
ORIGINAL RESEARCH
published: 18 March 2021

doi: 10.3389/fgene.2021.617512

Frontiers in Genetics | www.frontiersin.org 1 March 2021 | Volume 12 | Article 617512

Edited by:

Marieke Lydia Kuijjer,

University of Oslo, Norway

Reviewed by:

Giuseppe Jurman,

Bruno Kessler Foundation, Italy

Tatiana Belova,

University of Oslo, Norway

*Correspondence:

Enrique Hernández-Lemus

ehernandez@inmegen.gob.mx

Guillermo de Anda-Jáuregui

gdeanda@inmegen.edu.mx

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Genetics

Received: 14 October 2020

Accepted: 05 February 2021

Published: 18 March 2021

Citation:

Ochoa S, de Anda-Jáuregui G and

Hernández-Lemus E (2021) An

Information Theoretical Multilayer

Network Approach to Breast Cancer

Transcriptional Regulation.

Front. Genet. 12:617512.

doi: 10.3389/fgene.2021.617512

An Information Theoretical Multilayer
Network Approach to Breast Cancer
Transcriptional Regulation

Soledad Ochoa 1, Guillermo de Anda-Jáuregui 1,2,3* and Enrique Hernández-Lemus 1,2*

1Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico, 2Centro de Ciencias de la

Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico, 3Conacyt Research Chairs, National Council

on Science and Technology, Mexico City, Mexico

Breast cancer is a complex, highly heterogeneous disease at multiple levels ranging from

its genetic origins and molecular processes to clinical manifestations. This heterogeneity

has given rise to the so-called intrinsic or molecular breast cancer subtypes. Aside from

classification, these subtypes have set a basis for differential prognosis and treatment.

Multiple regulatory mechanisms—involving a variety of biomolecular entities—suffer from

alterations leading to the diseased phenotypes. Information theoretical approaches have

been found to be useful in the description of these complex regulatory programs. In

this work, we identified the interactions occurring between three main mechanisms of

regulation of the gene expression program: transcription factor regulation, regulation

via noncoding RNA, and epigenetic regulation through DNA methylation. Using data

from The Cancer Genome Atlas, we inferred probabilistic multilayer networks, identifying

key regulatory circuits able to (partially) explain the alterations that lead from a healthy

phenotype to different manifestations of breast cancer, as captured by its molecular

subtype classification. We also found some general trends in the topology of the

multi-omic regulatory networks: Tumor subtype networks present longer shortest paths

than their normal tissue counterpart; epigenomic regulation has frequently focused

on genes enriched for certain biological processes; CpG methylation and miRNA

interactions are often part of a regulatory core of conserved interactions. The use

of probabilistic measures to infer information regarding theoretical-derived multilayer

networks based on multi-omic high-throughput data is hence presented as a useful

methodological approach to capture some of the molecular heterogeneity behind

regulatory phenomena in breast cancer, and potentially other diseases.

Keywords: breast cancer, probabilistic multilayer networks, information theory, co-expression networks,

multiomics analysis

1. INTRODUCTION

Cancer is a collection of complex diseases characterized by uncontrolled proliferation (GM.,
2000). The complexity of cancer comes, among other sources, from the interaction of different
molecular layers and the environment and results in both intra- and inter-tumor heterogeneity
(Tian et al., 2011; Burrell et al., 2013; Turashvili and Brogi, 2017). In the case of breast cancer, this
heterogeneity has been intended to be captured by tumor sub-classification. Breast cancer has been
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thus classified into subtypes with specific molecular signatures
and treatment options (Prat et al., 2015), though each altered
molecular layer groups differently (Cancer Genome Atlas
Network, 2012). Some of these layers, such as gene expression and
DNA methylation, have been intensively studied, while others
like chromatin accessibility are still gaining attention (Liu, 2020).
However, all these layers are interrelated (Wang et al., 2014) and
the study of their collective effect calls formulti-omic approaches.

Multi-omic approaches have become possible only recently
due to their more stringent methodological requirements. A
(relatively large) minimal number of samples are required to find
significant patterns, and the needed sample size increases with
the noise added per each additional omic. Measurements must
refer to the same set of samples, with sustained quality, no matter
the differences in data type and range (Kristensen et al., 2014;
Bersanelli et al., 2016; Tarazona et al., 2020).

The ability to model heterogeneous and high-dimensional
data has made networks a promising tool for multi-omics
integration (Vaske et al., 2010; Kim et al., 2012;Wang et al., 2014).
For instance, mutual information (MI) networks combining
miRNA and gene expressions have been built to gain insight on
the regulatory mechanisms behind breast cancer (Drago-García
et al., 2017). Such networks pinpointed miR-200 and miR-199
as regulators of the acquisition of epithelial and mesenchymal
traits. Another example is the coupling of promoter methylation,
transcription factors (TFs), and gene expression in several
cancers proposed by Liu et al. Based on those networks, they fitted
per target regressionmodels that suggest key cancer processes are
jointly regulated by TFs and CpG sites, not by either one alone.
Those processes turned out to be different than the processes
dominated by copy number variants (Liu et al., 2019).

