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Abstract

Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI)
data is an increasingly popular strategy to investigate temporal dynamics of the brain’s large-scale network ar-
chitecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation,
which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It
is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works
for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance
because many subsequent analyses either assume or perform better when the time series have stable variance or
adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state
fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time se-
ries. We focus our investigation on the Fisher transformation, the Box—Cox (BC) transformation and an approach
that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use
metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher
transformation is not optimal and may even skew connectivity time series away from being Gaussian. Further-
more, we show that the suboptimal performance of the Fisher transformation can be substantially improved by
including an additional BC transformation after the dynamic functional connectivity time series has been Fisher
transformed.

Keywords: Box—Cox transformation; dynamic functional connectivity; Fisher transformation; fMRI; time series;
variance

Introduction

THE IDEA BEHIND dynamic functional connectivity (dFC)
in functional magnetic resonance imaging (fMRI) is
both simple and appealing. It builds upon the previous suc-
cesses of static functional connectivity (sFC), where the co-
variance between two brain regions is quantified over a fixed
(static) interval and an inference is made regarding their re-
lationship. To date, sFC has been applied to many areas of
the brain research, from a general understanding of the net-
work topology of the brain (De Luca et al., 2006; Fransson,
2005; Greicius et al., 2003), task modulation (Fransson,
2006), neurodevelopment (Power et al., 2010), and clinical
applications (Fox and Greicius, 2010). In the case of dFC,
quantitative studies of the fluctuations of signal covariance
over time offers a possibility to explore the dynamics of
the brain and it has already found applications; from under-
standing basic brain processes such as levels of conscious-

ness (Barttfeld et al., 2015), mind wandering (Schaefer
et al., 2014), and development (Hutchison and Morton,
2015), to clinical applications such as depression (Kaiser
et al., 2016) and schizophrenia (Damaraju et al., 2014; Ma
et al., 2014).

dFC offers an exciting perspective, but it is not without
controversy. A substantial amount of work has been devoted
to the issue of the accuracy of the dFC estimates obtained by
the sliding window method (Allen et al., 2014; Hindrins
et al., 2015; Hutchison et al., 2013; Leonardi and De Ville,
2015; Zalesky and Breakspear, 2015) and whether the fluctu-
ations in BOLD connectivity accurately reflect the presumed
underlying neuronal dynamics (Chang et al., 2013; Magri
et al., 2012; Tagliazucchi et al., 2012; Thompson et al.,
2013, 2014; see also Keilholz, 2014). That being said, in
this article we assume that sliding window estimates of
dFC are indeed fluctuations that reflect neuronal activity.
The next question that arises is how to quantify fluctuations
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in dFC time series in an accurate manner. In this article we
want to highlight a methodological aspect of dFC analysis,
which often is taken for granted in the data preprocessing
pipeline, namely how to stabilize the variance of time series
of covariance estimates.

A dynamic functional brain connectivity time series is
usually created by estimating the connectivity (most
often Pearson correlation coefficients) for multiple time
points across two nodes (often voxels or regions of interest
[ROIs]). The resulting connectivity time series represents
the degree of connectivity that fluctuates as a function of
time between the two nodes. A correlation coefficient is
bound to range between —1 and 1, and its expected variance
is smaller as the correlation coefficient increases. The aim of
stabilizing the variance is to disassociate the variance from
its mean. For example, if the sampled correlations from sub-
jects in group A are centered around a true correlation value
of p=0.6, and the sampled correlations from subjects in
group B are centered around a true correlation value of
p=0.2, one would expect the variance from group B to be
larger than the variance in group A. Hence, the purpose of
stabilizing the variance is to achieve estimates of variance
that is unbiased from the magnitude of the true correlation.
In this outlined example, the Fisher transformation performs
well in terms of stabilizing the variance between groups.

However, in the case of dFC fMRI we are met with a num-
ber of circumstances that complicate matters in terms of sta-
bilizing the variance compared with the previous example.
Given the assumption that dFC reflects neuronal fluctuations
in brain connectivity, (1) the dFC time series reflects fluctu-
ating true connectivity values; (2) estimates of connectivity
for neighboring time points are not independent of each
other when using the sliding window method; (3) given
(4), the variance will then fluctuate as the true correlation
value, and it is unknown how long the true correlation dwells
with different true correlation values. Together, these proper-
ties differ from the original purpose of the Fisher transforma-
tion. dFC requires stable variance across an entire time series
of fluctuating values, whereas the Fisher transformation is
intended for stable variance around estimates of a true corre-
lation value, making the variance independent of their corre-
lation magnitudes.

For clarity, the Fisher transformation is intended to be used
on correlation values. However, in dFC we create a time series
of correlations. Moreover, in time series analysis, an estab-
lished way to transform a time series to adhere to a Gaussian
distribution, a distribution with stable variance, is through a
Box—Cox (BC) transformation (Box and Cox, 1964). Thus,
by treating dFC connectivity values as a time series, instead
of just a set of correlation values, we may indeed be able to
improve on the stability of the variance in dFC data. An alter-
native approach would be to apply two transformations to the
data, first the Fisher, to transform the correlation values, and
subsequently the BC, to transform the time series.

