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Abstract: Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-
inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different se-
lenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS)
generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated pro-
tein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading
to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of
insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite
and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder,
can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in
their offspring that, according to the metabolic programming theory, will produce cardiovascular
and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and seleno-
proteins’ implications in MetS generation, which is even greater during MetS programming. This
narrative review also provides an overview of the existing evidence, based on experimental research
from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue
deposits and antioxidant selenoproteins’ expression in their offspring. These changes contribute to
alterations in tissues’ oxidative damage, inflammation, energy balance, and tissue function, mainly in
the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups’
growth and development. MetS pups present a profile similar to that of diabetes type 1, which also
appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should
be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine
energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart
reprogramming. However, more studies are necessary.

Keywords: selenium; selenoprotein; metabolic syndrome; fetal programming; cardiovascular disease

1. Selenium and Metabolism Disorders
1.1. Selenium

Selenium (Se) (Se 34
79) is an essential trace element mainly known for its antioxi-

dant [1], anti-inflammatory, and anti-apoptotic properties as it is part of the catalytic center
of different selenoproteins [2–4]. Adequate Se intake is essential for immune, endocrine,
cardiovascular, reproductive, and nervous systems functions [5–9]. However, the margin
between Se toxicity and its deficiency is very narrow [10]. Its role in the human body has
been studied, especially for thyroid function, type 2 diabetes mellitus (T2DM), hyperten-
sion, obesity, inflammation, reproductive system, cancer, and cardiovascular disease. Se
excessive and deficient dietary intake is associated with damaging health effects that have
been characterized by a U-shaped relationship [11]. For this, a balanced intake of Se is
crucial to maximizing the health benefits of selenium [12]. Recommendations for Se intake
are: in adults 55–70 µg/day, in infants 15 µg/day, in children 20–30 µg/day, in pregnant
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women 65 µg/day, and in lactating mothers 75 µg/day [13], the tolerable upper intake
level is limited to 300 µg/day [14].

Dietary Se is absorbed by the gastrointestinal tract (GIT) in its inorganic and organic
forms. Organic forms of Se such as selenomethionine (SeMet) and selenocysteine (Sec) are
absorbed in the small intestine through the same active sodium-dependent transport system
as the amino acid methionine. Additionally, Sec may be absorbed using the same mech-
anism as cysteine [15–18]. Inorganic forms are absorbed by the same sodium-facilitated
and energy-dependent systems as sulfate [19]. Moreover, selenate and selenite can be
uptaken by non-mediated passive diffusion, with a slower absorption rate than the Se-
organic compounds [20]. After intestinal absorption, Se forms enter the bloodstream and
are predominantly taken up into the liver from the portal vein [21]; in this tissue they will
be further metabolized, turning these inorganic forms into more bioavailable organic forms.
So, in the human body, two metabolic pools of Se are predominant. One pool includes all
forms of Se derived from inorganic selenite/selenide, including excretory Se metabolites
and other intermediate products of selenite metabolism [22]. The second pool consists
of organic forms of Se and SeMet-containing proteins. The extracellular Se forms, from
inorganic and organic pools, are captured by the liver and other tissues such as muscle and
mammary glands [23]. Later inside the cells, Sec, selenite, and selenide compounds form
an intracellular metabolic reserve, whereas SeMet is incorporated into proteins in place
of methionine. This amino acid is also converted to Sec via the transsulfuration pathway,
and this Sec is transformed to selenide with the help of Sec-lyase enzyme. In the liver,
inorganic forms are reduced to selenide by thioredoxin reductases or the glutathione (GSH)
pathway. Then selenide is transformed to selenophosphate by the enzyme selenophosphate
synthetase 2. Selenophosphate is used for selenoprotein synthesis.

The selenoprotein synthesis (translational decoding process) begins when selenophospate
reactions with phosphoseryl-tRNA yield Sec-tRNA[Ser]Sec. Sec amino acids are incorporated
into polypeptide chains utilizing the UGA codon. Selenocysteine insertion sequence binding
protein 2 (SBP2) binds to selenocysteine insertion sequence (SECIS) element which is located
in the 3′-untranslated region (3′UTR) of selenoprotein mRNA and mediates the transfer of
Sec-tRNA[Ser]Sec to the A-site of the ribosome which recognizes the UGA codon as the
Sec integration codon [24]. The amino acid Sec can appear in the N or C-terminal part of
protein according to two different groups of selenoproteins, representing the most important
part of the active center of selenoproteins. Selenoprotein P (SelP) is the main selenoprotein
produced in the liver, containing 10 Sec residues; so, it functions as a Se-transport protein to
deliver Se to other tissues [25]. The different tissues need specific receptors to uptake SelP.
Then, in the tissues, Se is used to synthetize new other selenoproteins [26–28]. The placenta,
brain, and testes uptake SelP through receptor-mediated endocytosis using the low-density
lipoprotein receptor-related protein 8 (LRP8), also known as ApoER2 [29,30]. Other tissues,
like the kidneys, also use another membrane receptor, the megalin or LRP2. Se is differentially
distributed in the body, following a tissue hierarchy that is even extended to intracellular
mechanisms that prioritize the synthesis of specific selenoproteins [31–33]. This fact makes
the studies that address the tissue distribution of Se and selenoproteins extremely complex.

Twenty-five selenoproteins are recognized in humans, with different biological func-
tions (Table 1) [34,35], such as iodothyronine deiodinases (DIOs: 1, 2, and 3 families),
responsible for thyroid function; or thioredoxin reductases (TXNRD1, 2, and 3), SelW, SelH,
SelT, and SelV, involved in redox regulation processes [36]. However, most of them have
antioxidant properties, like the glutathione peroxidases family (GPxs: GPx1–GPx8), which
eliminate the excess of H2O2, and selenoprotein P (SelP), the main serum Se transporter [2].
Both of them are also related to the endocrine system and intracellular signaling, appetite,
growth, and energy homeostasis [37,38].
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Table 1. Main selenoproteins, their physiological functions, relation to Se status, and pathophysiolog-
ical implications (modified from Qazi et al. [39] and Hariharan et al. [2]).

Selenoproteins Physiological Functions Relation to Se Status and
Pathophysiological Implications

GPx1
(cytoplasmatic) Antioxidant

Sensitive to Se intake. Cardiovascular diseases.
Related to the endocrine system, intracellular signaling,

appetite, growth, energy homeostasis, and IR.

GPx2
(gastrointestinal) Antioxidant Resistant to Se modifications. Intestinal cancer.

GPx3
(plasmatic) Extracellular fluid antioxidant Sensitive to Se intake. Cardiovascular protection.

GPx4
(membranes)

Membrane antioxidant. In sperm is a
structural protein. Apoptosis

Resistant to Se modifications. Immune disorders, HIV,
implications in male fertility, and mitochondrial function.

GPx6
(olfactory) Homolog to GPx3 The knowledge of this GPx is very limited.

DIO1 Conversion of T4 to T3 Implications in immune thyroid disease and
thyroid dysfunctions.

DIO2 Conversion of T4 to T3 Stable expression under low Se levels. Implications in
immune thyroid disease and thyroid dysfunctions.

DIO3 Conversion of T4 to reverseT3 Implications in immune thyroid disease and
thyroid dysfunctions.

TXNRD1 Antioxidant, redox regulation, cell signaling Se dependent. In several types of cancer, there is an
over-expression of TXNRD1.

TXNRD2 Antioxidant, redox regulation, cell signaling Sensitive to Se intake.

TXNRD3 Antioxidant, redox regulation, cell signaling Role in sperm maturation.

SelW Antioxidant Studies with tissue cultures of muscle and brain cells
indicated that Se influenced SelW levels.

SelH GSH synthesis Implications in placenta oxidative stress.

SelV Redox regulation processes Although it is expressed in seminiferous tubules in mice,
the exact role in spermatogenesis is unknown.

SelT
Endoplasmic reticulum homeostasis: promotes

depletion of Ca stores and impaired
hormone secretion

Unknow, although probably related with Endoplasmic
Reticulum Stress.

SelP
(plasma)

Main plasma Se transporter. Antioxidant.
Indicator of Se status

Cancer, neurodegenerative diseases. Implicated in male
fertility and maternal-fetal Se transfer. Apoptosis

regulation. Related to the endocrine system, intracellular
signaling, appetite, growth, energy, and IR.

Among all these selenoproteins, the TXNRD, GPx, and DIO families are the three best
characterized [40]. They have different enzymes activities, although all of them require
reductants to provide the electrons to make their catalytic redox cycle run. Thus, TXNRD-
dependent reduction requires electron transfer from NADPH, FAD via, to Sec at their
active site and finally to the substrate thioredoxin. In the GPx family, the catalytic redox
cycle involves the oxidation of Sec to selenic acid by hydrogen peroxide and organic
hydroperoxides, and reduction to the selenolate anion form by the GSH system [41,42].
Finally, the action mechanism of DIO selenoproteins involves the generation of an oxidized
intermediate, which will be reduced by thiol-containing reductants and release iodide.

