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Metabolic homeostasis emerges from the interplay between several feedback systems
that regulate the physiological variables related to energy expenditure and energy
availability, maintaining them within a certain range. Although it is well known how each
individual physiological system functions, there is little research focused on how the
integration and adjustment of multiple systems results in the generation of metabolic
health. The aim here was to generate an integrative model of metabolism, seen as
a physiological network, and study how it changes across the human lifespan. We
used data from a transverse, community-based study of an ethnically and educationally
diverse sample of 2572 adults. Each participant answered an extensive questionnaire
and underwent anthropometric measurements (height, weight, and waist), fasting blood
tests (glucose, HbA1c, basal insulin, cholesterol HDL, LDL, triglycerides, uric acid, urea,
and creatinine), along with vital signs (axillar temperature, systolic, and diastolic blood
pressure). The sample was divided into 6 groups of increasing age, beginning with
less than 25 years and increasing by decades up to more than 65 years. In order to
model metabolic homeostasis as a network, we used these 15 physiological variables
as nodes and modeled the links between them, either as a continuous association
of those variables, or as a dichotomic association of their corresponding pathological
states. Weight and overweight emerged as the most influential nodes in both types
of networks, while high betweenness parameters, such as triglycerides, uric acid and
insulin, were shown to act as gatekeepers between the affected physiological systems.
As age increases, the loss of metabolic homeostasis is revealed by changes in the
network’s topology that reflect changes in the system−wide interactions that, in turn,
expose underlying health stages. Hence, specific structural properties of the network,
such as weighted transitivity, i.e., the density of triangles in the network, can provide
topological indicators of health that assess the whole state of the system. Overall,
our findings show the importance of visualizing health as a network of organs and/or
systems, and highlight the importance of triglycerides, insulin, uric acid and glucose as
key biomarkers in the prevention of the development of metabolic disorders.
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INTRODUCTION

Metabolic homeostasis arises from the interchanges between
multiple chains of biochemical reactions and their mechanical
responses. These exchanges maintain variables related to energy
expenditure and energy availability within suitable ranges for
the organism. The components of these chains are shared
by multiple others, thereby constituting a metabolic network.
Unfortunately, many processes of this network are not readily
accessible in the clinical setting. Therefore, to make inferences
about the underlying energy metabolism, various biomarkers–
either biochemical or anthropometric−have been used to
assess the state of the different physiological sub-systems
that constitute the network. These physiological variables
represent either regulated variables or physiological response
systems (Fossion et al., 2018). The lability of the values of
physiological response variables, and the consequent stability of
regulated variables, characterizes the robustness of a complex
homeostatic system that resorts to pathological states only
in order to preserve vital variables (Kitano et al., 2004).
Thus, homeostasis can be established by the interplay between
physiological variables, allowing its study through a metabolic
physiological network.

Over time, the physiological compensatory systems that
maintain homeostasis become worn down due to the cumulative
impact of metabolic insults, transitioning from healthy to
maladaptive states that precede disease onset (Stephens et al.,
2020). An already existing medical notion of this system-
wide progression of states before the overt onset of disease is
metabolic syndrome (MetS), whose prevalence increases strongly
with age (Hildrum et al., 2007) and unhealthy lifestyles. At
early stages, MetS biomarkers indicate invisible alterations,
wherein homeostasis can still be preserved (Huang, 2009). Insulin
resistance, dyslipidemia, endothelial dysfunction, prothrombotic,
proinflammatory states and, more recently, oxidative stress
are then employed to diagnose a condition of increased
cardiometabolic risk (Reaven, 1993; Vona et al., 2019). With this
in mind, several medical organizations established operational
diagnostic criteria (Xu et al., 2018), starting with preexisting
diagnostic thresholds for each associated disease, and then
lowering them in order to provide a preventive focus for
the diagnosis of MetS (Parikh and Mohan, 2012). In the
continued presence of metabolic insults, as each physiological
regulatory system fails, the cascade is absorbed downstream
by the next system. Eventually, what was originally reversible
pathological states progress to become irreversible diseases. This
is the final stage, characterized by the lability of the regulated
variables, wherein the physiological response systems become
overwhelmed. These states correspond to clinical diseases that
were the basis for the first historical descriptions of MetS,
where gross anatomical changes and clinically overt symptoms,
comprising obesity, hypertension, gout, atherosclerosis and
obstructive apnea were first associated (Enzi et al., 2003).
However, it is usually on a scale of decades that these
physiological interactions change substantially. Disease appears
only once the robustness of the metabolic physiological network
is broken, and regulated variables lose their tight control.

