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Introduction
Because polyspermy is an embryonic lethal, at least three post-
fertilization blocks to gamete interactions have evolved in mice. 
The first two occur rapidly after fertilization and prevent addi-
tional sperm from fusing with the egg’s plasma membrane or 
penetrating the extracellular zona pellucida surrounding eggs 
and preimplantation embryos (Sato, 1979; Stewart-Savage and 
Bavister, 1988). The third and definitive block occurs over 
several hours and ensures that sperm do not bind to the surface 
of the zona pellucida (Inoue and Wolf, 1975; Baibakov et al., 
2007). The molecular basis of the first two blocks remains 
largely unknown, and the third correlates with egg cortical granule 
exocytosis (Barros and Yanagimachi, 1971).

Cortical granules are Golgi apparatus–derived, membrane-
bound vesicles (0.2–0.6 µm) that accumulate during oogenesis 
and form a uniform layer in the cortex of fully grown mouse 
eggs. The observed 15-fold increase in cortical granules during 
oocyte growth reflects both an increase in granule density 
and in the cortical area as oocytes increase in diameter from 
40 to >80 µm (Zamboni, 1970; Nicosia et al., 1977; Ducibella 
et al., 1994). During meiotic maturation and germinal vesicle 
breakdown, cortical granules redistribute and are excluded 
from the region of the metaphase I spindle (Ducibella et al., 1988a; 

Deng et al., 2003). Cortical granules become competent to 
undergo exocytosis just before ovulation, and the 8,000 cortical 
granules observed in fully grown oocytes decline to 4,800 
in ovulated eggs (Ducibella et al., 1994). Fertilization triggers 
cortical granule migration to the plasma membrane, where they 
fuse and exocytose their contents (Wessel et al., 2001; Ducibella 
et al., 2002).

Little is known about the contents of mouse cortical gran-
ules (Liu, 2011), and the only documented biological function is 
the postfertilization cleavage of ZP2 (Bleil et al., 1981), which, 
along with ZP1 and ZP3, forms a structured extracellular glyco-
matrix that surrounds mouse eggs (Bleil and Wassarman, 1980). 
Cleavage of ZP2 is N terminal of a diacidic residue (Gahlay 
et al., 2010), a known cleavage site for the astacin family of 
metalloendoproteases. Ovastacin (Astl, the official gene name) 
is expressed in growing mouse oocytes and has a signal peptide 
to direct it into a secretory pathway but has no known function 
(Quesada et al., 2004). We now localize ovastacin as a pioneer 
component of mouse egg cortical granules and document its 
ability to modify the zona pellucida to prevent postfertilization 
sperm binding and provide a definitive block to polyspermy.

The mouse zona pellucida is composed of three gly-
coproteins (ZP1, ZP2, and ZP3), of which ZP2 is 
proteolytically cleaved after gamete fusion to pre-

vent polyspermy. This cleavage is associated with exo-
cytosis of cortical granules that are peripherally located 
subcellular organelles unique to ovulated eggs. Based 
on the cleavage site of ZP2, ovastacin was selected as 
a candidate protease. Encoded by the single-copy Astl 
gene, ovastacin is an oocyte-specific member of the 
astacin family of metalloendoproteases. Using specific 
antiserum, ovastacin was detected in cortical granules 

before, but not after, fertilization. Recombinant ovasta-
cin cleaved ZP2 in native zonae pellucidae, documenting 
that ZP2 was a direct substrate of this metalloendopro-
tease. Female mice lacking ovastacin did not cleave ZP2 
after fertilization, and mouse sperm bound as well to 
Astl-null two-cell embryos as they did to normal eggs. 
Ovastacin is a pioneer component of mouse cortical 
granules and plays a definitive role in the postfertiliza-
tion block to sperm binding that ensures monospermic 
fertilization and successful development.
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conclude that ovastacin is expressed in eggs, where it localizes 
to peripheral cortical granules and is discharged during post-
fertilization cortical granule exocytosis.

