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With programmed death 1/ligand 1 (PD-1/PD-L1) as the cornerstone, anti-PD antibodies
have pioneered revolutionary immunotherapies for malignancies. But most patients
struggled to respond to anti-PD owing to primary or acquired resistance or even
hyperprogression, pointing to more efforts needed to explore this axis. PD-1 constrains
T-cell immunoreactivity via engaging with PD-L1 of tumor/myeloid cells is the canonical
PD-1/PD-L1 axis function mode. Studies are increasingly aware of the impact of
noncanonical PD-1/PD-L1 expression in various cancers. PD-L1 induced on activated
T-cells ligates to PD-1 to mediate self-tolerance or acts on intratumoral myeloid cells and
other T-cells, affecting their survival, differentiation and immunophenotyping, leading to
tumor immunosuppression. Myeloid PD-1 interferes with their proliferation, differentiation,
cytokine secretion and phagocytosis, mediating remarkable pro-tumor effects. Tumor cell
intrinsic PD-1 signaling has diverse functions in different tumors, resulting in pro-
proliferation or proliferation inhibition. These nonclassical PD-1/PD-L1 functions may be
novel anti-PD mechanisms or causes of treatment resistance. This review highlights the
nonnegligible role of T-cell-intrinsic PD-L1 and tumor/myeloid PD-1 in the cell interplay
network and the complex impact on the efficacy of anti-PD antibodies. Reconsidering and
rational utilization of the comprehensive PD-1/PD-L1 axis could cumulate breakthroughs
in precision treatment and combination for anti-PD therapies.
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INTRODUCTION

Programmed death-1 (PD-1) was discovered in 1992 as an apoptosis-associated gene (1).
Subsequent studies identified PD-1 as a negative regulatory immune molecule to maintain self-
tolerance, containing cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) and
switch motif (ITSM), and predominantly expressed in T/B-lymphocytes (2–5). Programmed death
ligand 1 (PD-L1) was discovered in 1999 as a novel member of the B7 family (6). In 2000, PD-L1
was found to be a ligand for PD-1, which inhibits T-cell proliferation (7). Later studies revealed that
PD-L1, abundantly expressed on tumor and myeloid cells, induces T-cell apoptosis and
immunosuppression to achieve tumor escape, and is a potential tumor therapeutic target (8–10).
org May 2022 | Volume 13 | Article 9107041
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Since 2012, numerous clinical reports (11–19) have shown the
unprecedented efficacy of anti-PD antibodies for the treatment
of metastatic bladder cancer, renal-cell cancer, colorectal cancer
(CRC), non–small-cell lung cancer (NCSLC), and melanoma,
etc. Frustratingly, durable responses to PD-1/PD-L1 antibodies
are only achieved in about 10-40% of patients, with the majority
not benefiting (20). In parallel to the necessity to address
resistance and hyperprogression, immune-related adverse
events cannot be neglected (21, 22), emphasizing in-depth
investigation of the physiological-pathological functions and
regulatory mechanisms of the PD-1/PD-L1 axis is paramount.

This review focuses on significant advances in the
nonclassical PD-1/PD-L1 axis, summarizes and discusses the
roles of T-cell-intrinsic PD-L1 and myeloid/tumor cell-intrinsic
PD-1 in cancer progression and the complex implications for
anti-PD efficacy, hoping to inspire more rational anti-PD drug
design and combination strategies.
CLASSICAL EXPRESSION AND LOCATION
OF PD-1/PD-L1

Generally, the PD-1/PD-L1 axis is involved in tumor immune
escape via antigen-presenting cell (APC) or tumor cell surface
PD-L1 mediating suppression of PD-1+ CD8+ T-cells and
blocking PD-1/PD-L1 ligation can reinvigorate anti-tumor
adaptive immunity (20, 23). The classical PD-1/PD-L1 axis is
the main attraction for drug development.