In the neuroimaging dFC literature, the variance is often
stabilized by applying the Fisher transformation to the con-
nectivity time series (a nonexhaustive list includes: Allen
et al., 2014; Barttfeld et al., 2015; Damaraju et al., 2014;
Elton and Gao, 2015; Hutchison and Morton, 2015; Kaiser
et al., 2016; Kucyi and Davis, 2014; Leonardi et al., 2014;
Schaefer et al., 2014). Generally, there are good reasons
for doing so, since a reasonably stable signal variance is re-
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quired to be able to accurately quantify changes in dynamic
brain functional connectivity, which often is the primary goal
of the analysis. In this study, we test how the Fisher transfor-
mation, the BC transformation, and a combination of both
transforms performs in terms of achieving an estimate of co-
variance that is unbiased by the mean correlation estimate.
Furthermore, we quantify to which extent the within-time se-
ries variance is stable for the tested transformations when ap-
plied to dFC fMRI time series and quantify how Gaussian the
resulting distributions are. This was done because both trans-
formations often create approximate Gaussian distributions
of the data, which has a stable variance.

Materials and Methods
Simulations

A simulation was performed to demonstrate the problem
of the Fisher transformation on connectivity time series
and demonstrate how the BC transformation can increase
performance. First, two multivariate Gaussian distributions
were created. The time series where 100,000 samples long,
but fluctuated in the covariance every 100 samples. The co-
variance was changed every 100 samples, where the new co-
variance was sampled from a Gaussian distribution (u=0.5
and 6>=0.1). We then make 1000 “dynamic connectivity es-
timates’” by sliding a window 100 samples long, with no
overlap between windows, and performing a correlation be-
tween the time series. This entails that we have a known co-
variance with a Gaussian distribution (a ground truth), which
we can compare with (1) the raw correlation coefficients, (2)
the Fisher-transformed correlation coefficients, (3) the BC-
transformed correlation coefficients, (4) first apply a Fisher
transformation, then a BC transformation to the correlation
coefficients. For all distributions, the skewness and Shapiro—
Wilks (SW) statistic were calculated (see Quantifying the
Gaussian Distributions section).

Data and preprocessing steps

One resting-state fMRI session (6 min long; 3 Tesla, TR =
2000 msec, TE =30 msec) from 48 healthy subjects was used
in the analysis (19-31 years, 24 females). Two subjects were
excluded from the analysis due to incomplete data. The fMRI
data was downloaded from an online repository: the Bei-
jing Eyes Open/Eyes Closed Dataset available at http://
fcon_1000.projects.nitrc.org/indi/IndiPro.html (Liu et al.,
2013). Each functional volume comprised 33 axial slices
(thickness/gap=3.5/0.7 mm, in-plane resolution=64x 64,
FOV =200%200mm). The fMRI dataset from each indi-
vidual contained three different resting-state sessions, each
6 min long (two eyes closed sessions and one eyes open
session). We only used data from the eyes-open condition,
which was recorded in either the second or third session
(counterbalanced order with respect to the second eye-closed
session). Further details regarding the scanning procedure
are given in Liu et al. (2013).

fMRI data were preprocessed using MATLAB (Version
2014b, MathWorks, Inc.), with the CONN (Whitfield-
Gabrieli and Nieto-Castanon, 2012) and SPMS8 (Friston
et al.,, 1995) MATLAB toolboxes. Resting-state fMRI data
were realigned and then normalized to the EPI MNI template
as implemented in SPM. Spatial smoothing was then applied
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using a Gaussian filter kernel (full width at half maximum
[FWHM] =8 mm). Additional image artifact regressors at-
tributed to head movement (Power et al., 2012; van Dijk
et al., 2012) were derived by using the ART toolbox for
scrubbing (www.nitrc.org/projects/artifact_detect/). Signal
contributions from white brain matter, cerebrospinal fluid
(CSF) and head movement (six parameters), and the ART
micromovement regressors for scrubbing, were regressed out
from the data using the CompCor algorithm (Behzadi et al.,
2007, five principal components removed for both white
matter and CSF), as implemented in CONN. After regres-
sion, data were bandpassed between 0.008 and 0.1 Hz, as
well as linearly detrended and despiked. Two hundred sixty-
four ROISs (sphere with a 5 mm radius) were placed throughout
the brain according to the parcellation scheme provided in
Power et al. (2011) (see article for coordinates). sFC was
computed by the Pearson correlation coefficient across all
time points for all 34,716 unique edges.

Estimation of dFC

We used the sliding window method to create dFC time se-
ries. For each time point, #, a Pearson correlation coefficient
was estimated using 31 time points (63 volumes in total
equaling 126sec) for each combination of ROIs (nodes).
This resulted in a unique connectivity time series with a
length of 178 time points (reduced from the full 240 time
points due to the window size), for each subject and condi-
tion. At each time point there is a connectivity matrix of
34,716 unique correlation values. The chosen length of the
sliding time-window is well in line with “‘rules of thumb”’
that have been previously suggested for sliding window anal-
ysis (Leonardi and Van De Ville, 2015; Zalesky and Break-
spear, 2015). Different transformations were then applied to
the dFC time series data.