In the absence of ovastacin, cortical 
granules persist in ovulated eggs
To determine its function, the single-copy Astl gene was suc-
cessfully targeted for ablation in mouse embryonic stem (ES) 
cells using a neomycin cassette flanked 5 and 3 by 5.3 and 
1.5 kbp of homology, respectively (Fig. 2 A). Colonies were 
initially screened by PCR, and 14 positive clones were confirmed 
by Southern blot analysis using 5 and 3 probes outside the 
regions of homology (Fig. 2 B). After blastocyst injection, two 
coat-color chimeric male mice were identified, and germline 
transmission of the null allele was confirmed by the genotype 
of tail DNA (Fig. 2 C). Mice, bred to homozygosity for the 
mutant Astl allele, were fertile. Although there was a modest 
decrease in fecundity, there was considerable overlap in the size 
of liters (Fig. 2 D), which may reflect effects of mixed genetic 
backgrounds.

To confirm the absence of ovastacin protein, eggs and 
two-cell embryos were stained with LCA-FITC or ovastacin 
antibodies and imaged by confocal microscopy. Colocalization 
in the periphery of eggs, but not two-cell embryos, was ob-
served in normal mice (Fig. 3 A). Similar results were obtained 
for eggs and embryos from heterozygous null females, although 
the intensity of the signals was diminished. As anticipated, 
ovastacin was not detected in the homozygous null eggs, but, 
unexpectedly, LCA-FITC reactivity was lost as well (Fig. 3 A). 
To determine whether this reflected an absence of cortical gran-
ules, AstlNull eggs were stained with WGA. Because WGA strongly 
reacts with the zona pellucida, it is difficult to detect peripheral 

Results and discussion
Ovastacin is present in mouse egg  
cortical granules
ZP1, ZP2, and ZP3 form the extracellular zona pellucida that 
surrounds mouse eggs and early embryos (Bleil and Wassarman, 
1980). Sperm bind to eggs but not two-cell embryos, and the 
only documented biochemical change in the zona matrix is 
cleavage of ZP2 (Fig. 1 A; Bleil et al., 1981). This cleavage is 
associated with cortical granule exocytosis and is N terminal 
of a diacidic motif, 168DE169 (Gahlay et al., 2010). The site is 
well conserved among mammals (Hasegawa et al., 1994; Tian 
et al., 1999; Lindsay and Hedrick, 2004), but the identity of 
the presumptive cortical granule protease has as of yet remained 
unknown (Fig. 1 B). Ovastacin (Fig. 1 C) is a member of the 
large astacin family of metalloendoproteases (Dumermuth et al., 
1991; Bond and Beynon, 1995), which cleave upstream of 
diacidic residues. Because of its restricted expression in mouse 
oocytes (Quesada et al., 2004), ovastacin was selected as a 
candidate protease for the postfertilization cleavage of ZP2.

Taking advantage of the unique C-terminal extension of 
ovastacin, a peptide-specific (395PLALFPEARDKPAP408) rabbit 
antibody was used to image ovulated eggs by confocal micros-
copy. LCA-FITC (Lens culinaris agglutinin conjugated to FITC) 
is a marker of cortical granules (Ducibella et al., 1988b), and its 
colocalization in the periphery of ovulated eggs indicates the 
presence of ovastacin within these granules (Fig. 1 D). Disap-
pearance of ovastacin after fertilization and cortical granule 
exocytosis was observed by confocal microscopy (Fig. 1 D) and 
confirmed by an immunoblot that detected the two known 
isoforms of the enzyme (Quesada et al., 2004) in eggs but not 
two-cell embryos (Fig. 1 E). From these observations, we 