In general terms, selenoproteins and Se can exert their main functions through different
mechanisms. (1) By ROS-mediated stimulation of intracellular protein kinases in the
cytoplasm and the nucleus, such as the mitogen-activated (MAP) kinase, the p38 kinase, and
the c-jun/stress-activated kinase, all of them are involved in the growth responses of cells
to stressful and inflammatory stimuli [43]. In this context, several studies have found that
selenate is a stimulator of the tyrosine kinases, as happens in the insulin signaling cascade
having insulin-mimetic effects [44–46], by contrast, high doses of selenite has shown to
impair/dampen insulin signaling [47,48]. Therefore, Se compounds and selenoproteins play
an important role in fuel metabolism processes [49,50]. (2) Another mechanism involves



Antioxidants 2022, 11, 394 4 of 31

ROS-mediated covalent modification of thiol, cysteine, and tyrosine groups of proteins.
(3) Additionally, Se can produce alterations in cellular redox state causing activation of
transcription factors, such as NF-kB, Ap-1, and the glucorticoid receptor, leading to de
novo gene expression. Thus, Se can affect transcription factors activation by either affecting
DNA-binding strength or changing activation of the transcription factor by modulation of
regulatory subunits, e.g., by phosphorylation. (4) Se regulates the expression of cell surface
and nuclear receptors leading to alteration in cell growth, responsiveness, and behavior.
(5) Finally, this element can regulate the cell death/survival signals.

Therefore, selenoproteins have an important role in insulin resistance (IR) and metabolic
syndrome (MetS) generation, modulating the reactive oxygen species (ROS) implicated in
insulin signaling and the energetic sensor AMP-activated protein kinase (AMPK) [46,51].
Elevated dietary Se intake is associated with IR by increasing hepatic GPx1 activity, which
decreases H2O2 levels (Figure 1). In this case, H2O2 acts as a second messenger formed after
the activation of NADPH oxidases (NOX) when insulin binds to its receptor (IR). H2O2
is required to inactivate various insulin-signaling inhibitors as the protein tyrosine phos-
phatase 1B (PTP-1B) or the dual-specificity phosphatase PTEN by oxidation of essential SH
groups [52]. PTP-1B inhibits the phosphorylation (activation) of insulin receptor substrate
(IRS-1), while PTEN dephosphorylates phosphatidylinositol 3,4,5-trisphosphate (PIP3) at
position 3′ to PIP2, depressing protein kinase B (Akt) signaling and triggering IR [53].
Thus, high Se levels augment hepatic GPx1 activity, which reduces H2O2, decreasing the
oxidative inhibition of PTP1B and PTEN and suppressing insulin signaling [54]. On the
other hand, when SelP is increased in the liver it inhibits AMPK activity impairing insulin
signaling transduction, and is recognized as a hepatokine that contributes to the beginning
of hyperglycemia and IR [51]. Additionally, other mechanisms have been proposed to
explain the role of SelP in IR using primary hepatocytes, describing that purified SelP
induces a reduction in insulin-stimulated phosphorylation of IR, IRS-1, and Akt [55]. In
addition, it is important to take in mind that supranutritional Se modifies the expression of
transcriptional factors and enzymes related to carbohydrate, lipids, and protein metabolism
in a tissue-selective manner, such as liver, skeletal muscle, and adipose tissue [50].

However, Se deficiency is also associated with IR [56,57]. Seale et al. found that when
cellular Se recycling mechanisms are lacking, a decrease in GPx1 and SelP expression
appears, which is related to an inhibition of insulin signaling; probably, among others,
by leading to an excessive increase of H2O2 and oxidative stress (OS) [58]. These results
have been recently confirmed by different authors, who concluded that a disruption on the
selenocysteine lyase which mediates the Se recycling pathway, leads to hyper-adiposity,
obesity, IR, and deep changes in metabolic homeostasis [59–61]. For these reasons, an
appropriate Se homeostasis, neither high nor low, is important to maintain a correct
oxidative balance in order to avoid metabolic disruptions.

OS is a state of negative imbalance between the excess of pro-oxidative compounds
and the insufficient decomposition of those compounds by the antioxidant systems [62].
ROS in basal conditions are essential for cellular functions (such as in the insulin signal-
ing cascade), whereas excessive levels of ROS cause damage to cells by the oxidation of
lipids, DNA, and proteins [63–65], leading to cellular dysfunction including loss of energy
metabolism, altered cell signaling and cell cycle control, genetic mutations, altered cellu-
lar transport mechanisms, and overall decreased biological activity, immune activation,
and inflammation [66]. ROS include oxygen free radicals, such as the superoxide anion
(O2
−), the hydroxyl radical (•OH), and non-radicals, such as hydrogen peroxide (H2O2).

They can also react with NO leading to peroxynitrite, the so-called RNS. The defense
mechanism responsible for ROS inactivation included endogenous antioxidants, classified
into enzymatic antioxidants (GPxs, superoxide dismutase (SOD) and catalase (CAT)), and
non-enzymatic antioxidants (nicotinamide adenine dinucleotide) and reduced glutathione
(GSH), and exogenous antioxidants, such as some vitamins and metals [67]. The SOD en-
zyme constitutes the first line of defense against free radicals by catalyzing the dismutation
of O2

− to H2O2 and oxygen decreasing O2
− concentration, which damages the cells at an
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excessive concentration [68]. H2O2 formed is not a radical, but it is rapidly converted by
the Fenton reaction into •OH radical which is very reactive. For this reason, there are two
antioxidant enzymes, catalase and the selenoprotein GPx, responsible for reducing it. GPx
neutralizes H2O2 by taking hydrogens from two GSH molecules resulting in two H2O and
one oxidized glutathione (GSSG). GR, an NADPH-dependent enzyme, is fundamental in
this step since it regenerates GSH from GSSG. The GPx enzyme is more important against
high H2O2 levels; however, catalase acts preferentially when there are low concentrations
of H2O2. Besides, GPx is also responsible for detoxifying other lipid peroxides (LOOH)
to the corresponding alcohol (LOH). The defense mechanism of endogenous antioxidant
enzymes is shown in Figure 2.
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Figure 1. Selenoproteins’ possible implication in the hepatic insulin signaling pathway. The bind-
ing of insulin to the insulin receptor (IR) triggers consecutive phosphorylation (P) of downstream
signaling molecules, resulting in activation of Akt. Additionally, NADPH oxidase (NOX)-mediated
ROS production is stimulated by insulin. Reduction of H2O2 by GPx1 may attenuate insulin sig-
naling, as H2O2 is required to inactivate the insulin counter-regulatory phosphatases PTP-1B and
PTEN. Moreover, SelP could inhibit adenosine monophosphate-activated protein kinase (AMPK),
a metabolic energy sensor, which negatively regulates protein synthesis through the inhibition of
the mammalian target of rapamycin (mTOR)-S6 kinase (S6K) pathway, which also modulates IRS
phosphorylation. (IRS: insulin receptor substrate; PIP2: phosphatidylinositol 4,5-bisphosphate; PIP3:
phosphatidylinositol 3,4,5-trisphosphate; TSC1 and 2: tuberous sclerosis complex 1 and 2).
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1.2. Se and MetS
1.2.1. MetS Definition and Characteristics

MetS is characterized by the simultaneous presence of risk factors that contribute
to cardiovascular disease (CVD) and diabetes [69]. These risk factors include elevating
fasting glucose, high blood pressure, hypertriglyceridemia, low high-density lipoprotein
cholesterol levels, and obesity (particularly abdominal adiposity).

The first regularized definition of the MetS was proposed in 1998 by the World Health
Organization [70], although this definition is not internationally accepted, being defined by
various organizations (National Cholesterol Education Program-Adult Treatment Program
III (ATP III), International Diabetes Federation). In 2009, a Joint Interim Societies (JIS)
MetS definition was introduced, in order to alleviate discrepancies between previous guide-
lines [71]. They proposed common criteria for the clinical diagnosis of the MetS. The clinical
criteria are elevated waist circumference (population- and country-specific definitions),
hypertriglyceridemia (≥1.7 mmol/L), low HDL cholesterol level (<1.0 mmol/L in men
and <1.3 mmol/L in women), high blood pressure (systolic blood pressure ≥130 mmHg,
and/or diastolic blood pressure ≥85 mmHg), and elevated fasting glucose (≥100 mg/dL).
According to this statement, for a diagnosis to be made, three of five of the proposed criteria
should be met. This definition recognizes that the risk associated with a particular waist
measurement will differ in different populations and that IR is also considered a linking
factor to MetS since in most MetS patients abdominal obesity and IR appear [71].