Gene co-expression networks have been extensively studied
in the context of breast cancer subtypes, both from our group
(de Anda-Jáuregui et al., 2016; de Anda-Jáuregui et al., 2019;
Espinal-Enriquez et al., 2017; Dorantes-Gilardi et al., 2020;
García-Cortés et al., 2020; Ochoa et al., 2020) and others (Tang
et al., 2018; Bhuva et al., 2019). Here, we are presenting the
results on the incorporation of CpG methylation in addition to
the study of coding transcripts (for both TFs and other genes)
and miRNA expression analyzed in each breast cancer subtype.
The goal is to identify CpG sites, TF transcripts (referred to as TF-
genes from here on) and miRNAs associated with the biological
processes differentially activated in breast cancer, since these may
perform potential roles as regulators of the phenotype. Integrated
analyses may thus provide us with additional hints toward the
possible discovery of synergistic or cooperative effects of these
different regulators.

2. MATERIALS AND METHODS

2.1. Data Acquisition
Concurrent-sample measurements of DNA methylation,
transcript abundance, and miRNA expression were downloaded
from the GDC (https://portal.gdc.cancer.gov/repository) in
May 2019. Samples quantified with the Illumina Human
Methylation 27 BeadChip, which covers a smaller portion of the
genome, were discarded. Instead, we used data obtained with the
Infinium HumanMethylation450 BeadChip, which covers 99%

of RefSeq genes, at both transcription repressive sites around
promoters and transcription favorable sites on the body of genes
(Dedeurwaerder et al., 2011). Since these measurements pertain
to three distinct techniques: methylation beadchip, RNAseq, and
miRNAseq; we treat them as separate omics, here on identified
as CpG sites, transcripts, and miRNAs. By including the whole
set of features, we wanted to recover the highest possible number
of interactions. Subtype classification was also downloaded
from the GDC metadata using the TCGABiolinks R package
(Colaprico et al., 2016).

Each omic was pre-processed independently according to
Aryee et al. (2014), Tarazona et al. (2015), and Tam et al.
(2015) by using biomaRt v95. Preprocessing included filtering
of transcripts and miRNAs with low counts, TMM normalization
and batch effect correction with ARSyN. Low count thresholds
are less than 10 counts per million for transcripts and, less than 5
counts for 25% or more of the samples for every subtype, in the
case of miRNAs. Transcripts were also normalized for length and
GC content via full method. Annotation was downloaded to tag
transcripts coding for TFs (TF-genes).

For methylation data, we discarded sites with over
75% missing values, nonmapped or located within sexual
chromosomes or SNPs. Remaining missing values were imputed
via nearest neighbors. Resulting beta value matrices were
transformed into M-value matrices. This way, values of 384,575
methylation probes, 16,475 coding transcripts, and 433 miRNA
precursors were obtained for 45 unique samples belonging to the
Her2+ subtype, 395 of LumA, 128 of LumB, and 125 of Basal
subtypes, plus 75 samples of nontumor (normal adjacent) tissue.
All samples correspond to women, ranging in age at diagnosis
between 26 and 91 years, and further details can be found in the
Supplementary File 1.

2.2. Inference of MI Networks
Normalized data matrices for methylation data, coding
transcripts, and miRNA expression were merged by sample and
used as input to the MI-based ARACNE network deconvolution
algorithm (Margolin et al., 2006).

ARACNE calculates mutual information between every pair of
features and returns values above a threshold, set either as an MI
value or as a permutation p-value. There is no restriction on the
features that get paired byMI calculation, and it was not required
for CpG sites to be on the same chromosome than targets, nor
that target promoters carry some TF motif. The only restriction
made was for CpG-CpG interactions, which were not calculated
due to the space needed to save all possible combinatoria.
In a nutshell, pairwise mutual information calculations were
performed for the expression patterns for all genes and miRNAs,
as well as the beta values for genomewide CpG methylation. Co-
expression networks on the different layers were built from the
most significant interactions as follows:

Since MI distribution has been shown to change depending
on the type of molecules (Drago-García et al., 2017), a unique
threshold cannot be set. A unique MI threshold has the risk
of discarding significant interactions between molecules whose
values simply fall in a lower range or accepting nonsignificant
interaction between molecules exhibiting values on a higher than
the threshold range. A threshold based on p-values induces a
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similar problem because MI and p-values are roughly inversely
proportional. For example, it is possible to see that setting the
threshold value to 0.1 in Figure 2C would discard most miRNA
to transcript interactions while retaining all the interactions
among transcripts, and that such pruning of edges would affect
differently the distinct networks, producing disparate results
due to methodology. Mutual information distributions and their
respective threshold values have a direct impact on the topology
of the underlying networks and in particular in the degree
distributions. So, by choosing MI cutoffs one is indeed imposing
an associated network topology.

To overcome this issue, top 10,000 interaction for each type
of molecules paired were selected, that is, the 10,000 interactions
with the highest MI values linking CpG sites and transcripts
(both genes and TF-genes), CpG sites and miRNAs, transcripts
(both genes and TF-genes) and miRNAs, and interactions within
these two last groups. This way, the topology resulting from
such a set of interactions is comparable among cancer subtypes
and normal tissue. Thus, we take the focus from the varying MI
distributions to a defined topology size. This strategy has been
previously validated and used by our group for the reconstruction
of biologically relevant networks from high-throughput data
(de Anda-Jáuregui et al., 2016).