Figure 1.  Localization of ovastacin. (A) Mouse 
ZP2 (713 aa) is proteolytically processed by 
cleavage of a signal peptide (Sig) and at 
a bibasic motif (blue arrow) upstream of a 
transmembrane (TM) domain to release the 
ectodomain (ZP235-633) that participates in the 
extracellular zona pellucida. After fertiliza-
tion, ZP2 is cleaved upstream of a diacidic 
motif (169DE170). Conserved cysteine residues 
(yellow vertical lines) and potential N-linked 
glycosylation sites (red circles) are indicated. 
(B) The diacidic (shaded) proteolytic cleavage 
site (arrow) in the N-terminal region of mouse 
ZP2 is conserved in human, bonnet monkey, 
cow, pig, dog, cat, rabbit, hamster, and rat. 
(C) A schematic of mouse ovastacin including 
a signal peptide, a Zn+2-binding (blue histidine 
residues) enzyme-active site (red glutamic acid 
with an asterisk), and the antigen (395PLALF-
PEARDKPAP408) used to generate a rabbit pAb. 
Cysteine residues and potential glycosylation 
sites are indicated as in A. (D) Unfertilized 
eggs and one-cell embryos from normal mice 
were imaged by confocal microscopy and 
differential interference contrast (DIC) after 
staining with rabbit anti-ovastacin (Ovst) anti-
body, LCA-FITC (a marker of cortical granules), 
and the nuclear stain Hoechst 33342. (E) An 
immunoblot of lysates from unfertilized eggs 
(150) and two-cell embryos (150) was probed 
with antibody to ovastacin.
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that recognizes the 90-kD C-terminal fragment, this cleavage 
was detected by immunoblotting run under reducing conditions 
(Rankin et al., 2003) and occurs over 6–8 h after fertilization 
(Baibakov et al., 2007). ZP2 in AstlNull eggs had a normal mass 
of 120 kD but was not cleaved in embryos isolated from AstlNull 
females; ZP2, in two-cell embryos from normal and AstlHet 
females, was cleaved and served as positive controls (Fig. 4 A). 
Using a 30-min de novo binding assay, capacitated mouse sperm 
bound to AstlNull eggs (56.6 ± 2.8 SEM sperm/egg) but not nor-
mal two-cell embryos (3.8 ± 0.7 SEM sperm/embryo), which 
served as positive and negative controls, respectively. In sharp 
contrast, mouse sperm bound to two-egg embryos from AstlNull 
mice (63.5 ± 3.0 SEM sperm/embryo) in a manner that was in-
distinguishable from the positive control (Fig. 4 B). Thus, the 
cleavage status of ZP2, independent of fertilization and cortical 
granule exocytosis, is the major determinant of sperm binding 
to the surface of the zona pellucida.

In reexamining the primary structure of mouse ZP2, two 
additional diacidic motifs were identified in the 30-kD N-terminal 
fragment (54DE55 and 127DD128), and five were present in the 
90-kD C-terminal fragment (Fig. 5 A). The detection of an intact 
90-kD fragment on immunoblots of normal two-cell embryos 
probed with mAb M2c.2 (Fig. 4 A) suggests that additional 
C-terminal sites are not cleaved by ovastacin. To determine the 
cleavage status of the additional diacidic motifs in the 30-kD  
N terminus, immunoblots of eggs and two-cell embryos from nor-
mal and homozygous null Astl females were run under reducing 
conditions and probed with an mAb, IE-3, specific to ZP2103-134 
(East and Dean, 1984; Sun et al., 1999). As anticipated, ZP2 in 

cortical granules with great confidence. However, using EM, 
cortical granules were readily detected in AstlHet and AstlNull but 
not in two-cell embryos. Native ovastacin immunoprecipitated 
from ovaries or recombinant ovastacin expressed in insect cells 
did not react with LCA lectin (Fig. 3 C) despite LCA binding to 
a higher–molecular mass protein (not depicted) that validates 
the assay (Liu et al., 2003a). Thus, the molecular identity of the 
LCA-positive molecule in cortical granules remains to be deter-
mined. From these observations, we conclude that cortical gran-
ules remain present in the periphery of AstlNull eggs (Fig. 3 B).

After fertilization, ZP2 remains uncleaved 
in the absence of ovastacin
Preimplantation development is a period of particular vulnera-
bility for mammalian embryos. Biochemical or genetic removal 
of the protective zona pellucida causes resorption into the 
oviductal epithelium (Bronson and McLaren, 1970; Modliński, 
1970; Rankin et al., 2001), and maternal effect genes that 
arrest or delay cleavage-stage development result in embryonic 
lethality (Li et al., 2010). Polyspermic aneuploidy is also a sig-
nificant threat to embryonic survival, and mice have developed 
strategies to ensure monospermic fertilization. Prevention of 
sperm binding to the zona pellucida provides the ultimate post-
fertilization block to polyspermy. If sperm do not bind, they 
cannot penetrate the zona matrix, and they cannot fuse with the 
egg plasma membrane.