The established relationships between MetS and T2DM and CVD are amply demon-
strated, but the interest in MetS and visceral obesity is renewed, as it has also been related
to other chronic diseases. In this context, it is shown that the most dangerous adiposity
profile includes excessive amounts of both visceral adiposity and liver fat, which is the
prevalent form of IR and MetS, being proposed as a marker of them [72]. Finally, in recent
years, with precision lifestyle medicine, there has been a tendency to take into account the
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genetic profile of the individual as well as their environment and lifestyle [73]; these facts
should also be taken into account in MetS patients.

1.2.2. MetS and OS

In clinical and experimental research, OS is commonly associated with MetS, since
it contributes to obesity, diabetes, atherogenesis, hypertension, and other CVD. In most
of these circumstances (even in MetS) chronic low-level inflammation appeared, and this
event is deeply associated with a chronic whole-body OS generation [74]. Currently,
new studies address the link between OS and MetS in the physiopathology of different
biological systems, especially in mitochondria, since these organelles play a crucial role in
cell physiology [75]. Mitochondria are implicated in metabolism, as they are involved in the
production of energy (ATP) by the respiratory chain, in the metabolism of carbohydrates,
amino acids, and lipids, and in apoptosis. The ROS produced in the mitochondria contribute
to mitochondrial damage, which affects the cellular redox signaling, leading to a wide range
of pathologies that comprise metabolic disorders [66]. Changes in ATP generation affect
the activity of the energetic cellular sensor AMPK, modulating cellular energy expenditure.

OS is associated with MetS, but whether it is the cause or the consequence is not
clear; however, many observations argue that both are true. For instance, during MetS
SOD is down-regulated along with the selenoprotein GPx [76]. There is a strong cor-
relation between NOX activity, together with low GSH deposits, and increased OS in
MetS patients [77].

Since OS has emerged as a central player in chronic metabolic diseases such as MetS,
multiple relevant markers need to be identified to clarify the role of ROS in the etiology of
MetS. In this context, there are several clinical trials related to the use of the antioxidant
Se as a useful marker and/or therapeutic approach to counteract OS and alleviate MetS
symptoms. Moreover, Se, when connected to free radicals, can block the nuclear transcrip-
tion factor kappa-B (NF-kB), leading to an inflammation reduction, as well as a reduction
of the vascular cell adhesion molecule [78,79]; both circumstances usually appear during
MetS instauration [80].

1.2.3. Se and MetS in Human

Se is involved in various metabolic processes; however, there is limited and controver-
sial research related to Se status and/or supplementation and MetS in humans. Since, as it
was previously described, both high and low Se statuses are related to metabolic disorders.

Yuan et al. in a Chinese population found a dose-response relationship between
plasma Se and risk of MetS, reporting higher plasma Se levels and major risk of MetS and
hyperglycemia, though this association was significant only in women [81,82], according
to the results of the IMMIDIET studies. Previously, in the Lebanese adult population, a
positive correlation between plasma Se levels and the components of the MetS was also
found [83]. However, Ford et al. did not find a significant difference in Se levels among
American patients with or without MetS [84]. Similar conclusions were found by Tajaddini
et al. in a clinical systematic review, probably due to differences in the study design and
the population observed among researchers [85]. In 2017, Gharipour et al. demonstrated a
significant decrease in circulating SelP levels according to MetS status in Iranian patients
with documented CVD [86]. The same authors, in a systematic review, concluded that SelP
is the best indicator for Se nutritional levels; that high levels of Se may increase the risk of
MetS, while the lack of it may also promote MetS, and that for Se human supplementation,
the selenium-yeast form is the best one [87]. However, this supplementation should not
be recommended for cardio-metabolic risk prevention in populations with adequate Se
status. In 2019, they also found that there were no differences in SelP genotypes between
MetS and non-MetS subjects [88]. Studies in Brazilian adolescents between 12 and 17 years
old found that the prevalence of the MetS in this population was 2.6% and that there was
no association between the MetS and Se intake. Nonetheless, this lack of association was
attributed to the adequate Se intake in 100% of the studied population [89].
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Relative to the use of Se supplementation in MetS patients, Tabrizi et al., in a meta-
analysis of randomized controlled trials, analyzed the effect of Se administration on glucose
metabolism and lipid profiles in MetS patients [90]. This review described that Se supple-
mentation may lead to an improvement in serum insulin levels and in insulin sensitivity,
but it does not affect HOMA-IR and lipid profiles. Gharipour et al. found that Se supple-
mentation did not affect plasma Se levels but slightly increased SelP serum level after a
2-month intervention in MetS patients [91]. This trial suggests that further studies should
investigate the long-term use of Se supplementation in MetS patients. Recently, Retondario
et al., in a systematic review, studied the association between Se intake and MetS, finding
no association between Se intake and MetS in three studies; an inverse association in three
others, and a direct association only in one [80]. They concluded that Se intake and MetS
are not clearly associated in adults and the elderly.

Therefore, in humans, due to the great variability of factors such as previous Se
status, gender, the population under study, diet, lifestyle, smoking conditions, or the
cardiovascular treatment, to name but a few; Se supplementation should still be limited for
MetS treatment. However, since the sample analyzed in humans is mainly plasma; and
the plasma level of metabolites is not a simple reflection of changes in tissue levels of the
same metabolites [92], Se and selenoproteins’ tissue levels should be longer analyzed in
experimental animal models.

These experimental tissue studies are gaining greater importance since the prevalence
of MetS is increasing worldwide and not only in adults, the pediatric age group is greatly
affected as well [93]. Another important group is pregnant women since during a healthy
pregnancy maternal organs and placenta are challenged to adapt to the increasingly phys-
iological changes related to energy and metabolism. MetS appears in 25% of pregnant
women and it has been outlined as one of the reasons related to MetS increase in pediatric
age through the metabolic programming theory [94].

2. Metabolic Programming and Se
2.1. Se Implications in Metabolic Programming

The theory of the origin of health and disease (the developmental origins of health
and disease) proposes that the homeostatic system affected during gestational and early
postnatal development impedes the ability to regulate body weight after birth, particularly
with regard to high energy intake, resulting in adult obesity and metabolic diseases [95].
These stimuli lead to a mismatch between prenatal and/or neonatal metabolic program-
ming, which induces an increased risk of disease in adulthood [96]. According to that, fetal
programming occurs when the optimal environment in which the fetus grows is disrupted
by insults during prenatal development, inducing changes in the metabolic state and the
susceptibility of adults to develop several chronic diseases such as metabolic dysfunctions
and CVD [97,98]. Therefore, fetal programming is a well-known term that relates intrauter-
ine nutrition to the development of diseases in adult life. Early postnatal programming
term includes the postnatal period where the newborn presents a very active and rapid
growth, which is also influenced by environmental factors, such as the breastfeeding period.
The term suggests that nutritional changes during this neonatal period lead to a greater
risk of disease later in life.

OS is one of the fundamental insults related to adverse fetal programming outcomes,
leading to intrauterine growth retardation (IUGR) and abnormal tissue development, af-
fecting gestational parameters, as well as endocrine metabolic balance and pregnancy disor-
ders [99]. The embryo is highly susceptible to oxidative damage since the environment that
surrounds it is poor in oxygen and has low antioxidant capacity. In addition, in the placenta
there are numerous changes at the oxidative level, such as an increase in NOX and antiox-
idants, affecting the exchange of oxygen between mother and fetus and thus producing
abnormalities due to hypoxia [100]. During the early postnatal programming (breastfeed-
ing period), OS also plays an important role in mothers and neonates, since it compromises
an appropriate lactation process which leads to growth retardation [36,101–103]. In this
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context, studies in humans and animals have revealed that the antioxidant Se is essential
for maternal health and offspring development during reproductive periods.

2.2. Studies in Humans

Rayman et al. evaluated in pregnant women from the United Kingdom whether
Se status before pregnancy or Se supplementation influenced the risk of developing pre-
eclampsia and hypertension [104]. They measured blood and toenail Se concentration,
plasma SelP concentration, and GPx activity; finding that women are at higher risk of
pre-eclampsia and hypertension when they have lower Se levels, and that supplemented
women presented higher levels of Se together with lower risk of gestational pathologies.
Grieger et al., in Australian pregnant women, demonstrated that those who have low
plasmatic Se levels have a longer time until pregnancy and a higher rate of subfertility [105].
Hofstee et al. investigated in Australian women the relationship between maternal Se serum
levels and thyroid hormones (THs) status during pregnancy since thyroid disorders are one
of the most common endocrine disorders affecting women commencing pregnancy [106].
They found a decrease in free T3 levels, an increase in thyroid peroxidase antibodies, and a
major incidence of gestational diabetes mellitus (GDM) in the low serum Se cohort. These
alterations can lead to undesirable pregnancy outcomes.