Fixed bandwidth ARACNE calculations ran with kernel
width parameter (h) of 0.165024 for Basal data, 0.211612 for
Her2+, 0.12527 for LumA, 0.16567 for LumB, and 0.18679 for
normal tissue. To check the significance of the interactions in
these networks, maximal MI for each pair of molecules was
registered for different p-value thresholds. Thresholds with MI
values larger than those observed in a network contain the
network’s interactions. The p-value upper limits for the final
networks are reported in Supplementary Table 1. Finally, MI
distributions were compared via Kolmogorov-Smirnov tests with
False Discovery Rate (FDR) correction.

Kernel width variation between subtypes can be attributed
to the size of the datasets. We estimated z-scores with subsets
of the data to evaluate how size differences are affecting the
networks. To this end, 100 subsamples of size 45 were taken from
luminal and Basal subtypes, and from the normal tissue data. The
subsample size was set to 45 for direct comparison with Her2-
associated networks. MI was calculated using these subsets and
resulting distributions served for z-score calculation. Results can
be observed in Supplementary Table 2.

By keeping the same number of links in each layer, we are
able to directly compare network parameters between layers.
However, it should be noted that since the number of possible
links increases (quadratically) with the number of nodes, there
may be differences in the statistical significance. However, all
our networks have an equivalent p-value of less than 1E-6
(corresponding to the CpG layer in Her2+ samples, i.e., the layer
with more features analyzed for the subtype with the lowest
number of samples).

2.3. Functional Enrichment
Independently of network construction, differential expression
vs. normal tissue was calculated for every subtype using limma’s
treat (McCarthy and Smyth, 2009) function with null fold

change equal to 1.5. Afterwards, the complete rank of differential
expression t-values was used as input for a GSEA on each
subtype, as implemented in the R package fgsea (Sergushichev,
2016), vs. the biological process gene ontology.

Processes with Benjamini and Hochberg adjusted p-value
lesser than 0.01 were subject to over-representation analysis on
the corresponding subtype network. Processes with Benjamini
and Hochberg adjusted p-value over 0.05 were regarded as
nonrepresented in the network. The rest was examined for
CpG sites, miRNAs, and TF-genes associated via their MI value
with the functionally annotated transcripts, since these serve as
potential regulators of the function. For the normal tissue, all the
processes significant for a subtype were submitted to the over-
representation analysis. There are processes present in a subtype
network, but absent from the normal tissue network. This results
in a total of 176 processes over-represented in at least one subtype
network, from which only 128 have a match in the normal tissue
network. In this step, a mean of 59.05% nodes was removed
from the MI networks, a breakdown of which can be found in
Supplementary Table 3.

Resulting networks were visualized using Cytoscape
(Shannon et al., 2003) with a prefuse force directed layout.
Nodes were added to account for the enriched functions in
order to find out which biological processes were potentially
regulated. Hereafter, these networks are denominated as final
networks or functionally enriched networks to distinguish them
from the purely probabilistically inferred networks. These focus
on the processes whose expression is the most associated with the
subtype, and that rely on interactions with the highest MI; these
functions are potentially relevant for the subtypes and so it may
be useful to elucidate the associated regulatory patterns.

2.4. Validation of MI Interactions
To check for additional support for the interactions in the final
networks, regulator-target databases were reviewed per omic.
CpG annotation was taken from Illumina’s manifest file, and the
genes affected by each site are considered as validated. CpG sites
on the same chromosome than the target gene are considered
as plausible regulators and regarded when adding predictions.
These are distinguished from one another as mapped and same
chromosome sites in Supplementary Table 1.

Transcription factor targets were downloaded via
tftargets https://github.com/slowkow/tftargets, a package
that queries TRED, ITFP, ENCODE, and TRRUST databases,
and the lists compiled by (Neph et al., 2012; Marbach et al.,
2016). Only TRRUST TF-targets are considered as validated,
since those were manually curated from PubMed articles. The
associations between transcripts and miRNAs were sought on
DIANA-microT-CDS, ElMMo, MicroCosm, miRanda, miRDB,
PicTar, PITA, TargetScan, miRecords, miRTarBase, and TarBase
via multiMiR (Ru et al., 2014).

Targets for both TF and miRNA were searched in the tables
obtained from each package. The only tuning needed for TF’s
search was to track ENTREZ gene IDs, HGNC symbols, and
Ensembl IDs; this was done according to biomaRt data. Since
GDC measurements are identified by precursor miRNA IDs,
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TABLE 1 | Networks description.

Edges Basal Her2+ LumA LumB Normal

CpG–mRNA 2,456 3,847 1,932 4,334 4,732

(554) (88) (536) (708) (28)

TF-genes–mRNA 2,735 2,498 1,686 2,746 2,544

(5) (2) (5) (1) (14)

miRNA–mRNA 3,483 3,889 2,065 4,074 4,953

(167) (226) (111) (201) (284)

mRNA–mRNA 4,189 4,523 2,276 4,709 5,088

Nodes

Biological processes 109 119 34 123 128

CpG sites 2,254 3,769 1,553 3,638 3,863

Transcripts 4,567 6,356 2,834 5,235 4,733

TF-genes 658 748 375 618 684

miRNAs 433 432 408 433 14

Validated interactions appear between parentheses. Edges correspond to significant statistical dependencies inferred via MI calculations.

while databases use mature miRNA tags, this search requires
translation from one to the other using mirBase records.