The postfertilization cleavage of ZP2 (120 kD) was ini-
tially reported to result in two fragments (30 and 90 kD) that re-
main disulfide bonded (Bleil et al., 1981). Using an mAb (M2c.2) 

Figure 2.  Establishment of AstlNull mice. (A) A 
schematic of the normal and AstlNull alleles after 
targeting with a construct containing positive 
(phosphoglucokinase [PGK]-Neo) and negative 
(MC1-TK) selectable markers. The thicker lines 
represent the 5.3- and 1.5-kbp homologous arms 
that are 5 and 3, respectively, to the Neo cas-
sette. 5 (407 bp; 5 bp outside of the targeting 
construct) and 3 (368 bp; 97 bp outside of the 
targeting construct) probes were used for South-
ern blot hybridization. Arrows indicate SspI (S) 
restriction endonuclease sites. PCR genotyping  
was performed using primers for the normal allele 
(797 bp) and null allele (399 bp). Alt., alternative. 
(B) Southern blot hybridization of ES cell DNA 
from two successfully targeted clones (1 and 2) 
and one normal control (3) detected the normal 
allele as 7.7- and 6.3-kbp fragments with the 5 
and 3 32P-labeled probes, respectively. The AstlNull 
allele was detected as a 14-kbp fragment with either  
the 5 or the 3 probe. (C) PCR genotyping of mouse 
tail DNA detected the normal (797 bp) and null 
(399 bp) Astl alleles. (D) The size of litters from 
AstlHet and AstlNull female mice (five per group) 
mated with normal males over a period of 8–10 mo. 
Box plots reflect the median (line) and data points 
within the 10th and 90th percentiles (error bars). 
Boxes include the middle two quartiles, and outliers 
are indicated by dots.
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30-kD N-terminal fragment, with the smaller peptides reflecting 
heterogeneity of cleavage at the three sites (54DE55, 127DD128, 
and 168DE169), given the binding site of the mAb (Fig. 5 A). 
Of note, all of the N-terminal ZP2 peptides remain disulfide 
bonded to the larger C-terminal fragment (Greenhouse et al., 
1999). Thus, rather than a single cut, it now appears that the 
30-kD fragment is further degraded through proteolysis.

embryos from AstlNull females was not cleaved (Fig. 5 B). How-
ever, rather than a single 30-kD ZP2 fragment in embryos from 
normal females, four peptides were detected on the immunoblot  
probed with IE-3 (Fig. 5 B, arrows). One N-glycan (Arg83), but 
no O-glycans, is present in the N terminus of ZP2, as determined 
by mass spectrometry (Boja et al., 2003). The largest glyco-
peptide observed on the immunoblot could represent the entire 

Figure 3.  Localization of ovastacin in normal and AstlNull mice. (A) Unfertilized eggs and two-cell embryos from normal, AstlHet, and AstlNull mice were 
collected and viewed by confocal and differential interference contrast (DIC) microscopy. Eggs and embryos were stained with rabbit anti-ovastacin (Ovst) 
antibody, LCA-FITC, and Hoechst 33342. Peripherally located cortical granules stained with LCA-FITC (white arrows) were observed in normal and AstlHet 
but not AstlNull eggs. The presence or absence of ovastacin correlated with the detection of LCA-FITC (black arrows in differential interference contrast/
merge). (B) AstlHet and AstlNull eggs were stained with WGA lectin and imaged by EM. Cortical granules beneath the ooplasm (arrows) and the extracellular 
zona pellucida stained with WGA are shown. Mitochondria do not stain and serve as a negative control. After fertilization, cortical granules were absent 
from AstlHet two-cell embryos, although WGA continued to stain the zona pellucida. Bars, 0.5 µm. (C, top) Immunoblots of insect cell supernatant lacking 
(control [Ctrl]) or containing (Ovst) recombinant ovastacin probed with antibody to ovastacin (left) or with LCA lectin (right). (bottom) Immunoblots are the 
same after immunoprecipitation of normal ovarian lysates with antibody to ovastacin.