Transformations used to stabilize the variance
of dFC time series

We wanted to compare the statistical properties of four dif-
ferent distributions of dFC time series. First, we considered
the “‘raw’’ dFC time series, which are the Pearson correlation
coefficients. Second, we considered the Fisher transforma-
tion applied to the dFC time series. Third, we analyzed the
BC-transformed dFC time series. Finally, we investigated a
combined approach where the dFC values were first Fisher
transformed and subsequently BC transformed (referred
henceforth as Fisher&BC).

Fisher transformation. The Fisher transformation takes
the bounded distribution of correlation coefficients (r) and
makes it unbounded so that the variance is independent of
the magnitude of the correlation coefficient by:

—ll 1+r
=M azy)

The estimates of z generally approximate to a Gaussian
distribution.

BC transformation. An alternative way to stabilize the
variance of a non-Gaussian distributed time series is the
BC transformation (Box and Cox, 1964). The BC transfor-
mation, which is a power transformation, is given by
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where / is set by the estimated maximum likelihood for each
edge, after letting A range from —5 to 5 in increments of 0.01.
y is the time series that is applied to and i is the index of the
time series. Specifically, when the parameter 4 was fitted to
the data, we calculated the likelihood for each possible value
of A in our specified range (—5 to 5 in increments of 0.01). It
is deserved to be noted that there are other ways to optimize
the finding of the maximum likelihood. If the search of opti-
mal / is to be performed within a certain range, we would ad-
vocate the usage of a wide range and make sure that the
majority of the values are found away from the boundaries
of the range. Moreover, it is recommended to examine and
take into consideration the distribution of fitted A values.
Here, the estimation of A was done by finding the maximum
likelihood as outlined in Box and Cox (1964). The BC trans-
formation, including the calculation of lambda, utilized the
function boxcoxlm(), which is available in the MATLAB
Central repository. (www.mathworks.com/matlabcentral/
fileexchange/10419-box-cox-power-transformation-for-linear-
models).

The distribution of /4 for different edges is shown in Fig-
ure 1. The BC transformation was applied to both the raw
dFC time series (Fig. 1A) and on the Fisher-transformed
dFC time series (Fig. 1B). We also observe that subjects gen-
erally have a similar mean and standard deviation for their
own distributions of 1 values (Fig. 1C).

The BC transformation cannot handle values less than zero
due to the natural logarithm when 4=0. To deal with this prob-
lem, the smallest value of each dFC time series was scaled to 1
by simply adding the entire time series with the scalar |1-yyin|-
This step was mandated by the fact that power transformations
perform differently between O and 1, and by scaling the small-
est value to 1, we ensured that a similar type of power transfor-
mation was applied to all time points. The BC-transformed
dFC time series was subsequently scaled back so that the
post-BC mean equaled the mean of the raw dFC time series.
In the Fisher&BC case, the mean was scaled back to the
mean of the Fisher-transformed dFC time series.

Quantifying variance stability

To quantify the variance stability within a time series, we
performed a median split on the dFC time series, dividing the
time series data into two separate partitions of connectivity
estimates. Hence, the absolute difference of the variance in
the upper and lower median partition was calculated, provid-
ing an estimate of the stability of the variance. A smaller ab-
solute difference between the divisions (i.e., approaching 0)
suggests that the variance is more stable. To make the vari-
ances of the different transformations comparable, each
dFC time series was scaled between 0 and 1 before perform-
ing the median split.

Quantifying the Gaussian distributions

A time series that adheres to a Gaussian distribution will,
by definition, have stable variance. We were, therefore, inter-
ested to assess how each Gaussian time series was after each
transformation. We used two different methods for this: the
SW test statistic and skewness (s).
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SW statistic. To evaluate how closely each of the four dis-
tributions of raw, Fisher, BC, and Fisher&BC-transformed
dFC data followed a Gaussian distribution, we used the SW
test, which is one of the most robust methods to estimate the
normality of a distribution (Razali and Wah, 2011), in particu-
lar, for cases when the number of samples in each distribution
is rather small, as is the case here (178 values per distribution).

The SW test statistic, W, is calculated by:

(X @)’
Z?:l (x; *’_C)z ’

where x is the ordered statistic and X is the mean. The con-
stants ag; are given by:

W=
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where V is the covariance of the ordered statistic, and m is the
expected value of the ordered statistic, given a Gaussian dis-
tribution (Shapiro and Wilk, 1965). The test statistic W was
then normalized according to Royston (1992, 1993):

(tog(1= W)~ )

where p and ¢ are the mean and variance of the expected
Gaussian distribution. The test statistic is usually compared
against a chosen p-value threshold against the null hypothe-
sis “‘the data are Gaussian.”” However, this would not prove
that the data are Gaussian. We, therefore, also show the SW-
statistic between the proposed variance-stabilizing transfor-

mations, where a smaller normalized SW-statistic is indica-
tive of a more Gaussian distribution.