PD-1 on T-Cells
Earlier studies concluded that PD-1 was mainly expressed on
thymic and splenic T-cells (3, 24, 25) and that PD-1 ligation on
CD8+ T-cells inhibits naive-to-effector differentiation,
cytotoxicity, proliferation, and survival during chronic
infections and tumor progression (26–32). PD-1/PD-L1
blockade rescues CD8+ T-cells from exhaustion or dysfunction
(26, 29, 32). Increased PD-1+ CD8+ T-cells are positively
correlated with anti-PD responses (33, 34). Notably, PD-1
expression does not necessarily determine T-cell exhaustion
(35). Partial PD-1 intermediate T-cells maintain proliferation
and interferon-g (IFN-g)/tumor necrosis factor-a (TNF-a)
secretion and show well potential for anti-PD reinvigoration
(36, 37). PD-1 signaling also affects other T-cell subsets. PD-L1
engagement on CD4+ T-cells affects cytokine secretion and
induces differentiation into regulatory T-cells (Tregs) (38–40).
Follicular helper T-cells, natural killer T-cells (NKT) and gd T-
cells also reduce antitumor activity or exert regulatory functions
due to PD-1 function (41–45). Recent advances demonstrated
that PD-1 ligation also regulates the metabolic reprogramming
and migration of T-cells (45–47).

PD-L1 on Tumor Cells and Myeloid Cells
PD-L1, abundantly expressed on tumor or myeloid cells, engages
on antitumor T-cells to accelerate their apoptosis and malfunction
(8, 10). Anti-PD-L1 antibodies are effective in reversing the tumor
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immunosuppression microenvironment (9, 10). The contribution
of host and tumor PD-L1 to the efficacy of anti-PD blockade
remains controversial. Recently, researchers suggested that PD-L1
of host myeloid cells mainly determines the efficacy of PD-L1
antibodies (48–51). Tumor cell-derived PD-L1 exosomes were also
shown to inhibit the anticancer activity of T-lymphocytes (52).
Additionally, complicated membranal protein interactions and
intracellular signaling of PD-L1 were revealed, suggesting there are
multiple unresolved gaps in PD-L1 function. The cis-CD80/PD-L1
interactions on APCs impede PD-L1/PD-1 and CD80/cytotoxic
T-lymphocyte-associated antigen-4 (CTLA-4) inhibitory signaling
but do not affect CD28 co-stimulatory signaling (53, 54). Ongoing
studies have indicated that PD-L1 as a receptor could transmit
signals and impact the anti-apoptosis, chemotaxis, neoantigen
presentation, and glycolysis of tumor cells or APCs (55–59).
Moreover, cytoplasmic or nuclear translocation of PD-L1 could
modulate genomic stability, DNA damage response, pyroptosis,
and gene transcription of tumor cells (60–63).
PD-L1 EXPRESSED ON T CELLS

Although the T-cells-intrinsic-PD-L1 has been insufficiently
studied, in fact, as early as when PD-L1 was identified, Lieping
Chen’s team already found that although PD-L1 was not expressed
in freshly isolated human and mouse T-cells, but could be
upregulated in activated T-cells (6, 64), especially in CD4+ T-cells
and CD45RO+ memory T-cells (65). They also found that
autoantibodies against PD-L1 in rheumatoid arthritis patients
acted on primary CD4+ T-cells to promote apoptosis of activated
CD4+ T-cells in an interleukin-10 (IL-10)-dependent manner.
Subsequently, via PD-L1-deficient mice, researchers found that
PD-L1 depleting led to increased CD4+ T-cell cytokine production,
increased CD8+ T-cell expansion and cytotoxicity, and increased
intrahepatic accumulation and survival of CD8+ T-cells, as well as
impaired autoimmune tolerance (25, 66, 67). Su-Kil Seo et al.
reported that T-cell-associated PD-L1 interacted with PD-1 on T-
cells via the alloreactive T–T interaction, resulting in reduced T-cell
proliferation and IFN-g and IL-2 production (68). And Nuriban
Valero-Pacheco et al. observed that PD-L1+ CD8+ T-cells were
related to a lower T-cell proportion in patients infected with the
H1N1 virus (69). These early findings revealed that PD-L1 was
expressed on activated T cells and may also act as a receptor to
receive signals that affect T-cell activation and self-
tolerance maintenance.