Barman et al. studied the association between gestational length and preterm delivery
(PTD) in 72.025 Norwegian women, and maternal Se intake and status [107]. An increase in
gestational duration and a reduction in PTD were found associated with a higher Se intake
during gestation, but not after Se supplementation, probably due to the fact that about
half of the women had an optimal dietary Se intake. Monnagi et al. (2021), in samples
collected from different populations (17 international birth cohorts with diverse ethnic
backgrounds and geographic distributions), analyzed the relationship among maternal
Se concentrations during pregnancy with PTD risk and gestational duration [108]. In
this study, the hypothesized mechanisms to link Se and PTD risk were attributed to the
selenoproteins GPx3, SelP, and TXNRD, for their antioxidant and anti-inflammatory action.
However, they concluded that Se supplements cannot be considered as a general strategy
to prevent PTD or increase gestational duration, since it depends on maternal Se status.
Other studies analyzing prenatal Se exposures by measuring its concentration in maternal
blood samples, demonstrated in male infants a positive association between Se and the
birth weight, and in female infants to the index weight/height [109]. They concluded
that prenatal exposure to Se is related to birth outcomes and that infant sex may modify
these associations. Modzelewska et al. studied the relation between maternal Se intake
and Se status during gestation and PTD and IUGR [110]; finding that mothers with a
Se intake <30 µg/day lead to an increased risk of neonatal death. However, those with Se
intakes >120 µg/day did not show this mortal association.

In conclusion, it is clear that low Se levels during gestation are related to maternal
and neonate diseases such as pre-eclampsia, hypertension, subfertility, GDM, PTD, IUGR,
and neonatal death, since, among others, it is necessary to maintain an adequate oxidative
balance [111]. However, the Se supplementation in these cases is not easy to apply, since it
depends on maternal Se status, Se dose and source, and infant sex. Once more, because the
human sample used in these studies is serum, more animal research is necessary in order
to obtain tissue fetal and neonate information.

2.3. Studies in Animals

Numerous animal studies in different species from research and agriculture have
evidenced a key Se role on fetal and early programming, showing that it is involved in
maternal endocrine regulation, placental development as well as in fetal, and neonatal
growth and development [39,111–116].

Like in humans, animal Se-deficient studies during reproductive periods show that
low dietary maternal Se intake is related to IUGR and miscarriages. However, in animal
models, the repercussions of Se supplementation during gestation and lactation periods
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have been extensively studied. In general terms, elevated dietary maternal Se supply from
an organic or an inorganic form improved birth and weaning weight in animals, such as
sheep, pigs, and rodents [113,117–119]. Despite the fact that supra-Se supplementation can
have deleterious metabolic effects since this element induce IR and diabetes in mice, rats,
and pigs [114], in agriculture, maternal supplementation is broadly used in broilers, calves,
pigs, sheep, and goats in order to increased progeny development [113,117,118].

Animal models are also very interesting since they give information related to ma-
ternal Se status and cardio-metabolic programming processes which appear later in life.
For instance, Hofstee et al. found that maternal Se deficiency in rodents induces growth
restriction, with significant decreases in fetal heart and kidney size, which predispose off-
spring to cardiovascular and renal dysfunction in later life [111]. These authors concluded
that cardiovascular alterations took place when IUGR appear and that they are probably
related to the impaired thyroid dysfunction that Se deficiency offspring present by decreas-
ing the activity of the selenoproteins DIOs [120,121]. Laureano-Melo et al. observed that
maternal Se supplementation to Wistar rats was able to program carbohydrate and lipid
metabolism, endocrine homeostasis, and feeding behavior, even in the adult offspring [122].
They suggested that metabolic effects were induced by THs disbalance together with the
antioxidant mechanisms.

Therefore, Se homeostasis is important for mother and progeny, not only for its effects
modulating the oxidative balance, but also for its involvement in protein synthesis, regula-
tion of the cell cycle, remodeling tissues, and modulation of metabolism–endocrine-energy
balance [32,112,123,124]. Se deficiency altered the placental nutrient transporter expres-
sion, decreasing fetal glucose concentration, which contributes to the so-called growth
restriction [112]. Selenoproteins (such as GPx1, SelP, and DIOs) are necessary for the cor-
rect synthesis and function of insulin, insulin-like growth factor-1 (IGF-1), and thyroid
hormones (THs); all of them being hormones implicated in the correct fetal and neonatal
growth [36]. GPx2, which is mainly expressed in the GIT system, protects intestinal cells
from OS and inflammation improving their structure and function; increasing nutrient
absorption, and promoting body growth and development [125–127]. Additionally, se-
lenoproteins are also involved in the central endocrine regulation of appetite and energy
homeostasis, affecting growth and development [128]. Finally, GPx4 avoids oxidation of
mitochondrial cardiolipin, which in turn facilitates the cytochrome-c release and activates
the apoptotic signaling cascade [129], as it is also related to NF-kB activation and inflamma-
tion [130]. When this protein is suppressed, such as in GPx4 knockout mice, embryos are
non-viable, dying by gestational day E 8.5 [131].

Animal experimental protocols have used different animal species, different dietary
Se forms (organic or inorganic) with different doses, and most of them are developed
only in Se-deficient pups or Se-supplemented ones. Therefore, to obtain simultaneous
information concerning how the Se intake by dams is involved in programming endocrine
energy balance in the progeny and its homeostasis, three experimental groups of dam
rats were used in our research laboratory. The groups used were control (Se: 0.1 ppm),
Se-supplemented (SS) (Se: 0.5 ppm), and Se-deficient (SD) (Se: 0.01 ppm); Se was supplied
as sodium selenite to dams. After birth and at the end of lactation (21 d old), different
parameters were analyzed in the offspring. We demonstrated that maternal Se status (high-
or low-Se diets) is profoundly involved in metabolic programming by modulating IR, OS,
and energy homeostasis [32,124]. In both situations, insulin, leptin, and HTs signals are
disrupted and, therefore, the long-term endocrine signal for energy balance regulation is
profoundly disturbed, but with different repercussions: high-Se diet leads to an anabolic
profile, while a low-Se diet is related to an extreme catabolic energy imbalance. In Figure 3
all these changes can be observed, divided into nutritional-morphological parameters and
oxidative balance; serum biochemical parameters; selenoprotein hepatic implications, and
metabolic programming results.
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Figure 3. Maternal selenium status and metabolic programming. Effects of maternal Se diet on their
offspring: nutritional-morphological parameters and oxidative balance; biochemical parameters;
hepatic selenoproteins’ expression and metabolic programming results. SS: selenium supplemented
dams (0.5 ppm); SD: selenium deficient dams (0.01 ppm). MI: milk intake, BW: body weight;
BMI: body mass index, GR: growth retardation, GPx: glutathione peroxidase, TGs: triglycerides,
GLP1: glucagon-like peptide-1, TSH: thyroid-stimulating hormone, Chol: cholesterol, Gluc: glucose,
MSI: intestinal mucosa somatic index, PYY: peptide YY, GIP: gastric inhibitory polypeptide, TSI:
thyroid somatic index, PTH: parathyroid hormone, OPN: osteopontin, SelP: selenoprotein P, AMPK:
AMP-activated protein kinase, IRS-1: insulin receptor substrate 1, HOMA-IR: homeostatic model
assessment for insulin resistance, IR: insulin resistance, T2DM: type 2 diabetes mellitus, T1DM:
type 1 diabetes mellitus, PSI: pancreas somatic index, ↑: increase, ↓: decrease.

Therefore, in terms of metabolic programming results, maternal Se supplementation
leads to high insulin non-operative secretion resulting in obesity, anabolism, inflammation,
and low leptin levels, all parameters similar to those found in a T2DM process in pups.
However, SD pups present a metabolic profile similar to that of pups with type 1 diabetes
mellitus (T1DM), with extremely low insulin secretion, leading to severe growth retarda-
tion, a catabolic status, underdeveloped endocrine glands, oxidation, low gastrointestinal-
anorexigenic signals, and high non-operative serum leptin levels. These results point to
Se as an important element implicated in metabolic programming, which could modulate
metabolic disorders such as IR, IUGR, or MetS.

3. Selenium, MetS Programming

MetS (a syndrome deeply related to OS) can appear during gestation and lactation in
dams, leading to OS and energetic and metabolic changes in their offspring that, according
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to the fetal programming theory, will produce cardiovascular and metabolic diseases as IR
and diabetes later in life [132]. This programming phenomenon has been described in the
literature in clinical trials and animal research [133–135]. Since it has been demonstrated
that maternal dietary Se is intimately implicated in metabolic programming by modulating
IR, OS, and energy homeostasis [32,124], we thought that maternal Se status could play
an important role in this pathology during gestation and lactation in mothers and in the
offspring. Therefore, we initiated a research line with the aim of elucidating Se’s implication
in MetS programming in rats, in order to gather information in all the tissues implicated.
These studies will provide important information to valorize the use of maternal Se diet as
a therapy in MetS-reprogramming.