Skewness. An additional way to quantify the Gaussian
distributions is to examine how symmetric it is with the
skewness (s), which is defined as:

(byr, e-9?)
( w2ie (xi —x)2> B

for which x is the distribution to be tested (i.e., the dFC time
series), s the skewness of the distribution, and X is the mean
of the distribution. In essence, the skewness is a measure of
how much a given distribution is shifted away from a sym-
metric distribution toward a more fat-tailed distribution.
For a unimodal distribution, a positive skewness entails
that there will be a fat tail to the right of the mean, a negative
skewness means a fat tail to the left of the mean. A skewness
of 0 implies a symmetric distribution, which the Gaussian
distribution is (but symmetric distributions could also entail
other distributions such as a uniform or student’s r).

S=

Visualization of results

As the performance of the different transformations may
perform differently at different correlation values, the re-
sults displayed are binned by the absolute sFC. Bins are
shown between 0 and 1 in 0.025 increments. Notably, the
sFC connectivity value, which are displayed on the x-
axis, reflect the mean connectivity value for each of the
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different transformations (Supplementary Fig. S1; Supple-
mentary Data are available online at www.liebertpub.com/
brain). Unless explicitly stated, our results from different sub-
jects are pooled across subjects. This means that we calculate
all metrics for each subject independently and when visualized,
edges are binned, entailing the same edge from the same sub-
ject can be in a different bin and treated independently. This is
because different subjects may have different sFCs.

Results

Simulations that highlight the potential problem
with the Fisher transformation and the benefit
of the BC transformation

Two Gaussian time series with fluctuating covariance were
simulated (total length of time series were 100,000 samples
long). The covariance fluctuated every 100 samples and the
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new covariance was sampled from a Gaussian distribution
(u=0.5 and 0220.1). This allowed us to create 1000 windows,
where the true covariance was known (Fig. 2A), and that this
followed a Gaussian distribution (Fig. 2B). This distribution
of the covariance ‘““‘ground truth” can then be compared with
the distributions after correlating each of the 1000 windows
and applying each of the proposed transformations (Fig. 2C-F).

When looking at the distributions in Figure 2, applying the
BC transformation leads to a distribution quite similar to the
original covariance. The Fisher and the Fisher&BC transfor-
mations both have a larger variance than the original covari-
ance distribution. The raw r values (Fig. 2C) have a slight
skew toward left and the Fisher transformation skews
slightly to the right. The skewness of each of the distributions
can be seen in Figure 2G. The Fisher&BC transformation
was the closest to the ground truth, followed closely by the
BC. Both Fisher&BC and BC transformations also have
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FIG. 2. Results from simulations. (A) Snippet from the simulated time series. Two multivariate Gaussian time series were
created, where the covariance fluctuated every 100 samples. These are marked by wy, ... wy in the figure. During these pe-
riods of known covariance, windows were created, where the covariance and correlation coefficient were estimated. In total,
1000 windows were created (4 windows are shown in the panel). (B) The mean-centered distribution of the covariance es-
timates for each window (ground truth). (C) The mean-centered distribution of Pearson correlation coefficients. (D) The
mean-centered distribution of correlation coefficients after a Fisher transformation was applied. (E) The mean-centered dis-
tribution of the correlation coefficients after the BC transformation was applied. (F) The mean-centered distribution of the
correlation coefficients after the Fisher&BC transformation was applied. (G) Skewness of the distributions in (B—F). (H) SW
statistic of the distributions in (B—F). (I) Variance of the distributions in (B—F). SW, Shapiro-Wilk.
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low SW statistics and are closest to the ground truth. The raw
and Fisher both have p-values below common thresholds of
rejecting the null hypothesis that the distribution is Gaussian
(Peov=0.7536, p;<0.001, prisher=0.0142, ppc=0.3706,
Prisher&Bc = 0.3413). The skewness and SW-statistic suggest
in favor of either of the two BC distributions over the raw
correlation coefficient or just the Fisher transformation.
Finally, when considering the variance of the distributions,
the variance is inflated in the raw connectivity values and
even more so in the two instances where the Fisher transfor-
mation is applied (Fig. 21). Applying only the BC transforma-
tion leads to the least change in relation to the ground truth.
This simulation serves to illustrate that the Fisher transfor-
mation does not necessarily achieve a Gaussian distribution
regarding the variance of a time series. We also see how it
is possible for the sign of the skewness to flip between the dis-
tribution of raw correlation coefficients and the Fisher-
transformed data. This simulation, however, always has the
mean covariance at 0.5. We have not shown that this behavior
is similar throughout the range of possible connectivity val-
ues, but instead have illustrated the possible dangers of the
Fisher transformation. To show the effect throughout differ-
ent connectivity values, we turn to the empirical fMRI data.