Nonetheless, several researches conducted during the same
period discussed that T-cell-intrinsic-PD-L1 functions appeared to
contradict the preceding conclusions. Oezcan Talay et al.
demonstrated that activation and proliferation of PD-L1-/- CD8+

T-cells in the initial phase against influenza virus was impaired and
that PD-L1 expressed on naive T-cells was required for T-cell-
mediated dendritic cell (DC) maturation (70). Seung-Joo Lee and
colleagues also found a significant increase in PD-L1 on CD4+ T-
cells during Salmonella infection and that PD-L1-deficiency did not
affect specific antibody production and CD4+ T-cell expansion but
May 2022 | Volume 13 | Article 910704
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affected CD4+ T-cell maturation and function (71). For anti-tumor
immunity, Vesna Pulko et al. found that PD-L1 upregulation on
primed T-cells helped effector T-cells survive the contraction phase,
but anti-PD-L1 hindered T-cell survival (72). Their results also
showed that PD-L1-deficient CD8+ T-cells were more sensitive to
cytotoxicity, whereas adoptive PD-L1-deficient T-cell therapy was
ineffective in restraining the growth of B16-OVA tumors.
According to Asim Saha et al., upregulated PD-L1 expression in
donor T-cells promoted graft-versus-host responses (73). PD-L1-
deficient T-cells had fewer gut homing receptors, produced fewer
inflammatory cytokines, enhanced apoptosis and multiple
bioenergetic pathways.

Additional studies have reported puzzling roles for anti-PD-
L1 antibodies in antitumor, anti-infection and anti-autoimmune
diseases (74–77). For example, two publications found that
Listeria infection enhanced T-cell PD-L1 expression, whereas
PD-L1 antibody blockade selectively obstructed the anti-
intracellular bacterial responses of CD8+ T-cells (75, 76).
Notably, partial anti-PD-L1 antibodies caused apoptosis of PD-
L1+ T-cells, even PD-1-knockout T-cells, by activating p38
MAPK, and that such antibodies failed to suppress B16-OVA
and RENCA tumor growth in vivo (77). And these PD-L1+ T-
cells inhibited the apoptosis of activated CD8+ T-cells via altering
phosphorylation of p38 MAPK through intracellular interactions
with DNA-PK. These results have sparked a debate about
whether T-cell-intrinsic PD-L1 regulates the immune system
positively or negatively. Researchers are reminded to focus on the
complexity of T-cell-intrinsic PD-L1 function, where the
different phases of immune responses, immune cell crosstalks,
unexpected protein interactions, and specific anti-PD-L1
functions all require careful exploration.

In recent years, important progresses have been made
regarding the expression pattern and immunomodulatory
function of T-cell-intrinsic PD-L1 (Figure 1). Donnele Daley
and colleagues found that PD-L1 expression switched positive in
approximately 50% of gd T-cells in human and murine pancreatic
ductal adenocarcinoma (PDA), and that blocking PD-L1 in gd T-
cells enhanced activation and infiltration of CD4+ and CD8+ T-
cells (78). Subsequently, Brian Diskin et al. used extensive
experiments to elucidate the regulatory role and mechanisms of
T-cell-intrinsic PD-L1 in PDA tumors (79). They detected that
PD-L1 was expressed on >50% of intratumoral T-cells in the
orthotopic PDA model and increased with progressive
oncogenesis. And 63% of T-cells in B16 tumors and 17% of T-
cells in MCA38 tumors also expressed PD-L1. Intriguingly, the
highest PD-L1 expression in human PDA was found in T-cells,
rather than in tumor cells or macrophages as commonly thought.
Based on the fact that conditional ablation of PD-L1 in T-cells
promoted adaptive anti-tumor responses and activated
macrophages, they elucidated that PD-L1+ T-cells reinforce an
immune tolerant environment to accelerate carcinogenesis
through three ways: (1) PD-L1 engagement on T-cells inhibits
Th1 differentiation but promotes Th17 differentiation via a
STAT3-dependent manner, while inducing an anergic
phenotype in CD8+ T-cells (2) PD-L1+ T-cells deliver inhibitory
signals to PD-1+ T-cells; (3) PD-L1+ T-cells engage PD-1+
Frontiers in Immunology | www.frontiersin.org 3
macrophages to promote M2-preference differentiation. Giorgia
Fanelli et al. proved that PD-L1 ligation accompanied by CD3/
TCR stimulation tended to transform memory T-cells but not
naive T-cells into highly suppressive Tregs by triggering the PD-L1
intracellular pathway as reducing ERK phosphorylation and
decreasing AKT/mTOR/S6 signaling (80). And Fabienne
Mazerolles et al. suggested that T-cell proliferation was
correlated with the PD-L1 expression of activated naive CD4+

effector T-cells regulated by DCs and Tregs (81). Thus, T-cells-
intrinsic PD-L1 has bidirectional signaling that affects CD4+ T-cell
and macrophage differentiation and attenuates cytotoxic T-cell
effects to drive immune tolerance.