Figure 4.  ZP2 cleavage and sperm binding to AstlNull two-
cell embryos. (A) Immunoblot of lysates from eggs (20) and 
two-cell embryos (20) from normal, AstlHet, and AstlNull mice 
probed with an mAb specific for the C-terminal region of 
mouse ZP2 (M2c.2). Intact ZP2 is 120 kD, and the cleaved 
C-terminal fragment of ZP2 is 90 kD. (B) Eggs and two-
cell embryos from AstlNull and two-cell embryos from normal 
mice were incubated (1 h) with capacitated sperm. After 
washing with a wide-bore pipette to remove all but two to 
six sperm on normal two-cell embryos (negative control), 
eggs and embryos were stained with Hoechst 33342, and 
bound sperm were presented as z projections of 5-µm con-
focal optical sections and differential interference contrast 
(DIC) images.
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that ZP2 is the direct substrate for mouse ovastacin. Collec-
tively, a simple explanation of these observations is that 
sperm bind to the N-terminal domain of ZP2 at the surface of 
the zona pellucida before penetration and fusion with the egg 
plasma membrane. After fertilization and cortical granule 
exocytosis, ovastacin diffuses through the zona matrix and 
fragments the N-terminal domain of ZP2. This proteolysis takes 
several hours and renders the zona pellucida unable to support 
sperm binding.

Although destruction of the sperm docking domain is 
definitive in preventing polyspermy, mice have additional strate-
gies to ensure monospermic fertilization. Particularly striking is 
the ability to restrict the number of sperm that encounter ovulated 
eggs in the oviduct. Although millions of sperm are deposited in 
the female reproductive tract at coitus, only thousands traverse 
the utero–tubal junction, where they are initially confined to 
the oviductal isthmus by adherence to the epithelial lining 
(Suarez and Pacey, 2006). After capacitation and hyperactiva-
tion, individual sperm free themselves and ascend to fertilize 
ovulated eggs present in the oviductal ampulla. Gamete recogni-
tion occurs at low ratios in vivo, and the number of sperm does 
not exceed the number of eggs until 50% have been fertilized 
(Cummins and Yanagimachi, 1982). Nevertheless, the imperative 
of monospermy invokes additional defenses to polyspermy. 
The most immediate block prevents fusion of additional sperm 
in the perivitelline space with the egg plasma membrane. This 
block is independent of cortical granule exocytosis but requires 
fusion with sperm, as it can be bypassed by intracellular sperm 
injection (Horvath et al., 1993; Maleszewski et al., 1996) and 
does not depend on membrane depolarization (Jaffe et al., 
1983). Within minutes of fertilization, a second block that is 
dependent on cortical granule exocytosis prevents additional  
sperm from penetrating through the zona pellucida. The rapidity 

The AstlNull phenotype recapitulates mutation of the ZP2 
cleavage site (166LA↓DE169 → 166LG↓AA169; Gahlay et al., 2010), 
in which ZP2 remains intact in the zona pellucida surrounding 
two-cell embryos. Mutation of 168DE169 prevents any cleavage 
of ZP2 (Gahlay et al., 2010), which indicates that it must be cut 
first before the 54DE55 and 127DD128 sites. In both Zp2Mut and 
AstlNull mouse lines, capacitated sperm bind to the zona pellu-
cida surrounding two-cell embryos from homozygous mutant 
females despite fertilization and cortical granule exocytosis. 
However, the significant decrease in fecundity observed in 
Zp2Mut females was not present in AstlNull mice. A notable differ-
ence between the two mutant lines is a thinner zona pellucida 
(4 µm vs. 7 µm in normal mice) present in the Zp2Mut mice, 
which could result in precocious hatching from the protective 
zona matrix and embryonic lethality (Bronson and McLaren, 
1970; Modliński, 1970; Rankin et al., 2001).

ZP2 is a direct target of ovastacin
These results indicate that ovastacin is exocytosed from cortical 
granules after fertilization and that the subsequent cleavage of 
ZP2 prevents sperm binding to the zona pellucida surrounding 
two-cell embryos. However, it was not clear whether ZP2 was 
the direct substrate for ovastacin or whether ovastacin acted 
indirectly through a cascade of proteolytic activators. Therefore, 
recombinant mouse ovastacin was expressed in insect cells and 
partially purified by column chromatography. The addition of 
the enzyme to zonae pellucidae isolated from normal eggs re-
sulted in progressive cleavage of ZP2 over 8 h (Fig. 5 C), con-
sistent with kinetics of cleavage observed in vivo (Baibakov 
et al., 2007). Similar cleavage of ZP2 was observed in the zona 
pellucida surrounding AstlNull as with normal eggs, and no cleav-
age was observed using cell supernatant from the same expres-
sion system not secreting ovastacin (Fig. 5 D). Thus, we conclude 