A qualitative assessment of the effect of the Fisher and BC
transformations, and their combined use on empirical dFC
resting-state fMRI data

To illustrate the effects of the different transformations
on empirical dFC time series data we start by presenting
data from two subjects and a single edge between two

Example Subject 1
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nodes. Figure 3 shows the time series of dFC correlation co-
efficients and their corresponding distributions for four dif-
ferent cases. If we start by assessing the results obtained
for the first subject, we note that the distribution of the raw
dFC correlation coefficient values has a sharp peak of corre-
lation coefficient values that are larger than its mean. This
peak is accompanied by a greater spread of correlation coef-
ficients in the lower regime. If we examine the corresponding
Fisher-transformed distribution of dFC values (Fig. 3, second
row), we can, in this case, observe that although the Fisher
transformation alters the distribution so that it becomes un-
bounded by the —1 to 1 restriction, it still performs poorly
in terms of creating a Gaussian distribution of the dFC cor-
relation values. Similarly, the BC transformation used in iso-
lation (Fig. 3, third row) fares no better. However, the
combined Fisher&BC approach provides a rather good ap-
proximation to a Gaussian distribution (Fig. 3, last row).

Next, we proceed by examining the performance of the
suggested transformations on the data obtained from the sec-
ond subject (shown in the right column in Fig. 3). In this
case, another potential problem with the Fisher transforma-
tion becomes apparent. Here, the raw dFC time series consti-
tutes a distribution that appears to be Gaussian. When we
apply the Fisher transformation, we can observe that the dis-
tribution is skewed away from a Gaussian distribution. How-
ever, both the BC and Fisher&BC transformations create
distributions of dFC correlation coefficients that qualitatively
approximate a Gaussian distribution rather well.

From the examples shown here, where data was taken
from a single edge, we have illustrated two possible obstacles
that pertain to the Fisher transformation in the context of

Example Subject 2
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stabilizing the variance of a dFC time series. First, the Fisher
transformation may fail to stabilize the variance and thereby
provide a poor Gaussian distribution approximation for the
data, if the raw dFC time series is heavily skewed as shown
for the first subject in Figure 3. Second, as exemplified for
the second subject shown in Figure 3, it may skew the distri-
bution in the opposite direction (seen also in the simulations,
Fig. 2G), again performing poorly in terms of achieving a
Gaussian distribution.

The two examples shown in Figure 3 were chosen to illus-
trate our concerns with the Fisher transformation’s perfor-
mance in the context of dFC analysis. To get a more
general overview of the overall effect, we display the distri-
bution of static connectivity values for all subjects in
Figure 4. Here, we considered the same edge as shown
for example subject 1 in Figure 3 so that all examples
come from the same subjects that are closest to 0.1, 0.3,
0.5, 0.7, and 0.9 in absolute sFC (Fig. 4). Thereafter, we
show the effect of each transformation on the edge connec-
tivity. Similar to the qualitative examples shown in Figure 3,
the results shown in Figure 4 suggest that the BC and the
Fisher&BC transformations have the best performance re-
gardless of their sFC value.

An important observation from the results shown in Fig-
ures 3 and 4 is that a discussion of the stability of the vari-
ance from the tested transformations in terms of obtaining
Gaussian distributions is warranted, although not yet con-
firmed. However, the data does not have stable variance
(see Quantifying the Stability of the Variance of Each
dFC Time Series section) and, the data does not clearly dis-
play characteristics that would suggest another candidate
distribution, which the data should be transformed to
instead. Thus, when we quantify the SW-statistic and skew-
ness of dFC time series to quantify the extent of approximat-
ing a Gaussian distribution, this issue is related to the
stability of the time series variance.

41

Quantifying the stability of the variance
of each dFC time series

We aimed to quantify the stability of the variance in each
time series across all edges and subjects and for the distribu-
tions. Ideally, the variance should be similar throughout the
entire length of the dFC correlation value time series. By
splitting the data into two partitions through a median split,
we calculated the absolute difference in the variance between
partitions. The median split procedure allowed us to investi-
gate if the variance is similar in different parts of the time se-
ries. If the distributions had stable variance, regardless of
any assumption of the distributions, the absolute difference
will be zero. Figure 5 shows that the average difference
in variance, binned with respect to their static connectivity
values, is lowest for the combined Fisher&BC transforma-
tions, followed by the BC transformation, although it be-
comes less stable when the amplitude of the connectivity
values increases. Larger differences were observed for the
Fisher transformation, and the largest distance in variance
was seen for the raw dFC time series. Both the Fisher-
transformed data and the raw data had a large standard devi-
ation. The median split analysis suggests that the within-time
dFC series variance is most stable when the combined
Fisher&BC data transformation strategy is used.

As there is high variance in Figure 5 in the raw and Fisher
case, we can conclude that the variance is not stable in these
cases. As the mean of Figure 5 increases for the BC and also
the raw, these two do not have stable variance across the sSFC
range.