3.1. High Fructose Diet as MetS-Programming Model

There are different animal experimental models to induce MetS in progeny, such as a
maternal low-protein diet, or a high-fat diet [135]; but, recently, a high fructose intake is the
most commonly used [136]. This research group used a well-established experimental-Met
model based on maternal high fructose diet (HFruD) (65%), that induces MetS in rats in
3 weeks [137]. We administered fructose (65%) in solid diet (with control Se content) to
female rats during the induction (3 weeks), preconception (1 week), gestation (3 weeks),
and lactation (3 weeks) periods [138]. This model in dams at the end of lactation leads to
changes in the BMI, joint to a bad fat profile, hepatomegaly, hypertriglyceridemia, unaltered
serum Gluc values, decreased insulin serum levels, increased systolic and mean BP, de-
creased heart rate (HR), microalbuminuria, hypernatremia, and hyperaldosteronemia [139].
All these complications confirm that dams suffer MS, which affected gestational success
since they presented a lower number of pups born alive (Figure 4) [138]. These maternal
disturbances influenced the metabolism of their offspring. HFruD pups had higher BMIs at
birth, but, like their mothers, it was lower at the end of lactation. They also present low in-
sulin levels and β-cell function, joint to normal serum Gluc, and increased TGs levels [124].
Maternal HFruD alters the development of lactating pups differently according to sex [140].
Female pups present hepatomegaly and extremely low insulin serum levels, indicating a
greater metabolic disruption in these pups; in male pups, growth and development are
affected to a greater degree. Both sexes presented albuminuria, hypernatremia, and hyper-
aldosteronemia, leading to a hypertensive status [141,142]. All these changes difficult the
weaning process as it is expressed in Figure 4. Consequently, maternal HFruD exposition
during the reproductive states leads to MetS early programming in their offspring, in part
by generating OS [143]. In this context, Se implication in MetS programming is a difficult
issue, since its beneficial action avoiding OS could be counteracted by its implication in
the IR process. In order to deepen into the knowledge of the possible role that Se plays
during gestation and lactation in this pathology, and its transmission to the progeny, our
group studied for the first time Se body distribution in dams, which develop MetS during
gestation and lactation and in their pups (Figure 4).

3.2. Se Homeostasis in MetS Programming

MetS dams have normal Se serum values during the whole experimental process,
despite the fact that during lactation they ingested a lower amount of food and therefore of
Se [138]. They excreted less Se by urine, probably trying to maintain normal serum and milk
Se levels. This effort was insufficient, and Se retention decreased in MetS dams, as it was
found when the apparent Se balance was measured. Se deposits in the liver and kidneys
were elevated in MetS dams, whereas in the heart and muscle there was a significant
depletion. This shows that Se distribution during MetS in lactating dams is controversial. It
is well established that HFruD produces OS through ROS formation, especially in the liver
and kidneys [143,144]. Thus, the Se increase in these tissues could enhance GPx enzyme
activity, protecting them from oxidation. However, this is a double-edged sword in MetS,
since it has been demonstrated that overproduction of the selenoproteins GPx and SelP in
the liver produces IR, Gluc intolerance, and dyslipidemia [46]. The depletion of Se found
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in the heart shows, for the first time, that heart Se deposits could play a primordial role
in the myocardial dysfunction found in dams with MetS; since Se deficiency contributes
to fibrosis and diastolic dysfunction development [145]. Skeletal muscle is one of the
greatest Se-storing organs [146]; in MetS dams, its Se stores are being destroyed in order to
increase Se levels in other tissues. This Se depletion could increase ROS production and
contribute to disrupting the insulin signaling pathway since skeletal muscle is the largest
insulin-sensitive tissue in the body [147].
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Figure 4. Selenium homeostasis in MetS programming: results in dams and in their offspring. Se
intake, excretion, serum concentration, and tissue deposits were analyzed in dams (during gestation
process: GP and lactation process: LP) and in their breastfeeding pups (lactating offspring: LO); to-
gether with gestational parameters (FFI: female fertility index (nº of pregnancies/nº of mating) × 100,
GI: gestational index (nº of successful births/nº of pregnancy rats) × 100) and lactating parameters
(LBI: live-born index (nº of pups born alive/nº of pups born) × 10, LSI: lactation survival index
(nº of total offspring/nº of dead offspring/nº of total offspring) × 100, and A/T ratio: (abdominal
circumference/thoracic circumference) × 100), ↑: increase, ↓: decrease.

Regarding Se homeostasis in offspring at the end of weaning, the pups from MetS
dams received less Se via milk, but their serum Se levels were unaltered [140]. MetS-
exposed pups excreted less Se via feces and urine, trying to retain this element. However,
this effort did not work, because we found, for the first time, that tissue Se deposits were
altered in MetS-exposed pups. Like happened in their dams, both genders of pups showed
lower levels of Se in the heart and muscle, and higher levels in the kidney, pancreas, and
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thyroid. However, only female pups presented a significant repletion of Se in the liver,
having the same pattern of Se distribution as their mothers. Accordingly, this shows that
this behavior could be typical in females.

In conclusion, it has been shown that maternal MetS causes changes in Se tissue
deposits of suckling pups. These changes will contribute to different tissues’ selenoprotein
expression and to alterations in tissues’ oxidative balance and function, contributing to
CVD, endocrine alterations, and IUGR.

3.3. Selenoproteins’ Homeostasis in MetS Programming: Pathophysiological Repercussions

Numerous studies evidence the role of selenoproteins in different tissues (mainly
liver, kidney, and heart) preserving the cell integrity from OS, representing a promising
therapeutic tool in the treatment of metabolic diseases related to OS such as MetS [148,149].
Figure 5 summarizes the main selenoprotein changes observed in MetS-exposed pups after
HFruD and their possible pathophysiological repercussions.
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Figure 5. MetS programming and selenoprotein expression: pathophysiological implications. Liver,
kidney, and heart Se deposits and selenoproteins (GPx1, GPx3, GPx4, and SelP) expression in
breastfeeding MetS-exposed pups are affected in a different way, however, in the three tissues, OS was
established. These selenoproteins’ imbalance is related to changes in ROS (H2O2) generation and OS,
in nuclear factor kappa-B (NF-kB) expression and inflammation and fibrosis, and in AMP-activated
protein kinase (AMPK) expression and energy cellular balance, in part related to pathophysiological
alterations such as insulin resistance (IR) and liver steatosis, low glomerular filtration rate (GFR),
hyperaldosteronemia, hypernatremia, high systolic blood pressure (SBP), cardiomegaly, and high
heart rate. OS: oxidative stress, SOD: superoxide dismutase, CAT: catalase, GR: glutathione reductase,
GPx: glutathione peroxidase, GSH: reduced glutathione, GSSG: oxidized glutathione, ↑: increase,
↓: decrease.
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The liver is a key organ in the whole-body Se homeostasis since absorbed Se from
the diet is transported to the liver, where it is metabolized to Sec and incorporated into
selenoproteins, including SelP, the main source of Se to other tissues of the body [15]. With
the MetS model previously described, it has been proved that OS takes place in the liver of
MetS-exposed pups at the end of lactation, mainly increasing protein oxidation; however,
the implication of Se in this process is different among sex [140]. Hepatic antioxidant
balance was compromised both in female and male offspring since the antioxidant activity
of SOD was decreased (Figure 5). Numerous authors have also found a decrease in
SOD activity in adult rats and humans with MetS [150–152]. In this context, Liu et al.
studied the association between SOD activity and MetS progression, observing that the
activity of this enzyme showed a linear descending trend according to the sequential
progression of the MetS different components, such as impaired insulin sensitivity and
β-cell dysfunction [153].

With regard to GPx and CAT, only female pups showed a high hepatic activity of
catalase and GPx; however, they also presented higher lipid oxidation [140]. This augment
in the liver selenoprotein GPx activity of female pups is due to the higher hepatic Se
deposits found in them, a fact that does not occur in males. Ojeda et al. proposed that
hepatic Se repletion during MetS is a typical behavior of the female gender since it was
also produced in their dams [140]. This Se repletion improves GPx activity, acting more
efficiently against the OS provoked by MetS. However, this beneficial action could have
a dual function in MetS, since GPx not only acts against oxidative damage, one of the
main triggers of this pathology, but also it eliminates the “good” ROS necessary to initiate
the insulin signaling pathway (Figure 1); this contributes to IR instauration. This effect is
consistent with the hepatomegaly and steatosis only found in female pups. The so-called
dual role of liver GPx was also observed in MetS dams [138].

According to the higher hepatic Se deposits and GPx activity found in females MetS-
exposed pups, both GPx1 and SelP (selenoproteins related to IR induction) were highly
expressed [54]. Both selenoproteins, as well as GPx4, are the most expressed selenoproteins
in the liver [154]. Moreover, SelP (apart from its action decreasing AMPK activation)
provides the Se necessary to the biosynthesis of GPx1, promoting its antioxidant activity
and its possible action on the insulin signaling pathway. According to that, MetS-exposed
female pups presented lower hepatic AMPK-p and IRS-1 levels, and extremely low insulin
serum levels, confirming that the IR process is taking place. Since SelP inhibits AMPK
activation, it also affects hepatic fatty acid homeostasis [155]. AMPK increases catabolic
pathways and decreases anabolic pathways to maintain intracellular energy balance and
regulate whole-body energy metabolism [156]. Thus, the inactivation of hepatic AMPK
leads to an increase in fatty acid biosynthesis and steatosis; this last effect was found in
female pups.