2.5. Characterization of the Potential
Regulators
Looking for differences between subtypes, total regulators of
each type were added for every process. Retrieved counts were
compared between each subtype and the normal tissue via Fisher
tests with FDR correction. Enrichment is only considered if the
process has associated regulators of any type, in both the normal
tissue and the subtype under evaluation. Statistical tests were one-
tailed. Null hypothesis is set to be opposite to expected trends,
that is, “greater” for the CpG nodes and “less” for both TF-genes
and miRNAs.

To weight the abundance of each regulatory layer, counts per
regulator type were divided by the total number of regulators
associated with the process, obtaining the percentages displayed
in Supplementary File 2.

Node topological parameters were calculated over the MI
networks, that is, ignoring the biological processes nodes,
which have to be excluded given the different nature of their
associated edges: probabilistically inferred or database curated.
Distributions were compared via Wilcoxon rank sum test with
continuity correction and p-values were FDR corrected.

2.6. Potential Regulators Comparison
Both intra and inter-subtype comparisons were made. To this
end, Jaccard index was calculated for each pair of processes
from the same subtype for the intra-subtype comparison and
for the same process in different subtypes for the inter-
subtype comparison. Inter-subtype contrasts count edges instead
of nodes, because in this case, the interest is on conserved
regulatory interactions. Obtained distributions were evaluated
via Kolmogorov–Smirnov tests with FDR correction.

The number of potential regulators either shared or exclusive
between processes of the same subtype was evaluated via Fisher
tests with the corresponding alternative hypothesis set “greater”

for the CpG sites, and “less” for TF-genes and miRNAs, as
previously stated.

All the code used for the described analysis is available at
https://github.com/CSB-IG/MI-MultiOmics.git.

3. RESULTS

MI networks were constructed for each breast cancer subtype
and for normal tissue combining three different omics: CpG
methylation, transcript gene expression, and miRNA expression.
The second omic includes two layers of information, regulated
genes, and TF-genes. No restriction was made on the features
that can get paired by MI calculation, CpG sites can get linked
to targets on a different chromosome, and TFs may associate
with targets without the akin binding motifs. Let us recall that
mutual information does not assume any a priori mechanism
and relies instead on statistical dependencies. Table 1 presents all
the different networks of MI-inferred potential gene regulators
(CpG-mRNA, TF-gene-mRNA, miRNA-mRNA, mRNA-mRNA)
plus the biological processes associated with them.

MI networks went through two pruning steps, first by edge
significance (see section 2.2) and then by functional annotation
of the nodes (see section 2.3). The first one retains only the
most significant interactions, i.e., those with the largest MI.
For the second pruning, biological processes with significant
GSEA enrichment scores were mapped to the networks, keeping
only the nodes involved in an enriched process and their first
neighbors. For the normal tissue, all the processes significant
for a subtype were subjected to over-representation analysis.
This way, only nodes linked to transcripts involved in a process
altered in the subtype are kept. Then, final networks carry only
CpG–transcript, miRNA–transcript, and transcript–transcript
interactions with the highest MI. The hypothesis is that nodes
with gene expression regulatory roles may regulate the associated
biological process. This would be partially explained, if regulators
co-vary (even in a nonlinear fashion) with their targets, thus
becoming detectable as MI statistical dependencies. It is relevant
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FIGURE 1 | LumB subtype network. Nodes represent CpG sites in purple, transcripts in green, TF-genes in pink, miRNAs in orange, and biological processes in gray.

The whole network is shown in the upper left box; the rest of the figure contains a zoom-in.

to recall, however, that regulatory mechanisms are proxied here
by the information given by the omics under study. Other
regulatory mechanisms—including those of (explicit) chromatin
remodeling, as well as post-transcriptional and post-translational
modifications among others—may not be fully accounted by the
statistical dependencies structures just outlined.

To assess the contribution of linear correlation measures, we
are including further calculations in Supplementary Figures 1–5

to show how many of the MI edges would be lost if the
criterion was instead an FDR-corrected Pearson correlation with
an associated p < 0.05.

To identify unequivocally the functions linked to each
transcript, nodes representing the biological processes were
added, resulting in multipartite graphs as the one shown in
Figure 1. The multipartite nature of the network comes from the
three different molecules (CpG sites, transcripts, and miRNAs)
associated with the biological process nodes. There are also two
kinds of edges: (1)MI edges, which indicatemolecule covariation,
and (2) functional annotation edges, which make explicit the
link of a transcript and a process. All the five networks, four
for the breast cancer subtypes and one for the normal tissue,
consist of one giant single connected component. As expected,
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FIGURE 2 | Networks parameters: (A) degree, (B) shortest path, and (C) edges with mutual information. The subtype depicted by each network is indicated by the

color code.