Quantifying normality and skewness of dFC time series

We now proceed by quantifying and evaluating the perfor-
mance of the three suggested approaches to stabilize the var-
iance in creating a Gaussian distribution for each dFC time
series. We have mentioned that distributions qualitatively

FIG. 4. Distribution of all
static functional connectivity
values (pooled over subjects).
Data are displayed in 0.025
increments. We here show
the effect of all the transfor-
mations on edges that has its
absolute static connectivity

values at 0.1, 0.3, 0.5, 0.7,
and 0.9, respectively.
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FIG. 5. Differences in dFC time series variance as a func-
tion of static connectivity for the raw data and the three
variance-stabilizing transformations investigated. The plot
shows the averaged absolute difference in variance and
binned according to its corresponding static connectivity
value. The variance of connectivity was estimated as the ab-
solute average distance of the time series connectivity values
when divided into an upper and lower partition by a median
split. Error bars show the standard deviation. Color images
available online at www .liebertpub.com/brain

appear Gaussian, but this can be misleading and we now try
and quantify how far each transformation is from achieving
Gaussian distributions. Thereafter, we also quantify the
skewness of the distributions, which deals with the symmetry
of the distributions.

First, we noted that for many edges, their corresponding
distributions were classified as being non-Gaussian by the
SW tests (Fig. 6A). The Fisher&BC transformation ap-
proach had the least amount of edges classed as non-
Gaussian for significance thresholds ranging from p <0.01
to p<0.00001. Even for the lowest statistical threshold
(p<0.00001), 36.5% of edges were still classified as non-
Gaussian and for the higher threshold (p<0.01), 84.9%
of all edges were classified as non-Gaussian. The three
other cases fared worse. The raw dFC time series contained
94.6% to 61.7% of non-Gaussian edges. The Fisher-
transformed time series of correlation coefficients showed
that non-Gaussian edges ranged from 93.9% to 58.6% and
the BC-transformed data ranged from 86.6% to 40.1%. It
should be noted that a significant value obtained with the
SW statistic argues against the null-hypothesis, which is
that the distribution of dFC values are Gaussian. Although
we are unable to prove the null hypothesis for any of
the proposed transformation strategies, we can still con-
clude that large performance differences exist for the
three proposed.

Next, we compared the average SW-statistic value for all
edges with regard to their sFC correlation coefficient
(Fig. 6B). We observe that both the raw and BC-transformed
dFC time series were classified to be less Gaussian as the
static connectivity value increased. The Fisher-transformed
dFC data behaves worse than the BC-transformed data for
lower static connectivity values, but are more on an equal
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footing for the case when the static connectivity value in-
creases above 0.7 and the BC transformation is unable to per-
form optimally on the bounded data. For the combined
Fisher&BC approach, the SW statistic quantified the distri-
butions as being more Gaussian. This finding was consistent
across all connectivity values. The Fisher&BC-transformed
data had the lowest SW-statistic for 81.1% of all edges, the
BC-transformed data had the lowest SW-statistic for 11.5%
of all edges, followed by the Fisher-transformed data with
6.7%. The raw dFC time series data displayed a Gaussian
distribution according to the SW-statistic for <1% of all
edges (Fig. 6C).

The story is similar for the skewness of the transformed
distributions as with the SW statistic. The raw connectivity
time series becomes increasingly skewed as a function of
the underlying absolute static connectivity (Fig. 6D, upper
left panel). The Fisher-transformed dFC data (Fig. 6D,
upper right panel) display a skewness in both positive and
negative directions. The positive skewness at higher connec-
tivity values is considerably less for the raw dFC time series
and this demonstrates how the Fisher transformation can
skew too much (similar to the results shown in Fig. 3B).
For the BC-transformed data, the standard deviation was
considerably lower than the raw and Fisher-transformed
data (Fig. 6D, lower left panel), but again became destabi-
lized at the higher connectivity values. The Fisher&BC
transformation once again had the best performance by hav-
ing a low standard deviation in skewness and was stable
across the entire range of mean dFC values (Fig. 6D, lower
right panel).

In sum, using two different tests, over the entire range of
underlying connectivity, the Fisher&BC strategy performed
the best.

Fluctuations of variance in dFC time series

One byproduct of the data transformations examined here
is that the variance of a given dFC time series of correlation
coefficients can be affected as well. To exemplify this influ-
ence, we correlated the between-subject variance of a single
edge dFC time series for the different variance-stabilizing
transformations examined (Fig. 6E). While all correlations
had a low p-value (p<0.001, Bonferroni corrected), this is
a correlation of the variance of the same time series for
the same subjects. The Spearman coefficient is quite low
(often capturing below 25% of the between-subject vari-
ance). While this result is perhaps not overly surprising it
shows that, without properly accounting for, it may become
hard to interpret what any quantitative difference of dFC var-
iance actually represents when contrasting data between
groups or conditions—especially when there are differences
in sFC as well.