In addition, numerous evidences have shown peripheral or
tumor-infiltrating PD-L1+ T-cell levels have the potential to be
served as clinical indicators. Two papers reported that melanoma
patients had greater PD-L1+ circulating T-cell levels than healthy
volunteers, and PD-L1+ CD8+ T-cells were raised in disease
relapsed or disease-related dead patients (82, 83). Furthermore,
PD-L1+ circulating CD4+/CD8+ T-cells may be a predictive
biomarker for anti-CTLA-4 therapy resistance. Bruktawit A.
Goshu et al. demonstrated that anti-PD-L1 (Avelumab)
targeting PD-L1+ HIVGag-specific-CD8+ T-cells combined
with rhIL-15 enhanced CD8+ T-cell activity during HIV
infection (84). Xia Li et al. identified dynamic fluctuations in
PD-L1 on CD4+/CD8+ T-cells around the partial mission phase
of type 1 diabetes and suggested PD-L1 may be a potential target
for prolonging this phase (85). Several analyses (86–91) of
patient samples involving ovarian cancer, NSCLC, and chronic
lymphocytic leukemia (CLL) suggested an association between
low circulating or infiltrating PD-L1+ CD8+ T-cells and
prolonged survival, but high PD-L1+ CD8+ T-cell levels
predicted a better anti-PD-1/PD-L1 therapy response. Among
them, Libin Zhang et al. used a cohort of 378 NSCLC cases to
speculate that CD8+ PD-L1+ TILs might indicate a hot but
immunosuppressive tumor microenvironment with a high
mutation burden (90). Nikolaos Ioannou et al. found that
avadomide, via triggering IFN signaling in T-cells to increase
PD-L1 expression on T cells, reprogramed patients’ T-cells,
which complements PD-L1/PD-1 blockade (91).
TUMOR CELL-INTRINSIC PD-1

Given the predominant biofunction of PD-1 on T-lymphocytes,
T-cell-extrinsic PD-1 has been largely neglected. Yet persistent
studies focusing on the non-classical PD-1 are shedding further
light on previously incomprehensible biological and clinical
phenomena. Currently, PD-1 has been identified to be
expressed on various clinical tumor cells or tumor cell lines of
CRC, melanoma, hepatocellular carcinoma (HCC), NSCLC and
PDA (92–102). However, the ramifications of tumor cell-
intrinsic PD-1 on oncogenesis have sparked much controversy.

For most oncological diseases, tumor cell-intrinsic PD-1
augmented cancer advancement independently of adaptive
immunity (Figure 2A). Sonja Kleffel and colleagues earlier
identified that preferential expression of PD-1 by ABCB5+-
May 2022 | Volume 13 | Article 910704
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melanoma cells mediated increased tumorigenic capacity (94).
Then they noticed that 3.5% to 16.5% of clinical melanoma cells
expressed PD-1, and PD-1 positive frequencies ranged from
11.3% to 29.5% in eight human melanoma cell lines and from
6.6% to 9.4% in two murine melanoma cell lines (95). Through
PD-1 knockdown/overexpressing B16 phenotype in NSG, they
determined tumor PD-1 on B16 promoted tumorigenesis
independently of immunity. By mutating the tyrosine sites of
Frontiers in Immunology | www.frontiersin.org 4
ITIM and ITSM, it was determined that melanoma-PD-1-driven
tumorigenesis required the interactions between melanoma-PD-
1 and host/melanoma-PD-L1 to initiate the PD-1 intracellular
signaling via the mTOR pathway. Hui Li et al. later reported that
five HCC cell lines and clinical HCC tissues contained
subpopulations upregulating PD-1 (96). PD-1 interacted with
and promoted phosphorylation of the mTOR effectors eIF4E and
S6 to enhance tumor growth. Ning Pu et al. believed that PD-1 of
FIGURE 1 | Negative regulation of anti-tumor immune responses by T-cell intrinsic PD-L1. (1) Tumor-infiltrating PD-L1+ T-cells act on intratumoral PD-1+

macrophages to induce M2 polarization. M2 can promote tumor progression. (2) PD-1+ cells act on PD-L1+ T-cells to limit the differentiation of Th1 and Th2
and promote the differentiation of Th17 and Tregs, leading to an increase in pro-tumor immunosuppressive factors such as IL-10, IL-17 and TGF-b. (3) PD-
L1+ T-cells and PD-1+ T-cells achieve bidirectional signaling through PD-1/PD-L1 interactions, resulting in bidirectional immunosuppression: inhibition of CD4+