Figure 5.  Cleavage of ZP2 by ovastacin. (A) A schematic of 
mouse ZP2 with eight diacidic motifs (triangles), the initial cleav-
age site of ovastacin, the binding sites of mAbs IE-3 and M2c.2 
N terminal and C terminal to the initial cleavage site, and the 
localization of the single N-glycan in the N terminus. The po-
tential size of peptides resulting from cleavage of the N-terminal 
fragment with ovastacin detected by IE-3 is shown on the bot-
tom. (B) Immunoblot of eggs (15) or two-cell embryos (15) from 
normal and AstlNull females stained with IE-3 mAb that detects 
N-terminal fragments of ZP2. The top bands (120 kD) are intact 
ZP2, and bottom bands are a heterogeneous mixture of cleaved 
N-terminal fragments. Arrows indicate the four peptides detected 
on the immunoblot probed with IE-3. (C) Isolated zonae pelluci-
dae (15–20) were incubated with partially purified recombinant 
ovastacin (OvastacinRec) at 37°C for 0, 2, 4, and 8 h. (D) Same 
as in C but with insect cell supernatant lacking (control [Ctrl]) or 
containing (OvstRec) recombinant ovastacin after 4 h of incuba-
tion with zonae pellucidae from normal (Norm) or AstlNull eggs.  
(C and D) Cleavage was detected by immunoblotting with M2c.2 
to detect the ZP2 C-terminal fragment.
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Immunoblot analysis
Eggs and two-cell embryos were lysed in 2 or 4× Tris-glycine SDS loading 
buffer with DTT, separated on 4–20% Tris-glycine gels by SDS-PAGE, trans-
ferred to polyvinylidene fluoride membranes (Invitrogen), blocked in 3 or 
5% nonfat milk in PBS, and probed with primary antibodies followed by 
secondary antibodies conjugated to HRP (Gahlay et al., 2010). Chemilumi-
nescence was performed with ECL Plus (GE Healthcare), and signals were 
acquired by the Luminescent Image Analyzer LAS-3000 (Fujifilm) or with 
BioMax XAR film (Kodak).

For detection of ovastacin, blots were incubated with a 1:1,000 dilu-
tion of peptide-purified, rabbit anti–mouse ovastacin antibody (1.7 mg/ml) 
in 5% nonfat milk in TBS with 0.1% Tween 20 (TBST) at 4°C overnight. On 
the following day, blots were incubated with a 1:10,000 dilution of goat 
anti–rabbit HRP in TBST for 1 h at room temperature. For staining with LCA, 
blots were incubated with 10 µg/ml of the biotinylated LCA (US Biological) 
in 5% nonfat milk in TBST at 4°C overnight. Blots were then incubated with 
a 1:10,000 dilution of HRP-streptavidin (Thermo Fisher Scientific) in TBST 
and incubated for 1 h at room temperature.

Establishment of the Astl-null mouse line
Astl is a single-copy gene that encodes ovastacin. Mouse lines lacking ovas
tacin protein were established using DNA recombineering (Liu et al., 
2003b) and targeted ablation in ES cells (Zheng and Dean, 2009). The 
targeting construct contained positive (neomycin resistance) and negative 
(herpes simplex virus thymidine kinase) selectable markers and replaced exons 
2 and 3 of Astl and deleted the transcriptional and translational start sites. 
Correctly targeted ES cells were identified by Southern hybridization of 
SspI-digested genomic DNA using 32P-labeled probes 5 (6,766 to 
6,234 bp of the transcriptional start site) and 3 (2,688–3,056 bp) to the 
targeting vector. Heterozygous null ES cells were injected into mouse blas-
tocysts to establish chimeric founder lines. Germline transmission of the null 
allele and subsequent genotyping were determined by allele-specific PCR 
products of tail DNA. Primers P1 (5-AGGCCTTGTCACCAGGTATG-3) 
and P2 (5-CCAGAGAATGAAGGGAGCAG-3) were used to detect the 
normal allele (797 bp), and primers P2 and P3 (forward 5-GGGAGGATT-
GGGAAGACAAT-3) were used to detect the null allele (399 bp) in PCR 
genotyping of tail DNA. The PCR condition consisted of one cycle at 94°C 
for 5 min; 30 cycles at 94°C for 30 s, 58°C for 30 s, and 72°C for 1 min 
and 30 s; and a full extension cycle at 72°C for 10 min.