The mean—variance relationship of dFC time series
after a combined Fisher and BC transformation

We have previously argued that if the analysis strategy of
dFC studies is to find interesting changes of connectivity in
time (e.g., to make a binary time series of connectivity that
used together with temporal graph theory; Thompson and
Fransson, 2016), then one has to take into account the
mean-—variance relationship that exists for dFC fMRI time se-
ries (Thompson and Fransson, 2015). This relationship
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implies that different thresholding strategies used for select-
ing connectivity estimates of interest in time will either
threshold based on those with the highest variance in connec-
tivity or those with the highest SFC (Thompson and Frans-
son, 2015). Thus, it then becomes relevant to investigate if
the previously shown relationship between the mean and
the variance of individual edges still holds after the com-
bined Fisher&BC transformation, as the conceptual argu-
ment discussed was based on nonstabilized variance.
Figure 6F shows the variance plotted against the mean for
dFC time series taken from all edges, averaged over subjects
for the Fisher&BC transformation. While the variance is
quite stable over edges, the fact that there are more edges
when the mean is lower leads to a greater probability that
some edges here have higher variance. We observe that
our previous observation regarding the relationship between
the mean and variance of dFC time series still holds after a
Fisher&BC transformation of the dFC data. This finding
implies that different (but reasonable) thresholding strategies
(based on taking edges with high mean or variance) will
yield different time points for different edges being marked
as candidates of significant/interesting connectivity. This oc-
curs because, despite the variance being relatively stable, the
mean—variance dependence still holds and the choice of anal-
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FIG. 6. (A) The percent of
non-Gaussian edges for dif-
ferent statistical thresholds
for the different distributions
from the SW-statistic. (B)
The normalized SW-statistic
plotted against their absolute
static functional connectivity
values for the three different
variance-stabilizing transfor-
mations together with the raw
dFC distribution. (C) The
percent for each of the four
dFC time series that had the
lowest SW-statistic. (D)
Skewness for the four differ-
ent distributions along dif-
ferent static functional
connectivity values for the
four different transformation
possibilities. Error bars show
standard deviation. (E)
Spearman rank coefficient of
the between-subject variance
for the four different trans-
formations computed for a
single edge. All values are
significant at p <0.001, Bon-
ferroni corrected. (F) Mean—
variance relationship of the
Fisher- and BC-transformed
connectivity time series.
Averaged over subjects, each
dot represents the average
mean and the average vari-
ance for each edge. Color
images available online at
www.liebertpub.com/brain
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ysis strategy to be used in future studies needs to be carefully
considered.

Discussion

From the results presented in this work, we can draw three
conclusions. First, dFC time series, in terms of within-time
series variance stability and degree of skewness compared
with a Gaussian distribution, is improved when using the
combined Fisher followed by a BC transformation approach
compared with using the prevailing Fisher transformation
strategy. Second, the problem of the mean—variance relation-
ship for dFC data (Thompson and Fransson, 2015) is still
present in data even after applying the Fisher&BC transfor-
mation strategy, meaning that the process of single out time
points of interest in different connectivity time series will
vary depending on the chosen thresholding strategy (i.e., giv-
ing preference to either edges with higher variance or higher
mean). Third, each of suggested variance-stabilizing trans-
formations display a relatively low degree of correlation
across subjects when considering that the correlation is ap-
plied to the dFC variance of the exactly same time series
with the exception of different transformations being applied
(Fig. 6E). This is most likely due to a nonlinear effect on the
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dFC variance introduced by the variance-stabilizing transfor-
mations. Specifically, the nonlinear effect originates in the
fact that when the investigated variance-stabilizing transfor-
mations are applied to dFC time series, their effect is not uni-
form across the range static connectivity correlations. Thus,
the task of quantifying the variance of dFC time series may
pose a difficult problem, since the nonlinear effects imposed
by the Fisher and/or BC transformations may artificially in-
flate or deflate the true variance of a dFC time series. In ad-
dition, to our knowledge, it is uncertain at this time how this
can be accounted for since the true variance of a given dFC
time series is unknown. This means that attention has to be
paid to this dependency when contrasting the variance of
dFC time series between different task conditions.

One might ask oneself what is the purpose of stabilizing
the variance? There are two good reasons why one may
wish to do this. (1) To achieve a better estimation of what-
ever metric of dFC that is being estimated; (2) to allow for
parametric statistic testing. While the second possibility is
feasible using variance-stabilizing techniques, there is no
reason (apart from perhaps simplicity) to abandon previously
proposed nonparametric testing procedures that have been
proposed for dFC studies (Hindriks et al., 2015). Critically,
the first possibility entails more accurate and better perform-
ing analysis steps (or even meeting assumptions of different
analysis techniques). Various data processing steps that are
commonly applied in studies of dynamic functional brain
connectivity, for example clustering, will often benefit in
performance by transforming the data so that its features ad-
here to a Gaussian distribution. We stress that the value of
the proposed pipeline and our motivation for this study
was primarily to achieve an increase in performance in
terms of estimating dynamic fluctuations in brain activity,
not to replace previous proposals of nonparametric statistics.