T-cells activation, expansion and cytokine secretion; inhibition of CD8+ T-cells activation, expansion and cytotoxicity. PD-L1+ gd T-cells suppress the
activation, intratumoural infiltration and antitumor activity of ab T-cells via the PD-L1/PD-1 axis.
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FIGURE 2 | Impact of tumor and myeloid cell-intrinsic PD-1 on tumor progression. (A) The effect of tumor cell-intrinsic PD-1 on melanoma, liver cancer, and other
malignancies. PD-L1 expressed by tumor cells or other cells acts on PD-1+ tumor cells to mediate PD-1 signaling in tumor cells via ITIM and ITSM. The Hippo pathway
and phosphorylation of mTOR downstream effector molecules eIF4E and S6 can enhance tumor-promoting gene transcription and protein expression. Anti-PD antibodies
can block the PD-1/PD L1-mediated tumor promotion independent of adaptive immunity. (B) The role of tumor cell-intrinsic PD-1 in lung cancer. PD-L1 expressed by
tumor cells or other cells acts on PD-1+ tumor cells to suppress tumor growth by dampening AKT and ERK signaling. Acetylation of p53 promotes gene transcription of
PD-1. Anti-PD antibodies block PD-1/PD-L1-mediated tumor suppression, leading to hyperprogression in immunocompromised patients. (C) Effects of myeloid PD-1 on
cell development, differentiation and function. (1) PD-1 expression promotes common myeloid progenitors (CMP) differentiation into granulocyte/macrophage progenitors
(GMP), leading to increased MDSCs in granulocyte lineages and suppressing the activity of anti-tumor CD8+ T-cells. (2) PD-1 suppresses M1 polarization by reducing
STAT1 and NF-kB phosphorylation and promoted M2 polarization by increasing STAT6 phosphorylation. (3) PD-1 suppresses DC maturation, survival and co-stimulatory
molecules expression, consequently downregulating antigen-specific T-cell activity.
Frontiers in Immunology | www.frontiersin.org May 2022 | Volume 13 | Article 9107045
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PDA cells promoted tumor growth and apoptotic resistance via
PD-L1 ligation and Hippo signaling (99).

These teams also showed that blocking PD-1 inhibited the
growth of xenografts in immunodeficient mice, and innovative
combination strategies have been proposed and practiced (95, 96,
99). Li Hui et al. tried mTOR inhibitors in combination
with anti-PD-1 to accomplish more durable and synergistic
tumor regression (96). Ning Pu et al. found that Hippo
pathway inhibitors together with anti-PD-1 treatment showed
remarkable tumor eradication (99). Besides, the two teams
highlighted that tumor cell PD-1 levels were positively
correlated with poorer prognosis, further underlining the
clinical value of tumor PD-1.