Fertility
AstlHet and AstlNull females were cocaged with FVB males of proven fertility 
to determine the number and size of litters for a period of 8–10 mo.

EM
Oocytes and embryos from AstlHet and AstlNull females were fixed in 1.5% 
glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4, and incubated at 4°C 
for 2 h. After extensive washing in the cacodylate buffer, the oocytes and 
embryos were embedded in 2% agarose. The samples were then dehy-
drated through a graded series of ethanol and processed for embedding 
in London Resin white. Ultrathin sections were obtained with an ultramicrotome 
(MICROM International GmbH) and mounted on Formvar-coated nickel 
grids. For lectin cytochemistry (Jiménez-Movilla et al., 2004), grids were 
preincubated (for 10 min at room temperature) in PBS (1% BSA) and 
transferred to a drop of WGA-HRP lectin (Sigma-Aldrich) in PBS for 1 h. 
After rinsing in PBS, grids were floated on a drop of rabbit anti-HRP pAb 
(Sigma-Aldrich) diluted 1:500 in PBS for 1 h. Grids were then washed in 
PBS and floated on a drop of Protein A gold (15 nm)–conjugated antibody 
(1:60; Utrecht University) for 1 h. After washing in twice-distilled water, 
ultrathin sections were counterstained with uranyl acetate followed by lead 
citrate and imaged in a transmission electron microscope (Philips Tecnai  
12; FEI). WGA-positive cortical granules were observed in five nonserial  
ultrathin sections (total; mean ± SEM/section) from three AstlNull oocytes 
(180; 12.0 ± 0.7). AstlHet (337; 22.5 ± 0.7) oocytes and two-cell embryos 
(no cortical granules) served as positive and negative controls, respectively.

Immunoprecipitation
Ovaries from 8-wk-old FVB mice were homogenized in cold lysis buffer 
(50 mM Tris, pH 8.0, 150 mM NaCl, 1 mM EDTA, 1% NP-40, and 5% 
glycerol) with one tablet of protease inhibitor cocktail (Roche) added to 
every 10 ml of buffer. The sample was centrifuged (13,200 rpm at 4°C for 
20 min), and supernatants were collected. 10 µg rabbit anti–mouse ovastacin 
antibody was added to the supernatant in a final volume of 800 µl and 
rotated overnight at 4°C. 30 µl protein G Sepharose beads (GE Healthcare) 
was equilibrated with lysis buffer and added to the protein–antibody mixture. 
This was rotated for an additional 2 h at 4°C. After a brief centrifugation, 

of this block suggests diffusion of a small molecule or prompt 
propagation of a structural modification of the zona matrix. 
However, cleavage of ZP2 by ovastacin provides the most 
definitive block to polyspermy by destroying the sperm docking 
domain on the zona pellucida to ensure monospermic fertilization 
and successful development.

The Astl gene is well conserved in humans (Quesada  
et al., 2004) and presumably plays a similar role in the postfer-
tilization cleavage of ZP2 (Bauskin et al., 1999). The modest 
decrease in fecundity observed with AstlNull mice lacking ovas-
tacin could have a greater impact in humans with their prepon-
derance of single births. If this leads to recurrent pregnancy 
loss, testing for mutations in the human ASTL gene could 
become relevant in the clinic. In this context, it will be important 
to determine whether the absence of ovastacin affects the inci-
dence of polyspermy (rarely reported in humans) or the struc-
tural integrity of the zona pellucida that protects the embryo 
as it passes down the oviduct (Bronson and McLaren, 1970; 
Modliński, 1970; Rankin et al., 2001). It is also noteworthy 
that precocious release of ovastacin from cortical granules 
could prematurely cleave ZP2 to prevent sperm binding and 
fertilization. Thus, the mouse may provide a model in which 
to begin to test such contraceptive strategies for possible future 
use in human biology.