CpG methylation, which has the largest number of features, is
the most represented omic in the networks.

By contrasting the molecules paired with databases on
regulator-target, we can see how many of the found interactions
were already known. Interactions absent from the databases
can be new, previously unknown relationships, or simply
indirect associations caused by the statistical co-variation of
the molecules. Between 1.67 and 11.47% of the interactions
linking a transcript with a potential regulator, that is a
CpG, a TF-gene, or a miRNA, have been validated. The
number of validated edges per subtype is shown in Table 1.
If predictions are included (see section 2.4), 8.26–23.52% of
the interactions have additional support. The effect on the
networks of considering only some of the potential regulatory
CpGs can be seen in Supplementary Figure 6. A large number
of TF target predictions are based on ChIP-seq experiments,
not necessarily performed on breast tissue, which may lower
such matches.

Having described the general features of the five networks
(one for each tumor subtype plus the one for normal tissue), we
proceeded to search for differences between the behavior of the
different omics among subtypes. Focus was made on differences
on the potential regulators, since this could translate to regulatory
features behind the subtypes.

3.1. Network Parameters Vary Between
Omics
As stated earlier, there are two types of edges in the networks,
edges that account for co-expression (i.e., significant statistical
dependency) with a given value of MI, and edges that
record functional annotation as presented in curated databases.
Given the difference of meaning, interactions need to be
analyzed separately.

Focusing only on MI edges, the number of components
grows from 1 to hundreds. Average degree is around 3 for all
the networks, but distributions vary between omics (Wilcoxon

rank sum test q-value ≤ 1.666712e-22, Figure 2A). Though
TF-genes and gene transcripts are measured by the same omic,
distributions are significantly different (Wilcoxon rank sum test
q-value ≤ 0.0237) for the five networks. The case of miRNAs
stands out because distributions are not scale-free like. CpG
sites show the lowest degrees, with an average of 89.42% nodes
connected only with another node. Thus, most CpG sites do
not contribute to network communication as they do not
interlink paths.

The constrained (bounded) degree distribution of CpGs
translates into a large portion of unreachable target nodes, an
average of 32.23% of targets cannot be reached from some CpGs.
Consistently, miRNAs have an average of 19.71% of unreachable
targets, which is the lowest frequency. Despite range similarity,
distributions change significantly across omics and between
tumor subtypes and normal tissue (Wilcoxon rank sum test q-
value≃ 0). Again, distributions for TF-genes and gene transcripts
are significantly different (see Figure 2B, Wilcoxon rank sum
test q-value ≤ 0.0002). The shift in the position of the peak in
breast cancer subtypes relative to normal tissue suggests a loss
of communication.

Edges also differ depending on the omics involved. Differences
onmutual information distributions between omics and subtypes
are significant (Kolmogorov–Smirnov q-value ≤ 5.53264e-06).
TF-genes and gene transcripts follow the same distribution on
each network. It is noticeable how small is the range of miRNA
interactions and how CpG distributions segregate.

In Table 1 and Figure 2, we have characterized the
interactions occurring within and between different
omics in each molecular subtype of breast cancer.
We may appreciate that both intra-layer and inter-
layer interaction sets are specific to each biological
condition. In what follows, we will now leverage both
the monolayer and multilayer interactions to further
elucidate biological functions associated with each
molecular subtype.
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FIGURE 3 | Potential regulators per biological process. There is an area plot per network. Each column is a process. The proportion of regulators of each type

associated with the process is denoted by the grayscale. All the processes together show how common are the three potential regulators in the subtype.

3.2. Representation of Potential Regulators
Changes With the Subtype
To further explore the differences among potential regulators, its
abundance per biological processes was calculated. To this end,
total number of CpG, TF-genes, andmiRNAnodes were obtained
for each biological process. The proportion of regulators of each
type is shown in Figure 3 as a simple measure of the impact a
regulatory layer has in a given subtype. A version of this figure
with labels for biological processes and the corresponding table
are available as Supplementary Material.

Despite variability, it is evident that the number of CpG nodes
increases on breast cancer subtypes relative to normal tissue,
while TF-genes and miRNA numbers of nodes are lower. The
plot for Luminal A subtype is less noisy because this subtype
has less processes on its network. Nevertheless, by comparing
processes represented in each subtype and normal tissue, we
found most processes are significantly enriched of CpG nodes
in the Basal, Her2+, and LumB subtypes. Simultaneously, TF-
genes and miRNAs are significantly under-represented on more
than half of the processes in the Her2+ and LumB networks.
Additionally, between 20 and 33% of the Basal- and LumA-
associated processes show under-representation of TF-genes and
miRNAs, and almost half of LumA processes are enriched of
CpG nodes.

If potential regulators are actually regulating their associated
processes, this may indicate transcriptional and post-
transcriptional regulations are subdue in breast cancer subtypes
while epigenetic regulation gains strength. By considering the
combined effect across layers (inter-layer regulation) as well as
the effects on a single type of molecular interaction, as given
by each omic dataset (intra-layer regulation), it is possible to
develop a deeper understanding of cross-regulatory effects. This

will be considered in the next subsections in the context of the
different tumor subtypes.