Nevertheless, tumor cell-intrinsic PD-1 has been found to
depress malignancies in several lung cancer studies (Figure 2B).
Shisuo Du et al. described a NSCLC patient with hyperprogression
after palliative radiotherapy and pembrolizumab treatment, and
tumor biopsy found PD-1 positive NSCLC cells (97). Increased
viability of PD-1+-NSCLC cells M109 following PD-1 blockade
was measured in vitro. Anti-PD-1 could significantly promote
M109 growth in NSG. Yunlong Zhao et al. reported that PD-1 and
PD-L1 were co-expressed in NSCLC subpopulations (98). They
found that co-expressed PD-1 bound to PD-L1 in cis and inhibited
PD-L1 to bind T-cell-PD-1 in trans to repress canonical PD-1/PD-
L1 signaling. Selective blockade of tumor-intrinsic PD-1 could
release tumor PD-1 to inhibit T-cell function. Xiaodong Wang
et al. identified four lung cancer cell lines and 2/7 NSCLC patients
expressing PD-1 protein (100). They demonstrated that in an
immune-free condition, knockdown/overexpression of PD-1 in
tumor cells altered AKT and ERK1/2 phosphorylation dependent
on PD-L1, while Nivolumab and Pembrolizumab administration
activated AKT and ERK1/2 signaling to promote the growth of
PD-1+ lung cancer cells and even colon cancer cells. This suggests
that the anti-tumor function of PD-1 may not be confined to
NSCLC. Zhijie Cao et al. unexpectedly identified that the
acetylated p53 preferentially recruited the transcriptional co-
activator p300/CBP/TIP60 to the promoter region of PD-1 and
elevated the accessibility of PD-1 transcription by upregulating the
local histones H3K18/27 and H4K16 acetylation (101). PD-1 in
cancer cells inhibited NSCLC (H1299) tumor growth, whereas
interference with PD-1 transcriptional activation significantly
attenuated the p53-dependent tumor suppression, confirming
the materiality of the p53-PD-1 axis. These findings imply that
anti-PD-1 for PD-1+ NSCLC patients may result in tumor
hyperprogression. However, a recent study has suggested that
PD-1 expression in lung cancer cell lines (A549, H1975, H1299
and HCC827) can enhance their proliferation and clone formation
(102). Therefore, the multifaceted effects of PD-1 on NSCLC still
need further research and debate.
MYELOID CELL-INTRINSIC PD-1

Soon after PD-1 was identified, Tasuku Honjo’s team noted that
PD-1 was also expressed on myeloid cells (103). Studies have
Frontiers in Immunology | www.frontiersin.org 6
confirmed that PD-1 is expressed on monocytes (104–106),
macrophages (79, 107–113), DCs (114–119) and myeloid-
derived suppressor cells (MDSCs) (120). Myeloid-PD-1 was
markedly upregulated during infections, tumor progression,
organ injury and compound induction. Researchers have found
that toll-like receptor (TLR) agonists, NOD-like receptor
agonists, cytokines, and growth factors all augmented myeloid-
PD-1 expression dependent on NF-kB and STAT3, etc.
Alexander P. R. Bally and colleagues revealed an NF-kB
binding site located in conserved region C upstream of PDCD1
was required for NF-kB-dependent macrophages PD-1
induction (109). Sorim Nam et al. also noticed that PD-1 of
MDSCs was regulated by the NK-kB signaling (120).
Purushottam Lamichhane et al. found that IL-10 mediated
increase in PD-1 of DCs was STAT3 dependent (119). Besides,
histone modifications in the PD-1 promoter region are also
involved in myeloid-PD-1 induction (109, 112). However,
controversy remains in these studies. For example, Sheng Yao
et al. reported that PD-1 of spleen DCs was inhibited by TLR9
agonists but not affected by IL-6 and TNF-a (114), but Elias A
Said et al. found that TLR9 agonists, IL-6 and TNF-a all
promoted PD-1 upregulation in monocytes (104). The
differential responses of inducers may be due to cell types and
microenvironment, emphasizing that much work remains to be
done to investigate the regulatory mechanisms of myeloid-PD-1.

PD-1 engagement affects the differentiation, maturation,
survival, metabolism, and effects of myeloid cells (Figure 2C).
Myeloid-PD-1 altered the balance of differentiation into
monocyte and granulocyte cells (106). PD-1 suppressed M1
polarization by reducing STAT1 and NF-kB phosphorylation
and promoted M2 polarization by increasing STAT6
phosphorylation (108, 110, 121). Classical phosphorylation of
ITIM and ITSM of PD-1 and recruitment of SHP-2 remained
upstream of these signals (110). But PD-1 on DCs suppressed
antigen presentation viaMHC I expression inhibition dependent
on the NF-kB pathway but independent of SHP-2 (117). In
addition to host/tumor cells PD-L1 acting on PD-1+

macrophages, T-cell PD-L1 ligation induced M2 differentiation
(79). Notably, studies have observed that anti-PD-1 promoted
M1 polarization, which may directly function on PD-1+

macrophages besides the indirect effect of PD-1+ T-cells
(122–124). PD-1 ligation on myeloid cells hampered glycolysis
and cholesterol metabolism (105, 106). In addition, PD-1-
deficient DCs exhibited prolonged longevity dependent on
increased MAPK1 and CD40 signaling, as well as maturation-
promoting and increased cytokines and co-stimulatory
molecules expression, consequently promoting antigen-specific
T-cells activity (114–116, 118). Similar phenomena have been
observed in monocytes/macrophages (104, 107).