Materials and methods
Antibodies
A rabbit pAb was generated against peptide 395PLALFPEARDKPAP408 of 
mouse ovastacin attached N terminal to a cysteine residue and conjugated 
to keyhole limpet hemocyanin (Sigma-Aldrich). mAbs IE-3 and M2c.2 
that bind to the N- and C-terminal regions of ZP2, respectively, were pre
viously described (East and Dean, 1984; Rankin et al., 2003), and the 
following antibodies and lectins were obtained commercially: LCA-FITC 
(Sigma-Aldrich), donkey anti–rabbit conjugated with Alexa Fluor 555  
(Invitrogen), goat anti–rabbit DyLight 649 (Thermo Fisher Scientific), 
donkey anti–rabbit conjugated with HRP (Jackson ImmunoResearch Labo-
ratories, Inc.), and goat anti–rat conjugated with HRP (Jackson ImmunoRe-
search Laboratories, Inc.).

Egg and embryo collection and culture
4–5-wk-old female mice were injected intraperitoneally with 5 IU of preg-
nant mare serum gonadotropin followed by 5 IU of human chorionic 
gonadotropin 48 h later. Ovulated eggs and embryos were collected before 
and after mating, respectively, in M2 medium (Millipore) containing prote-
ase inhibitors (Roche). Embryos were subsequently cultured in potassium 
simplex optimized medium (Millipore) at 37°C in 5% CO2. All experiments 
were conducted in compliance with the guidelines of the Animal Care and 
Use Committee of the National Institutes of Health under the Division of In-
tramural Research, National Institute of Diabetes and Digestive and Kidney 
Diseases approved animal study protocols.

Immunofluorescence and confocal microscopy
Oocytes and embryos were fixed in 2% PFA for 30 min at 37°C, washed 
in PBS containing 0.3% polyvinylpyrrolidone (PVP), and then blocked in 
0.3% BSA/0.1 M glycine (three times for 10 min) followed by permeabi-
lization in 0.2% Triton X-100 for 15 min (Baibakov et al., 2007). Oocytes 
and embryos were then incubated (1 h) with primary antibody (1:50), 
washed with 0.3% PVP/0.1% Tween (three times for 10 min), and incu-
bated (45 min) with secondary antibody (1:100) followed by staining 
with Hoechst 33342 (Invitrogen) before imaging. Alternatively, eggs and 
embryos were stained with LCA-FITC (1:100). Samples were mounted in 
PBS, and confocal laser-scanning images were obtained on a confocal 
microscope (LSM 510; Carl Zeiss) with a 63× 1/2 W objective using the 
manufacture’s software. LSM images were exported as full-resolution TIF 
files and processed in Photoshop (Adobe) to adjust brightness and contrast.
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on both columns. After completion of the load, the columns were washed 
to baseline in 20 mM Hepes, pH 7.3, and 75 mM NaCl. A 10-column vol-
ume elution from 75 mM to 1 M NaCl was completed by collecting 2.5-ml 
fractions across the gradient. Analysis was performed via SDS-PAGE/Coo-
massie staining and immunoblotting. The rabbit anti-ovastacin antibody 
was incubated overnight at 4°C, washed at room temperature with 1× TBS 
with Tween 20, incubated 1 h in 1:5,000 anti–rabbit secondary antibody, 
and washed five times in 1× TBS with Tween 20. SuperSignal West Pico 
Chemiluminescent Substrate (Thermo Fisher Scientific) was used to develop 
the signal. The fractions with the highest concentration of ovastacin were 
used in subsequent assays.

In vitro cleavage assay
Zonae pellucidae were isolated from 150 oocytes by freeze thawing four 
times in 100 µl PBS, pH 7.4, 0.1% IGEPAL CA-630 (Sigma-Aldrich), and 
0.5 M NaCl. Isolated zonae were solubilized in 30 µl PBS, 0.4% PVP, and 
0.1% SDS by heating at 60°C for 30 min. Solubilized zona samples were 
incubated with recombinant ovastacin at 37°C over time (0–8 h), and 
cleavage was analyzed by immunoblotting with mAb M2c.2.
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