It is perhaps pertinent to ask the question if the problem of
variance stabilization in the context of dFC time series may
after all not pose such a large methodological difficulty as it
has been portrayed in this paper. To begin to provide an an-
swer, one may ask oneself, ““when could it be problematic to
use the Fisher transformation with the intent to stabilize the
variance for dFC time series?”” We identify two possible
problems with using the Fisher transformation on dFC time
series. First, it becomes harder to interpret the variance mea-
sures of the time series when there are shifts in dFC variance
imposed by the Fisher transformation and some of the edges
are skewed away from normality by the transformation. Sec-
ond, a substantial part of the dynamic functional brain con-
nectivity literature uses k-means clustering techniques on
Fisher-transformed data ( e.g., Allen et al., 2014; Barttfeld
et al., 2015; Damaraju et al., 2014;). In such instances, stabi-
lized variances will often make more robust clustering per-
formance. dFC studies considering these types of methods
would benefit from considering a BC transformation to be
done on the data after the Fisher transformation has been ap-
plied as edges with varying degrees of variance stability will
hamper performance.

Regarding the relationship between the mean and the var-
iance of connectivity time series, we have previously dis-
cussed the mean—variance relationship in dFC analysis and
its implications for choice of analysis strategy (Thompson
and Fransson, 2015). In that study we explored the variance
within a bounded range, that is, without a Fisher transforma-
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tion, which was performed because we, at that time, were
concerned about the Fisher transformation for the reasons
addressed in this article. However, it was unclear from the
Thompson and Fransson (2015) study whether the threshold-
ing problems we addressed in that study persists for the case
when the dFC time series variance was stabilized properly.
To this end, we have in the present study explicitly shown
when the variance has been stabilized (to the best of our abil-
ity) with first, the Fisher, then the BC transformation, we are
still able to replicate our previous findings related to the
mean—variance dichotomy when defining thresholds of inter-
esting dynamical activity in the dFC fMRI time series. The
implications of this relationship might be substantial as it
suggests that different analysis strategies (including both
choices of thresholding and clustering techniques) may be bi-
ased by the variance differences among dFC time series. We
suggest that scaling (e.g., by normalizing the data, including
demeaning and dividing the dFC time series by their standard
deviation) should be performed to get all the dFC time series
on equal mean and variance footing, which may be appropri-
ate in many instances of data clustering and comparisons be-
tween conditions or group of subjects—otherwise it risks
dFC contrasts merely illustrating an overly complicated con-
trast of the functional connectivity.

Although the present study clearly shows the statistical
benefits of applying the BC transformation on dFC data, it
is a pertinent question to ask if one should always use it in
combination with the Fisher transformation. We believe
that the answer depends to some degree on how the dFC
data will be used. Due to the nonlinear effects of the data
transformation shown in Figure 6E, we do not recommend
a direct quantification of connectivity based on the mean or
variance of dFC time series. Moreover, if other putative
mean and variance-independent measures are used to quan-
tify changes in dynamic connectivity, then variance stabi-
lization achieved by the Fischer&BC transformation is not
necessary and nonparametric statistical testing should be suf-
ficient. Additionally, if data are modeled using multimodal
distributions, then the transformations described in the pres-
ent work are not needed. The Fischer&BC transformation,
however, is useful when clustering the dFC data in some
way, which is often the case in dFC studies, since variance in-
stability will bias and hamper clustering performance. For ex-
ample, the k-mean clustering technique will by necessity
perform differently, and thereby be biased, for edges (fea-
tures) that have a more stable variance than those with less
stable variance. Finally, we are not ruling out the existence
of analytical strategies to transform the dFC data so that it ad-
heres to statistical distributions other than the Gaussian distri-
bution, when the intent is to stabilize dFC data variance.
However, the Gaussian distributions have numerous advan-
tages and well-behaved advantages, and it can be very bene-
ficial to work with such distributions (Wu, 2004).

We would like to emphasize the fact that nowhere in this
work are we making any claims of the ontological nature of
the distribution of brain connectivity in time. Our overall aim
was to provide a strategy to obtain a best possible, in the
sense of variance stability, connectivity time series for fur-
ther analysis steps. The stabilized connectivity time series
can subsequently be subjected to various measures of
quantification without resorting to an implicitly assumed sta-
bility of variance, which is often the case in the literature.
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To conclude, the Fisher transformation followed by a BC
transformation when applied on dFC fMRI data showed su-
perior performance terms of stabilizing the dFC time series
variance across its entire range. A possible drawback with
the suggested approach is that the parameter A needs to be fit-
ted, which poses additional work for the researcher. It is
worth noting that when implementing the BC transformation
on economic data, Nelson and Granger (1979) often failed to
find an adequate / estimate for their model. Indeed, we occa-
sionally observed that the 4 parameter could at times fail to
fit, but these instances were relatively few in number. Poten-
tially, an expansion of the possible range of 4 for these edges
could be an option or more efficient parameter searching
tools to find A.

While dFC is an exciting field of research, the present
results warrant caution when computing contrasts of dy-
namic functional brain connectivity between subject popu-
lations and/or tasks, and that the underlying assumptions
and the statistical distributions of the data should be care-
fully considered.

We hope that researchers will consider which of the
variance-stabilizing techniques they should use and we strongly
recommend that the BC or Fisher&BC data transformation is
used. Without a correct stabilization of the dFC data variance,
the risk of biases in the dFC results cannot be neglected.
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