However, neither GPx1 nor SelP were increased in male MetS-exposed pups, consistent
with a lower hepatic OS and a non-affected AMPK activity [54]. Nevertheless, they also
presented low insulin serum levels and IRS-1 expression in the liver but these decreases
were not as significant as in females. Therefore, more mechanisms are implicated in this
process. According to that, both groups of animals present a significantly higher GPx4
expression in the liver. GPx4 is the only GPxs family member that specifically scavenges
lipid hydroperoxides in membranes, including the mitochondrial one, where it plays an
important antioxidant role [157]. This selenoenzyme is essential during early development,
since mice lacking GPx4 die early in embryonic development, shortly after gastrulation
(E7.5) [131]. Besides, it was recently demonstrated that GPx4 deficiency in obese mice
causes marked OS, which leads to enhanced lipid peroxidation and carbonyl stress in
the liver, exacerbating IR, steatosis, and heart dysfunction, all of which are risk factors
to MetS [158,159]. Our results confirm that MetS-exposed pups make a clear effort to
increase GPx4 activity, perhaps because it has protective effects against the OS that occur
in conjunction with metabolic disorders, as defended by Katunga et al. [158]. Therefore,
hepatic GPx4 plays an important role during the MetS programming instauration.



Antioxidants 2022, 11, 394 16 of 31

Vahter et al. reported that Se deposits in kidneys are age-dependent and that these
levels increase during the postnatal period [160]. In the MetS-programming model pro-
posed, pups presented Se kidney repletion independently of their sex; and high tubular
Se reabsorption, since these pups have lower Se relative clearance [141]. Therefore, the
expressions of the selenoproteins analyzed were all increased (GPx1, GPx3, GPx4, and
SelP). GPx3 is mainly expressed in the kidney and have extracellular antioxidant activity,
being very important its antioxidant activity in plasma [161–163]. The increase in GPx1 ex-
pression improved tubular antioxidant activity; however, lipid oxidation appears (Figure 5).
This oxidation triggered changes in the plasma membrane composition of kidney tubular
cells and interferes with the main carriers’ function, such as with Na+K+-ATPase [164,165],
consequently increasing Na+ reabsorption and K+ excretion and generating hypernatremia
in MetS pups. GPx4 plays a vital role in reducing the hydroperoxide group of fatty acids in
the mitochondrial membrane [157], avoiding cytochrome-c release and so, apoptosis. More-
over, GPx4 is related to transcriptional factor NF-kB, intimately linked to inflammation, and
inversely related to apoptosis [166,167]. MetS-exposed pups present high NF-kB expres-
sion in their kidneys. This transcriptional factor also contributes to fibrosis by activating
different signaling pathways [168]. The increased expression of SelP in the kidney of MetS
pups is one of the causes of the AMPK inactivation found. This energetic sensor, in the
kidney, protects against inflammation and fibrosis in models of diabetic nephropathy [80];
therefore, this situation is contributing to inflammation and fibrosis generation.

All these biochemical alterations lead to several kidney functional alterations, such as
low glomerular filtration rate, low urinary flow, high albuminuria, greater water tubular re-
absorption, and high volemia. These pups also present hyperaldosteronemia, together with
an altered function of Na+/K+-ATPasa provoked by OS, which produces hypernatremia.
All these events contribute to a hypertensive status in these pups, as was demonstrated
one week later [141]. Similar results have also been observed in children with low birth
weight [169]. These kidney programming alterations are related in part to OS; therefore,
Se and selenoproteins renal up-regulation could be beneficial since it avoids higher lipid
oxidation. However, in order to analyze the possible global beneficial role of Se in kidneys
during MetS exposure, more data are necessary to document the relationships between
GPx4 and NF-kB, and SelP and AMPK in kidneys.

Se and selenoproteins play an important role in heart development, function, and
cardioprotection [148]. In the HFruD-model used, heart Se deposits in pups were depleted
without difference among sex, leading to lower antioxidant GPx1 and GPx4 expression and
activity in cardiomyocytes [142]. Therefore, lipid and protein oxidation take place in car-
diomyocytes, affecting correct heart function. In this tissue, GPxs decreased their activities
and so, they could not cope with the high amount of ROS generated (Figure 5). The lower
GPx1 expression found was directly related to cytoplasmatic oxidation in cardiomyocytes;
and the lower GPx4 one to oxidative damage in the membrane of cells and organelles such
as the mitochondrial, promoting apoptosis. GPx4 also modulated NF-kB expression [170],
which was increased in MetS pups, leading to inflammation and fibrosis in this organ.

GPx3 expression was not in consonance with heart Se deposits, being the only se-
lenoprotein augmented in the heart. This might be because GPx3 comes directly from the
plasma delivered by the kidney, where it was increased [141]. Therefore, GPx3, the only
GPx with extracellular antioxidant activity, seems to be sequestered toward the heart matrix
of MetS pups in an attempt to maintain its antioxidant balance, which was profoundly
altered [142]. Moreover, GPx3 has a preventive role in CVD, since it avoids myocardial
damage by decreasing Ca2+-dependent endoplasmatic reticulum stress (ERS), maintains
the bioavailability of NO in the vascular system, and regulates the cardiopathology that
accompanies diabetes [142,171,172]. In this sense, it was observed that GPx3 expression
is reversed to insulin serum levels [171]. Additionally, it has also been found that cardiac
hypertrophy may induce the expression of GPx3 in the heart to reduce H2O2 in the extracel-
lular matrix [173]. The MetS-exposed pups presented low serum insulin levels, high GPx3
expression, and cardiomegaly.
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Heart SelP expression was unaltered in MetS pups; however, no relationship among
SelP and AMPK activation was found, since in these pups AMPK activation was de-
creased [142]. Low AMPK activity leads to a lower ATP generation, compromising the
functionality and ability of the heart to contract, a tissue with a highly energetic demand.
Moreover, in this organ, low AMPK activity leads to mTOR activation, protein synthesis,
cytoskeletal network expansion, inhibited autophagy, and the appearance of cardiac fibrosis
and hypertrophy [174,175], coinciding to the cardiomegaly found in MetS pups.

These molecular events provoked in MetS-exposed pups, in part by the decrease
in selenoproteins’ expression, a modest increase in systolic blood pressure (SBP), and a
high HR value one week after the end of the lactation period. This high HR seems to be
due to a myocardial contractibility problem [142]. Therefore, MetS-exposed pups present
important changes in the cardiac programming process, leading to myocardial fibrosis and
hypertrophy, OS, inflammation, and heart contractibility problems.

In the three tissues studied OS appeared, especially in the heart, finding antioxidant
endogenous enzymes disruptions, some of them related to lower GPxs activities, like in
the heart. It is clear that general OS is taking place in MetS-exposed pups, together with
inflammation and alterations in cellular energy balance. All these events are related to the
studied selenoproteins, since they have different antioxidant repercussions, by decreasing
ROS in the cytosol, in the membrane of organelles, and/or extracellular fluids; contributing
to modulate inflammation (NF-kB), apoptosis, and energy balance (AMPK). Despite the
fact that they are increased or decreased in tissues, OS is still taking place; therefore, their
antioxidant activities are insufficient, and Se supplementation seems to be a therapeutic
approach to MetS-exposed pups. Nevertheless, is important to take into account the dual
role of Se in hepatic IR genesis and renal inflammation and fibrosis via SelP.

4. Selenium and Endocrine Energy Balance in MS-Exposed Pups

Apart from selenoproteins changes in their expression in tissues of suckling pups
exposed to MetS related to IR, steatosis, and cardiovascular-renal dysfunction, antioxidant
selenoproteins have been directly implicated in the central endocrine regulation of appetite
and energy homeostasis by affecting the hypothalamus function [176]. Indeed, program-
ming of appetite and energy expenditure may stem from the remodeling of hypothalamic
structures and from an altered response to anorexigenic peptides [177]. Rats exposed to
MetS during the intrauterine period, exhibit a greater degree of obesity if given high caloric
food, indicating augmented energy conservation and altered feeding behavior [178].

4.1. Hypothalamus

Specifically, in the hypothalamic arcuate nucleus (ARC), there are two cell popula-
tions related to food intake and energy expenditure: anorexigenic neurons, which de-
crease appetite and increase energy expenditure, express proopiomelanocortin (POMC)-
derived peptides, such as α-melanocyte-stimulating hormone (α-MSH); they are known
as POMC/CART neurons, and orexigenic neurons, which increase appetite and decrease
energy expenditure, co-express neuropeptide Y (NPY) and agouti-related peptide (AgRP);
they are known as NPY/AgRP neurons [179]. It has been observed that ROS and ERS
significantly affect these hypothalamic neuronal populations that regulate global energy
metabolism [180].