3.3. Normal Interactions With Potential
Regulators Are Almost Absent in Breast
Cancer Networks
Having seen that the abundance of complete regulatory layers is
not maintained across subtypes, we wondered what happens to
specific regulatory interactions. With this in mind, we calculated
the extent to which interactions with potential regulators are
shared among networks by calculating their associated Jaccard
indices. The Jaccard index weights the size of the intersection
between two sets with the size of their union. In other words,
it counts what fraction of the elements is shared from the total.
This way, sets of different extensions are assigned values between
0 and 1, and can be objectively compared.

From the total of 176 biological processes enriched in any
network, 86.36% appear in at least two subtypes and also are
able to share edges. Interactions with miRNAs are poorly shared,
while TF-genes and CpG-edges reach a similar maximum but
following different distributions (Kolmogorov–Smirnov test q-
value ≤ 2.498002e-16). Links with any regulator are almost not
shared between the breast cancer subtypes and the normal tissue
(Kolmogorov–Smirnov test q-value ≤ 1.541449e-06), but TF-
genes are visibly more shared. The five biological processes with
the highest Jaccard index are shown in Figure 4.

Localization of telomerase RNA (hTR) to the Cajal body has
the highest index for miRNAs for the sharing among Basal and
Her2+ networks. This process is also the fifth for TF-genes,
but pairing Her2+ and LumB. Figure 5 shows that the elevated
Jaccard indices are driven by only few shared interactions among
sets of small size. Although potential regulation changes, the
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FIGURE 4 | Inter-subtype sharing. Biological processes are symbolized by dots, ordered from those sharing more potentially regulatory interactions to those sharing

less. The color code indicates which networks are contrasted. Comparisons with the Basal network are in reddish colors, and those with Her2+ are in dry greens;

indexes involving the normal tissue go from pink to blue and those between the luminal subtypes are in bright green.

FIGURE 5 | Potential regulators associated with telomerase localization to Cajal body. From left to right, subgraphs with shared (top) and exclusive (bottom)

interactions are shown for Basal, Her2+, and LumB subtypes. Nodes are colored in red if differential expression values or GSEA normalized enrichment scores are

positive or in green if values are negative. Node transparency represents statistical significance. Nodes for biological processes and transcripts are circles, TF-genes

are hexagons, miRNAs are diamonds, and CpG sites are squares. When the altered gene is known, its name is on the CpG label. Edge thickness represents MI values.

process is equivalently activated in these three subtypes. The
interaction linking Chaperonin Containing TCP1 Subunit 6A
(CCT6) with Mitochondrial Ribosomal Protein S17 (MRPS17) is
shared across these three subtypes, but may be an artifact of the
physical proximity of the genes.

3.4. Within Subtypes, CpG Nodes Are
Exclusive of Processes, but miRNAs Do
Not
For a complementary perspective, we checked if regulators are
shared between the distinct biological processes enriched in a
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FIGURE 6 | Intra-subtype sharing: (A) Proportion of regulators shared or exclusive, across biological processes per subtype. Each column represents a different

network. The grayscale indicates the potential regulator. (B) Jaccard Index distributions per regulator. The color code indicates the network represented.

single subtype. Degree distributions suggest that CpG sites are
exclusive, while miRNAs and TF-genes are shared.

Figure 6A shows how CpG sites are mostly exclusive of one
biological process (Fisher test q-value ≤ 1.949349e-67), while
TF-genes and specially miRNAs are shared between various
processes (Fisher test q-value ≤ 1.411310e-11). That is, miRNA
expression seems to connect different biological processes, while
for CpG methylation this effect is much lower.

When calculating the Jaccard index of the biological processes
enriched for each subtype and regulator, significantly different
distributions are obtained (Kolmogorov–Smirnov test q-value
≤ 0.0221, Figure 6B). Consistently, as presented in Figure 6A,
these distributions show CpG sites are less shared, but TF-genes
seem to be more shared than miRNAs. The CpG sites of Her2+
and the TF-genes of Basal subtypes call for attention.

4. DISCUSSION

With the aim of exploring potential regulatory patterns of
breast cancer subtype expression, we reconstructed via mutual
information, multi-omics networks, functionally enriched in GO
biological processes. The hypothesis is that there may be a
transitive property between the regulators of a transcript and the
function associated with the transcript.

This way, potential regulators emerging from the networks
are associated with the biological processes significantly enriched.
Potential regulators separate domains topologically from non-
regulatory transcripts and from each other. Degree distributions
are coherent with the pattern of exclusivity and sharing across
processes, observed later for CpG sites and TF-genes–miRNAs,

respectively. Both results coincide with what is known for
the molecule types. Namely, CpG sites have a rather local
effect (Li and Zhang, 2014), while TF-genes and miRNAs are
promiscuous, spanning through a much wider chromosome
range (Cho, 2007).

Given the pattern of sharing/exclusivity across processes, one
could expect that targeting DNA methylation may drive focused
changes, while miRNAs and TF-genes targeting may show
pleiotropy. However, current modulators of DNA methylation
act over the whole genome, making impossible to change sites
related to specific processes. On the contrary, CpG sites linked
to specific processes may have potential as predictors of process
alteration. Such potential is promising given the early timing of
methylation alterations in other cancer types (Vrba and Futscher,
2019). For example, there are 19 CpG sites associated with DNA
damage checkpoint in Her2+ subtype, suggesting a possible
monitoring mechanism. Nevertheless, it would be necessary to
have a whole new project to test the predictability of such sites.
The value of the multilayer networks presented here is to propose
this kind of hypothesis among all possible combinations, though
they need further testing.

