q

�

+ d

264 1��Sð+;?Þ
�� X
ððui ;uj ;ukÞ˛ Sð+;?ÞÞ

max
�
0;
����zi � zj

���j22 �
���zi � zk

���j22��

+
1��Sð� ;?Þ
�� X
ððui ;uj ;ukÞ˛ Sð� ;?ÞÞ

max
�
0;
����zi � zk

���j22 �
���zi � zj

���j22��
375

+Reg
�
bw ;bMLG

�

(Equation 25)

Function F() uses the relationship between nodes and balance theory to learn the characteristics of nodes.

For the relationship between nodes, the model uses theMLG classifier to classify nodes and judge the rela-

tionship type r between nodes. Moreover, in the representation of balance theory in space, if two nodes

have a friend relationship, they should be closer than those without, and vice versa.

In the function F(), bw is the parameter of the convolution layer aggregation function, bMLG is the parameter

of the MLG classifier, and ar is the weight of the type of connection between nodes. S(+,?) and S(-,?) represent

node pairs with friend/foe relationships, respectively (ui, uj), uk represents the nodes that are not related to

either ui, or uj , REG is the regularization of a function F().

Finally, by optimizing the target function, we get a single 64-dimensional representation of the social re-

lationships of each node in the social network.

Classification strategy

Catboost34 (categorical boosting) is an improved classifier based on the GBDT algorithm framework. It

adopts oblivious trees as a learner and resolves gradient bias and prediction shift in traditional algorithms

so that Catboost has good accuracy and generalization. Catboost has a unique advantage in dealing with

multi-data types and categorical features.
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KS-CMI uses Catboost as a model classification strategy. Specifically, the attribute descriptors and social

descriptors of the samples in the training set were connected and sent to the Catboost classifier to learn the

labeling attributes of the sample. The trained classifier then predicted the labeling attributes in the test set

and scored them.

In this work, we select the optimal parameters for the final prediction task by the grid search method.

QUANTIFICATION AND STATISTICAL ANALYSIS

The ROC and PR curve plotting, area under the curve calculation, and evaluation criteria calculation were

performed using Scikit-learn 0.24.2.
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