In the last five years, a prominent role for selenoproteins in the ARC function has
been supported. Different selenoproteins are abundantly expressed in AgRP and POMC
neurons, and their expression levels are regulated by nutrient availability [181]. High
transcript levels of Gpx1, Gpx3, Selenof, Selenok, Selenom, Selenot, and Selenow have been
reported. Despite the fact that not all of their functions are known, GPxs modulate ROS
and ERS production in ARC, preventing the latter’s malfunction [176]. Schriever et al.
demonstrated that GPx4 plays a physiological role in balancing metabolic control signals
and inflammation in AgRP, but not in POMC neurons [182]. SelM has been described
as an ER-resident oxidoreductase implicated in leptin signaling and energy metabolism
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by increasing TXNRD antioxidant activity in the hypothalamus [183–185]. Kremer et al.
have found that the Se recycling enzyme selenocysteine lyase (Scly), which is necessary for
selenoproteins’ synthesis, is implicated in the susceptibility of developing a MetS and it is
decreased in the hypothalamus [186]. Moreover, Torres et al., using Scly-Agrp knockout
mice, found a reduction in weight gain and adiposity [187].

Since ARC is located near the median eminence (ME), an area thought to lack the
blood–brain barrier (BBB), it has a pivotal position to monitor circulating levels of hormones
and nutrients, receiving direct peripheral information of peptides from blood. Peripheral
endocrine signals are divided into long-term endocrine energy balance signals, like insulin
and leptin and short-term energy balance signals, like peptides secreted from the GIT such
as ghrelin (Ghrl), glucagon-like peptide-1 (GLP-1), glucagon-like insulinotropic peptide
(GIP), cholecystokinin (CCK), oxyntomodulin (OXM), and peptide YY (PYY). Long-term
signals give information about the energy stored since these peptides are secreted in propor-
tion to the existing fat mass from the pancreas and adipose tissue. They directly stimulate
POMC/CART neurons and inhibit NPY/AgRP neurons leading to anorexigenic effects.
Moreover, these neurons send projections to other hypothalamic areas related to thyrotropin
release hormone (TRH) secretion and to thyroidal endocrine regulation [188]. Short-term
signals provide information about the food that is eaten and how much the stomach is
distended. These peptides send information to the hindbrain and have anorexigenic effects
via vagus, except ghrelin which directly inhibits POMC/CART neurons having orexigenic
actions [189–191]. Therefore, ARC integrates the peripheral information and regulates
appetite and energy expenditure by having orexigenic or anorexigenic functions [188].

To record information about how Se is involved in endocrine peripheral energy balance
during MetS programming, peptides involved in short and long endocrine peripheral
energy balance were analyzed together with pups’ appetite profile and Se status in the
organs implicated in body energy metabolism like GIT, liver, pancreas, hypothalamus, and
adipose tissue (AT) (Figure 6). With this information, we will get a simplified overview of
functional aspects of Se-regulation of fatty acid, Gluc and protein metabolism, and energy
homeostasis, through the interorgan crosstalk in MetS-exposed pups.

4.2. Peripheral Short-Term Signals

These energy signals are mainly formed by peptides secreted from the gastrointestinal
tract and have digestive properties. HFruD affects GIT structure and function by different
mechanisms, among them by generating OS in the small intestine and liver [192]. En-
teroendocrine cells (EECs) distributed along the GIT release gut peptides in response to
luminal stimuli (including nutrients and microbiome change), modifying the endocrine
short-term energy balance signals, probably being affected by fructose exposition [193].
Kuhre et al. describe that fructose induces CCK, GLP-1, and PYY, but not GIP secretion in
healthy young humans [194].

OS affects intestinal cell proliferation, differentiation, barrier function, and mucosal
defenses [195]; the small intestine being one of the target organs of dietary Se [196]. The
main antioxidant selenoprotein expressed in the epithelium of the GIT is GPx2, which
also has anti-inflammatory properties and supports the growth of transformed intestinal
cells [125]. It also affects EECs secretions, since a lack of GPx2 together with Se deficiency
is accompanied by a decrease in GLP-1 and Ghrl [197]. A maternal Se-deficient diet affects
GIT development and its endocrine function in their weaning pups [18], leading to a
lower capacity to assimilate ingested nutrients and, therefore, retardation in the animals’
growth [31].
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pointing to the leptin resistance process. Hepatic IR process is taking place; however, in serum only 
triglycerides (TGs) levels are increased. In these processes, Se and selenoproteins (up- or 
down-regulated) could be implicated, since, in the gastrointestinal tract, pancreas, white adipose 
tissue (WAT), arcuate nucleus (ARC), and liver, Se and selenoproteins play an important antioxi-
dant role. See text for more information. GIP: gastric inhibitory polypeptide, GLP-1: glucagon-like 
peptide-1, PSI: pancreas somatic index, BW: body weight, WAT: white adipose tissue, BAT: brown 
adipose tissue, CCL: cranium–caudal length, Gluc: glucose, Chol: cholesterol, ↑: increase, ↓: de-
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Figure 6. MetS programming and Se in peripheric endocrine signals related to energy balance. MetS
exposition provokes changes in anorexigenics (PYY: peptide YY, leptin, and insulin) endocrine signals.
Pups present lower milk intake, lower weight gain and length, and higher catabolism, pointing to the
leptin resistance process. Hepatic IR process is taking place; however, in serum only triglycerides
(TGs) levels are increased. In these processes, Se and selenoproteins (up- or down-regulated) could
be implicated, since, in the gastrointestinal tract, pancreas, white adipose tissue (WAT), arcuate
nucleus (ARC), and liver, Se and selenoproteins play an important antioxidant role. See text for
more information. GIP: gastric inhibitory polypeptide, GLP-1: glucagon-like peptide-1, PSI: pancreas
somatic index, BW: body weight, WAT: white adipose tissue, BAT: brown adipose tissue, CCL:
cranium–caudal length, Gluc: glucose, Chol: cholesterol, ↑: increase, ↓: decrease.

Despite the fact that Se deposits in the GIT of weaning MetS-exposed pups are not
measured, we know that, as in Se-deficient breastfeeding rats, GIP and PYY are decreased
in MetS-exposed pups [198]. Therefore, it is probable that GIT Se deposits are decreased
and its integrity affected since these pups at the end of weaning also present a lower BMI
and an important loss of mass and length. Apart from the growth impairment, MetS
pups also present high serum TGs levels and low brown adipose tissue (BAT) depositions,
consistent with the low PPY and GIP levels found. GIP together with GLP-1 are incretin
gut hormones that increase the insulin glucose response [199]. Low GIP levels, contrary to
the high GLP-1 serum values found in MetS pups, are in consonance with the low insulin
serum values found in MetS pups. The higher levels of GLP-1 found in MetS pups are
probably related to fructose intake since previous studies have determined that fructose
significantly stimulates GLP-1 secretion in mice, rats, and humans without affecting GIP
levels [194].
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4.3. Peripheral Long-Term Signals: Pancreas and Adipose Tissue

Long-term signals provided by insulin from the pancreas and leptin from white adi-
pose tissue (WAT), lead to anorexigenic effects and stimulate the secretion of hypothalamic
TRH, increasing basal metabolism by stimulating thyroid gland hormones secretion [188].
In these tissues, Se plays a pivotal role, being an important nutrient in controlling food
intake and energy expenditure.

4.3.1. Pancreas

MetS is a clustering of factors indicative of poor metabolic health; however, the main
mechanism to explain its development is not clear. IR has most commonly been proposed
for this role and is generally considered to be a root causative factor [200]. Since insulin
is secreted by β-cells in the pancreas, this tissue plays a critical role in MetS. Pancreas
development and its endocrine and exocrine functions are deeply related to pancreatic
Se deposits. This mineral has well-documented anti-inflammatory, antioxidant and pro-
apoptotic actions in this tissue [201]. Pancreatic β-cells, which are responsible for insulin
synthesis, have an inherent deficiency in their capacity to cope with OS and they produce
a large amount of ROS during insulin synthesis. In these cells, a correct GPx antioxidant
activity has an important repercussion by avoiding pancreatic β-cells oxidation [202].
Moreover, the mass of β-cells declines with the progression of ROS [203]. Se restriction
causes pancreatic atrophy with hypoinsulinemia by down-regulating selenoproteins and
insulin signaling genes in the pancreas [202].

According to that and relative to metabolic programming, in previous studies, we have
found that pups exposed to a low-Se diet have extremely low Se deposits in the pancreas,
an underdeveloped pancreas, low levels of the insulin precursor C-peptide, and extremely
low insulin secretion, which implies that β-cells are collapsed. Moreover, no increase in
incretins (GLP-1 and GIP) and polypeptide P (PP) were found. This makes it evident that
the insulin secretion process is almost null, and that not only are β-cell dysfunctional but
also α-cells are dysfunctional, even when there is a deprivation of Se during gestation and
lactation (Figure 3) [32].