To verify that CpG exclusivity per process is not induced
by the omission of CpG–miRNA and miRNA–miRNA
interactions, non-functionally enriched networks were revisited
(Supplementary Figure 7). Distributions still change per omic
(Wilcoxon rank sum test q-value ≤ 4.657478e-16), while the
percentage of CpG nodes with degree equal to one is maintained
above 90%, indicating that observations made for the first
neighbors are relevant when considering farther neighbors. By
considering the top 10,000 MI interactions per paired molecules,
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we observed that CpG sites do not significantly participate in the
regulatory circuitry flow but are often endpoints.

Shortest-paths distributions point out to a decrease in
communication independently of the omic observed. This is in
line with the under-representation of TF-genes and miRNAs
detected specially in Her2+ and Luminal B associated processes.
To reconcile communication reduction with over-representation
of CpG sites on the subtypes, it is necessary to remember that
most CpG nodes do not participate in network connection.
These layer level patterns consistently match literature reports on
alteration of CpG methylation (Cancer Genome Atlas Network,
2012; Berger et al., 2018), and miRNA expression in breast cancer
(O’Day and Lal, 2010; Bertoli et al., 2015; Klinge, 2018).

Two subtype-specific patterns attracted our attention, elevated
sharing of CpG nodes between the processes enriched for
the subtype Her2+, and decreased sharing of Basal TF-genes.
The 2,112 CpG sites shared by Her2+ processes are all
over the genome, with a slight increase in chromosomes 1
and 17. While chromosome 1 has been reported as severely
affected by differential methylation (Lindqvist et al., 2014), the
characteristic amplification of chromosome 17 cannot be fully
accounted for the excess sharing. Only 76 from the 1576 genes
affected by shared CpG sites co-amplify with the Her2 gene.
Similarly, only 22.91% of affected genes have evidence of AR
regulation, a TF postulated to crosstalk with Her2 amplification
(Daemen and Manning, 2018).

The other pattern that caught our attention is the decrease
in TF-genes linking any two processes in the network for the
Basal subtype. This is not caused by a decrease in TF-genes,
since the quantity of TF-gene nodes associated with the processes
is equivalent for all the networks. Uniqueness of biological
processes in the Basal network are neither responsible, seeing
that only 6 processes are exclusive for this subtype. Instead,
we speculate the pattern is related to promoter accessibility
because of ATAC-seq data groups tumors in Basal and non-basal
networks (Corces et al., 2018). Further characterization finds a
pro-metastasis open-chromatin signature elevated in the Basal
subtype (Cai et al., 2020). By its side, protein level measures
integrated with copy number normalized gene expression suggest
TF-genes as relevant drivers of this subtype (Koh et al., 2019).

Only one edge level pattern was found, but it is a remarkable
one. Interactions with regulatory potential are poorly shared
among all networks, but the edges of the normal tissue
network are almost endemic, especially in the case of CpG
sites and miRNAs. If we conform to the idea that DNA
methylation preserves cell type identity (Szyf, 2012), our
results advert mammary gland defining methylation has been
lost in processes like T-cell receptor signaling pathway and
inflammatory response.

Localization of hTR to the Cajal body is a biological
process linked with cancer cell’s unlimited division, given
that these organelles have been implicated in the biogenesis
of telomerase (Tomlinson et al., 2008). Associated subgraphs
exhibit how few edges are shared across subtypes and suggest a
convergence of different regulatory schemes to a single outcome.
The relative uniformity of enrichment scores across subtypes
(Supplementary Figure 8) indicates this could be common. Such

pattern is important because the way a tumor gains an expression
signature might create different vulnerabilities. An example is
given by tumors compatible with Her2-enriched expression, but
lacking the mutation that makes tumors sensitive to targeted
treatment (Godoy-Ortiz et al., 2019).

We must, however, stress that one limitation of the
current approach resides on the relatively small sample size.
This is a constraint due to lack of availability of a larger
dataset comprising the same types of multi-omic data. Limited
availability of additional independent datasets also precluded us
to validate our findings on an independent cohort. To partially
alleviate this, we have resorted to subsampling procedures
and null models. The effect of data size differences can be
seen in Supplementary Figure 9 and Supplementary Table 2.
Supplementary Table 2 and Supplementary Figure 9 show the
dispersion between MI values estimated with the whole set
of samples as well as values obtained through subsampling,
for the interactions with the lowest, most varying significance,
those between miRNAs and transcripts. Though subsampling
repetition is low (100), it catches a tendency toward small
z-scores and noisier low subsampled MI values. This means
higher z-scores are not necessarily bad, since the large difference
between complete and subsampled values maintains points at
the top of the range. Altogether, subsampling suggests adding
samples would reach higher MI values, but would not alter
the ranking dramatically, which supports the (cautious) usage
of datasets such as the one used for Her2+. Nevertheless, our
analysis could only take advantage of an increase of the number
available samples.