Myeloid-PD-1 expression has been shown in ovarian cancer
(115), melanoma (125), gastric cancer (121), NSCLC (98),
pleural mesothelioma (112), etc, and generally increased with
tumor progression. Tumor-infiltrating PD-1+ myeloid cells
exhibited immunosuppressive phenotypes with upregulated of
PD-L1 and IL-10 and could directly inhibit anti-tumor T-cells
infiltration or effects via the PD-1/PD-L1 axis (115, 119).
May 2022 | Volume 13 | Article 910704
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New mechanisms of myeloid-PD-1 involvement in tumor
immunity have been unearthed in recent years. Sydney R.
Gordon et al. found that tumor-associated macrophages
(TAMs) PD-1 expression impeded phagocytic potency against
tumor cells, and blockade of PD-1 increased phagocytosis and
reduced oncogenesis dependent on macrophages (111). Yunlong
Zhao et al. reported that co-expressed PD-1 bound to PD-L1 in
cis on APCs to hinder PD-L1 acts on T-cell-intrinsic PD-1 in
trans (98). The work of Laura Strauss et al. focused on how
myeloid-PD-1 affected myeloid cell differentiation, metabolism
and effects, particularly during cancer-driven emergency
myelopoiesis (79). They discovered a significant reduction in
granulocyte/macrophage progenitors (GMP) in PD-1-deficient
mice, and myeloid cells of tumor-bearing mice were skewed
toward the LY6C+ monocytic lineage, which was determined by
myeloid-PD-1 deletion. PD-1 deficiency or blockade suppressed
monocytic immunosuppressive functions. Myeloid-PD-1-
knockout was superior to systemic PD-1-knockdout and T-cell
PD-1 conditional knockout for tumor inhibition, even in MC38
tumors where T-cells PD-1 knockout functioned slightly but
myeloid-PD-1 deletion completely inhibited MC38 growth.
Notably, anti-PD-1 antibodies were still effective in mice
lacking T-cells.

Thus, the role of myeloid-PD-1 in anti-PD-1 therapy is gaining
attention, and several combination strategies have been proposed.
Purushottam Lamichhane et al. found that DCs responded to PD-1
blockade by increasing IL-10 production (119). The combination of
PD-1 and IL-10 blockade significantly reduced tumor burden.
Hirotake Tsukamoto et al. found that blocking PD-1/PD-L1
prompted PD-1+ TAMs to produce IL-6. Depletion of
macrophages in melanoma-bearing mice reduced the levels of IL-
6 during PD-1/PD-L1 blockade, suggesting that IL-6-neutralizing
antibodies are potential candidates for combination with anti-PD-1
antibodies (125). In addition, inhibition of EZH2 methyltransferase
was found to promote PD-1 expression on macrophages, and the
combination of EZH2 inhibitors and anti-PD-1 antibodies could
achieve better anti-tumor efficacy (112).
OTHER NONCANONICAL
PD-1/PD-L1 EXPRESSION

In addition to the above discussion, unacquainted PD-1/PD-L1
expression in other cell types also requires attention. Taking NK
cells as an example, although less studied, available reports have
supported that NK cells can express PD-1/PD-L1. PD-L1
engagement can inhibit PD-1+ NK cell-mediated antitumor
responses (126, 127). Increased NK cell PD-1 expression is
associated with tumor progression and poor prognosis in
patients (128, 129). Anti-PD-1 treatment can promote NK cell
activation, intratumoral recruitment, and anti-tumor
cytotoxicity (130–132). Studies on PD-L1 in NK cells are much
rarer. Existing results suggest that the TME can upregulate PD-
L1 in NK cells (129, 133). PD-L1 inhibitors can not only block
the inhibitory signal of PD-1, surprisingly, also directly activate
PD-L1+ NK cells (133).
Frontiers in Immunology | www.frontiersin.org 7
Furthermore, the expression of PD-1/PD-L1 in other non-
immune cells may also affect the efficacy or safety of anti-PD
therapy. For example, PD-1 was found to be expressed by
primary sensory neurons in the dorsal root ganglion and to
affect their signaling, and administration of anti-PD-1 antibodies
to mice or non-human primates led to altered opioid-induced
antinociception (134).
DISCUSSION OF NONCANONICAL
PD-1/PD-L1 AXIS ASSOCIATED
THERAPY STRATEGIES