In MetS pups exposed to HfruD, an increase in Se pancreatic deposits has been found;
however, this effort was insufficient to ensure a correct pancreatic endocrine function [198].
These pups present an underdeveloped pancreas with a decrease in β-cell function and a
drastically low insulin secretion, leading to a pancreatic profile similar to that of Se-deficient
exposed pups and/or T1DM. However, the pancreatic endocrine profile in MetS pups was
not so bad compared to that of Se-deficient pups, since in an attempt to increase insulin
secretion, MetS pups have higher levels of the insulin secretion stimulators: glucagon and
GLP-1. It was recently reported that GLP-1 is also produced from the same precursor as
glucagon in pancreatic α-cells [204]. Therefore, the MetS model used in our laboratory does
not seem to affect the exocrine pancreas and α-cells populations. The low insulin secretion
found, joint to the resistance opposed to the hepatic insulin signaling mainly found in
females MetS-exposed pups, complicate the correct function of this important hormone
with growth function during breastfeeding in MetS-exposed pups (Figure 6).

4.3.2. Adipose Tissue

AT is organized in a large organ divided morphologically and functionally into white
(WAT) and brown adipose tissues (BAT). The first one stores lipids in form of TGs to
allow intervals between meals, and the second one burns lipids for thermogenesis via high
levels of the mitochondrial uncoupling protein 1 (UCP-1), combating hypothermia and
obesity [205]. However, they present plasticity with the ability for reciprocal reversible
transdifferentiation in response to physiologic needs by “whitening” or “browning” [206].
It functions as a critical regulator of energy metabolism regulating fat homeostasis. Great
progress has been made in understanding the complexity of AT biology including inter- and
intra-depot differences in adipocytes; its dynamic nature as a source of stem cells; the role
of adipocytes from obese AT, which induces chronic low-grade inflammation, and its role as
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an endocrine organ that communicates with other tissues to regulate systemic metabolism
through secretion of adipokines, such as the long-term appetite signal leptin secreted
by WAT, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes.
Therefore, altered AT function is intimately related to the pathogenesis of MetS [207]. In
this context, HFruD promotes whitening of adipose tissue by decreasing UCP-1 expression
in adult mice [208] and affects leptin secretion and function leading to leptin resistance
(LR) [209–212]. This resistance could be due to intracellular deficits in cell signaling, a
lower expression of leptin receptors, and/or impaired autophagy in WAT affecting its
secretion [213,214]. Moreover, there appears to be a direct relationship between fructose
and leptin, since long-term fructose consumption stimulates leptin production by the
gastric mucosa and leptin increases intestinal GLUT-5 fructose transport activity [215–217].
Therefore, HFruD clearly affects long-term endocrine energy balance signals and body
energy balance.

Different studies show that Se may modulate preadipocyte proliferation and adi-
pogenic differentiation since it interferes with insulin signaling, regulates lipid accumu-
lation and lipolysis, and also affects AT endocrine (including leptin), and immune func-
tions [218]. This is due to the activity of different selenoproteins, such as the ER-resident
selenoproteins (SelS, SelV, etc.) together with mitochondrial and cytosolic GPxs (mainly
GPx3 and GPx4) and TXNRDs, which interfere with adipocyte development and func-
tioning mainly by the modulation of redox homeostasis and ERS [182,219,220]. As it was
mentioned before, these mechanisms are also implicated in the action of Se in ARC, actions
which are related to hypothalamic leptin signaling and to central LR. Since leptin inhibits
AgRP neurons promoting a negative energy balance, resistance to this anorexigenic action
of leptin is strongly associated with obesity, IR, and MetS. A correct Se homeostasis by
avoiding OS and ERS plays an important role in maintaining leptin sensitivity and a correct
AgRP neuron response [186,187].

According to that, in Se-deficiency exposed pups, where all the tissues studied have
extremely low Se deposits, AT mass was very poor [32]. However, these weaning pups have
high serum leptin levels and probably LR, since they present an increase in relative milk
intake (Figure 3). LR during neonatal state has been shown to increase both sympathetic
activity and blood pressure in mice [221]. In a model of AgRP-Scly KO mouse, where
hypothalamic selenoproteins’ expression is compromised since the protein Scly is necessary
for a correct Se re-utilization, BAT had reduced lipid deposition and increased expression
of the thermogenic marker UCP-1, showing that Se can influence energy homeostasis via
AgRP neuron-mediated BAT activation [187]. If this situation is taking place in the model
of Se-deficiency exposed pups explained before, the Se–AgRP–BAT axis could explain in
part their extremely low weight and their increased catabolism.

Despite the fact that in the MetS model used by this laboratory, Se deposits in WAT
and BAT do not have been measured in pups, we have described that WAT deposits
were unaltered and BAT ones were significantly decreased, leading to an anabolic adipose
ratio [222] (Figure 6). WAT deposits could be unaffected in MetS pups, probably because,
like in adult animals, HFruD promotes whitening of adipose tissue by decreasing UCP-1
expression, collaborating to decrease BAT mass [208]. BAT plays an important role in
linking poor fetal growth and the late development of adult metabolic diseases [223].

Despite having a normal amount of WAT, one of its main endocrine signals—leptin—
is significantly higher in MetS pups. MetS pups, however, appear to develop peripheral
LR since these pups have hepatic steatosis, low insulin secretion, low BAT deposits, and
underdeveloped muscle and bone mass [54], all processes that leptin prevents [224].

As it was mentioned, THs are not only vital to the fetal nervous system development,
linear growth, energetic metabolism, and thermogenesis, but also to the fluid balance and
cardiovascular system [225], and the THs and MetS interrelationship has been studied [226].
Se is necessary for TH synthesis since forms part of the iodothyronine deiodinases (DIO1,
DIO2, and DIO3), being the thyroid the organ with the highest Se content per gram of
tissue [227]. In these MetS-exposed pups, thyroid mass was decreased, and Se deposits
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increased; however, TSH and free and total THs were significantly decreased [142]. There-
fore, Se is not acting efficiently in these tissues, or at least not enough. The low HTs serum
values are not in agreement with the catabolic process that is taking place in muscle and
bone. Moreover, in MetS-exposed pups, THs are not controlling the secretion of TRH and
TSH by negative feedback to maintain physiological levels of the main hormones of the
HPT axis. Therefore, insulin, leptin, and TSH signals are disrupted in MetS-exposed pups,
being the long-term endocrine signal for energy balance profoundly altered. Curiously,
in these endocrine tissues (pancreas and thyroids), Se levels are up-regulated but are not
acting properly or enough to maintain a correct secretive function.

It could be concluded from this section that not only selenoproteins’ synthesis in the
AT, pancreas, and GIT are necessary for normal sensitivity to leptin, insulin, and THs
signals, but selenoproteins’ synthesis in the ARC is also necessary [228].

5. Conclusions

In conclusion, from a clinical point of view it is clear that the low Se levels during
gestation are related to maternal and neonate metabolic diseases such as pre-eclampsia,
GDM, IUGR, and probably MetS, since, among others, it is necessary to maintain an
adequate oxidative balance. However, Se supplementation in these cases is not easy to
apply, since it depends on maternal Se status, and Se dose and source. Moreover, since
the human sample used in these studies is serum, animal research is necessary in order
to obtain tissue fetal and neonate information. Experimental studies have shown that
Se and selenoprotein homeostasis are unbalanced during MetS programming and are
probably related to changes in oxidative balance, inflammation, energy balance, growth,
renal and cardiac function, and endocrine regulation of metabolism. Se deposits and
antioxidant selenoproteins (GPx) are up- or down-regulated in different tissues of MetS
pups. However, OS appeared in all of them, their antioxidant activities being insufficient.
Therefore, Se supplementation seems to be a therapeutic approach to avoid OS in MetS-
exposed pups. However, taking into account the dual role of Se in hepatic IR genesis and
renal inflammation and fibrosis via SelP, this decision is not so clear. Consequently, it is
important to compare the general energy balance in MetS pups with those exposed to high
or low Se supply in order to decide on Se supplementation or not. When dams received a
low dietary Se supply, their pups suffered a metabolic alteration similar to T1DM with null
insulin secretion and LR, OS, severe growth retardation, and an energy-wasting process.
MetS offspring present a profile that is more similar to that of Se-deficient pups but is not
so marked. Controlled Se supplementation should, therefore, be taken in mind if during
gestation and/or lactation there are suspicions of endocrine energy balance dysfunctions
related to OS, such as MetS. It seems that this therapy could be especially beneficial to
induce heart reprogramming. However, more experimental research which examines Se
as a potential reprogramming strategy during MetS must be taken into account before
designing further clinical studies.
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