As with other areas of molecular biology, one driving force
behind the development of multi-omics is the expectation
that the results from these technologies may lead to novel
pharmacological interventions (de Anda-Jáuregui and
Hernández-Lemus, 2020). Nevertheless, the translation from
the identification of a perturbation to clinical implementation
is not straightforward (Silverman et al., 2020). In this regard,
pharmaceutical interventions in each of the analyzed layers
are unevenly distributed: drugs that have effects on epigenetic
modifications such as methylation have not attained the efficacy
that was expected (Buocikova et al., 2020), although they remain
an important research area. Meanwhile, gene expression has
been able to identify biomarkers as well as drug repurposing
opportunities (Mejía-Pedroza et al., 2018; Koudijs et al., 2019).
In this context, the type of analyses that we present here provides
the opportunity to identify not only the deregulation features
in each regulatory layer but also the way it connects to other
molecular elements. As such, the opportunity to modulate
virtually undruggable targets through the control of its neighbors
may help unblock therapeutic opportunities. However, as we
mentioned previously, the path from these initial data analyses
toward a translational and eventually a clinical setting is long
and not necessarily direct.

4.1. Summary of Findings
In brief, the main findings that have been derived from our
analysis may be summarized as follows:
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• For networks associated with tumor subtypes:

• Shortest paths are longer for the four subtypes than for the
normal tissue.

• Most biological processes (over 85%) are enriched for CpG
nodes in Basal, Her2+, and LumB. Only 41.38% of the
processes in LumA are enriched for CpG nodes.

• Most biological processes (over 50%) are under-represented
of TF-gene and miRNA nodes in Her2+ and LumB.

• Interactions with CpGs andmiRNAs found in normal tissue
network are near endemic.

• Her2+ CpG nodes are more shared between processes than
expected.

• Basal TF-gene nodes are less shared between processes than
expected.

• For differences in the representation of different omics:

• CpG nodes tend to show degree = 1, which translates into
exclusivity for each process.

• TF-genes have fewer nodes with degree = 1, and miRNAs
have even less. Consistently, these nodes are more shared
between processes thus participating in concerted network
communication.

• miRNAs degree distribution shape is remarkably different.

• For shared interactions:

• Those with CpGs and miRNAs are less maintained than
those with TF-genes.

5. CONCLUSIONS

Together, the observations made from multi-omic mutual
information networks for the different breast cancer subtypes
build a landscape of the differential influence the distinct
regulatory layers may exert over the phenotypes. This expands
our understanding of breast cancer associated regulatory
phenomena and poses possible treatment alternatives to be
further explored. For example, now that there is evidence that
CpG methylation coordinates with the expression of Her2-
associated genes involved in most biological processes more than
in any other subtype, experiments with de-methylation agents on
this specific subtype seem relevant to analyze.

So far, the interaction between regulatory layers has been
overlooked due to the paucity of data and inadequacy of
methods. Yet, mutual information calculations and the available
algorithms just presented have no formal restriction to handle
different omics, unlike other correlation measures MI allows
to handle variables with disparate dynamic ranges as it relies
in the probability distributions, and has proven capable to
retrieve single omics regulatory interactions. Results obtained
with the multi-omic setting are encouraging, though refinement
of post-MI analysis is needed and is indeed a further avenue of
research within our group.

In order to capture CpG methylation and miRNAs
linked to biological processes via the interaction with one
another, a more sophisticated method would be needed.
For example, a computationally expensive recovery of all

the paths between transcripts associated with functions.
Another possible improvement would be the implementation
of a multi-omics data processing inequality (DPI). DPI
states that the edge with the smaller MI in a triangle
can be filtered out as indirect. However, MI distribution
changes for every type of omics paired complicating MI
comparisons. Perhaps a better alternative will be to resort to
tensor representations of probabilistic multilayer networks
(Hernández-Lemus, 2020).

It is also pertinent to recall that higher mutual information
does not translate into causal interactions. The so-called potential
regulators may simply co-vary with transcript expression, or
causality may be dependent on an intermediate node. Even
if linked CpGs sites regulated gene expression, omics that
are not included like copy number variation may also play
relevant roles. To identify the potential regulators whose patterns
are most related to transcripts expression, there are other
strategies available (Lê Cao et al., 2009), which may benefit
from MI interaction scores (Koh et al., 2019). There are
however more insights to be extracted from the multi-omics
networks yet.

With the set of potential regulators associated with a biological
process, we aspire to multi-layer regulatory models that include
examples like the one described for miRNA processing enzymes
Drosha and Dicer (Rupaimoole et al., 2014). Here, we present
general results, but particular cases can be further examined
within this general approach. When the focus is on particular
models, the distinct regulators connected to single gene allow
the proposal of hypothesis about synergy and antagonism among
regulation layers. Nevertheless, this approach calls for a much
more detailed scrutiny.

All in all, due to the relative simplicity and generalizability
of the approach, the use of combined probabilistic modeling
and knowledge discovery in databases presented here allows
for the inference of regulatory models that may be refined
by resorting to more specialized techniques, both experimental
and computational.
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