Shifting the focus of anti-PD therapies from the classical PD-1/
PD-L1 axis to noncanonical axis may provide opportunities to
broaden the benefits of PD-1/PD-L1 blockade through rational
drug design and combination based on the regulatory role of
noncanonical PD-1/PD-L1 axis in tumorigenesis.

The involvement of T-cell intrinsic PD-L1 in immunosuppression
is increasingly recognized as an additional mechanism for anti-
PD-L1 efficacy. Considering several studies emphasized that
many anti-PD-L1 antibodies could trigger apoptosis of PD-L1+

T-cells (72, 77), excluding such antibodies via T-cell apoptosis
assays and using of Fc with weak effects are spurred. Besides,
potential cis-interactions of PD-1/PD-L1 andCD80/PD-L1 onT-
cells need to be investigated. They have been shown to contend
with PD-1/PD-L1 andCD80/CTLA-4 trans-interactions (54, 98),
so that anti-PD-1/PD-L1 antibodies alone lead to the release of
inh ib i tory s igna l s a f t e r break ing c i s - in terac t ions .
Coadministration of anti-PD-1, anti-PD-L1 and anti-CTLA-4
antibodies or treatment of anti-PD-1/PD-L1/CTLA-4 trispecific
antibodies may be candidate approaches to completely unleash
innate and adaptive immunity to eradicate tumors, which also fits
well with cancers with PD-1+ tumor or myeloid cells.

Intracellular signals of tumor-intrinsic PD-1 as accomplices
of malignancies are candidate strategies for combination with
anti-PD-1 antibodies, such as Hippo and mTOR pathways.
Notably, PD-1 of tumor cells has been found to depress
NSCLC tumor growth, and anti-PD-1 treatment may even lead
to tumor hyperprogression. In general, anti-PD therapies result
in significant activation of T-cells in patients to eliminate tumors.
However, in immunocompromised patients with low initial
activated T-cells, anti-PD antibodies administration could not
normalize the intratumoral T-cells function, but may raise the
pro-tumor signaling, thus leading to tumor hyperprogression
(21). Therefore, for NSCLC or cancers with hyperprogression
caused by immunotherapies, caution is needed for anti-PD-1/
PD-L1 treatment. Combination with AKT and ERK1/2
inhibitors is an approach to contain the tumor-promoting
signaling activated by anti-PD-1 antibodies (100), and
combination with innate immune agonists can boost the
antitumor responses of patients. Combining them may be a
beneficial strategy for patients with hyperprogression.

For myeloid cells, increased secretion of IL-6/IL-10 induced
by anti-PD-1 antibodies is also a potential target for combination
to further repress the alternative inhibitory molecules (119, 125).
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In addition, the noncanonical expression of other checkpoint
molecules such as lymphocyte activation gene-3 (LAG-3)
(135, 136) and T cell immunoglobulin domain and mucin
domain-3 (TIM-3) (137) on myeloid cells also needs
attention and investigation, and combination with these
checkpoint inhibitors holds promise for overcoming
antitumor resistance.
CONCLUSION AND PERSPECTIVES

In summary, the noncanonical PD-1/PD-L1, represented by T-
cell-intrinsic PD-L1, tumor cell-intrinsic PD-1, and myeloid PD-1,
exhibits unique protein interactions, signaling and cell crosstalk to
regulate cell growth, differentiation, metabolism and effects
dependently on immunity or not. But noncanonical signaling
contributes to both anti-PD efficacy and resistance, and further
studies are needed to resolve, balance, or even exploit these
controversies for clinical applications of the noncanonical PD-1/
PD-L1 axis. Integrating the classical and non-classical PD-1/PD-
L1 axes and revisiting the role of the holistic PD-1/PD-L1 axis on
tumor progression in specific cancer types and stages, improved
Frontiers in Immunology | www.frontiersin.org 8
therapeutic efficacy and safety of anti-PD therapies will be
achieved through rational drug design and combination.
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