The current approach to determining metabolic health relies
on using the thresholds of individual biomarkers, without
considering the overall physiological network itself. As threshold
values are the result of a compromise between sensitivity and
specificity, they must be tailored adequately for both screening
and diagnostic purposes in each population (Almeda-Valdes
et al., 2016). However, current thresholds consider neither age
stratification nor the duration of the pathological states, resulting
in medical interventions that are targeted toward single variables
and only late in life (Easton et al., 2019). Furthermore, standard
of care for these complex states is no different from the treatment
of each of its individual components (Kahn, 2007). Although
targeted approaches for age have been proposed, for providing
further insight on the etiology of risk factors and guide disease-
prevention strategies (Leventhal et al., 2014; Leatherdale, 2015;
Xu et al., 2018), it has been argued that the principle utility
of MetS as a concept relies on the preventive nature of its
scope, and the idea that single interventions could improve
simultaneously all of the current five MetS criteria (Vassallo et al.,
2016). However, there is still doubt as to how to weight the risk
associated with each factor, or their combinations (Sattar, 2008).
Indeed, given the increasing abundance of metabolic biomarkers
that predict disease, there is not even a universal consensus on
which criteria should be included and excluded in the first place
in order to best assess metabolic health (O’Neill and O’Driscoll,
2015). As metabolic health is an emergent property, arising
from the interaction of multiple physiological systems over time,
the framework of complexity provides the means for a whole-
system analysis (Lusis et al., 2008; Haring et al., 2012; Sun et al.,
2012), rather than a reductionist variable-by-variable approach.
In previous work (Stephens et al., 2020), we considered how aging
was an important driver of metabolic change across a wide variety
of metabolic biomarkers (anthropometric, fasting blood test and
vital signs measurements), considering each one individually and
noting a substantial degree of heterogeneity as to the impact of
aging across them. In contrast, in the present study, we have
used Complex Inference Networks (Stephens et al., 2009, 2018)
of these biomarkers as a means to give a more holistic, systems-
biology perspective in order to demonstrate how the changes in
the coupling between regulated variables and those regulatory
systems that try to maintain homeostasis lead to metabolic health
changes over a lifetime. In particular, in this paper, we will
use complex physiological networks to better understand these
interactions, constructing a data-driven network of biomarkers
that can be used to characterize homeostasis and how it changes
as a function of age.

RESULTS

Demographic Description of the
Population
A general description of our study population (n = 2572), and
the distinct age groups is provided in Table 1. The mean age
of the participants was 38 years old with a standard deviation,
SD = 15, and a range from 18 to 81 years old. Our population
sample was predominantly female (65%). This predominance
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TABLE 1 | Demographic description of the population.

Total Age groups

Age range (min-max years) 18−81 <25 25−34 35−44 45−54 55−64 >65

Age (years ± SD) 38 ± 15 20 ± 2 30 ± 3 40 ± 3 50 ± 3 59 ± 3 70 ± 4

Sex (female %) 65% 68% 57% 66% 72% 60% 64%

n 2572 680 528 445 468 352 99

Basic education*** 16% 2% 6% 13% 20% 21% 22%

Undergraduate*** 50% 97% 64% 51% 55% 45% 29%

Postgraduate*** 34% 0% 31% 35% 25% 35% 48%

MetS prevalence*** 25% 4% 19% 35% 42% 47% 43%

General description of the total sample and the age groups is provided with sex (female percentage), mean age ± SD and total number of participants in each group. The
presence of a trend with age by chi-squared tests for trends is indicated by *** for p < 0.001.

was preserved across age groups considered with no statistically
significant differences between groups. Our population sample
comes mainly from the metropolitan region of Mexico City
(93%), with the remaining participants from neighboring states.
Educational level proportions changed within the age groups,
with an increasing trend for postgraduate and basic education (at
most 12 years of study), and a decreasing trend for undergraduate
education, that are illustrative of the population composition
within the sample (Table 1). We found that MetS prevalence,
as defined by the harmonized criteria (Alberti et al., 2009),
increased significantly by age (under a chi-squared test for trend
p < 0.001), beginning with a prevalence of 4% for the first age
group (<25 years old), which increased ten-fold to 47% in the
age group from 55 to 65 years old. For adults older than 65 years
old, MetS prevalence is high (43%) but is lower than that from 55
to 65, however, this difference between groups is not statistically
significant [X2 (1, N = 659) = 0.14, p = 0.7].

Physiological Variables and Pathological
State Prevalence Change With Age
To examine whether this increase in MetS prevalence with age
was due to an increment in the mean values of the physiological
variables or to an increase in the tail of the distribution
above the cut-off values (Table 2), linear regressions and chi-
squared tests for trends were evaluated (Table 3). Most of the
physiological variables (fasting glucose, HbA1c, LDL cholesterol,
triglycerides, urea, creatinine, waist, weight, systolic, and diastolic
blood pressure) increased progressively with age, having a
statistically significant positive linear regression slope, whereas
height and axillar temperature decreased, being associated
with a statistically significant negative linear regression slope.
In contrast, three physiological variables: basal insulin, HDL
cholesterol, and uric acid, showed no linear changes as a function
of age. Following the trend of their respective physiological
variables, the prevalence of pathological states also grew with
age, with one exception: high temperature. While changes in
the mean values of the physiological variables as a function
of age were considerably smaller, as shown by the slopes in
the linear regressions, the proportion of the population above
the cut-off values increased substantially (Table 3). For the
physiological variables, waist circumference, weight, systolic and

diastolic pressure had the greatest regression coefficients as a
function of age. Regarding the prevalence of pathological states,
overweight, low estimated glomerular filtration rate (eGFR), and
hyperglycemia, had the greatest increase as a function of age,
followed by high blood pressure, high LDL, hypertriglyceridemia,
high HbA1c, and azotemia. Age had a widespread influence on
most of the components of MetS, whether regarded as continuous
or as categorical variables. The prevalence of low HDL and
hyperuricemia changed with age, although this trend was not
detected by a linear regression.

Metabolic Modules Can Be Identified
Within the Network
To investigate how metabolic physiological components are
grouped within the networks, we employed two strategies, either
identifying largest cliques (a clique is a group of fully connected
nodes) or finding clusters within the networks (see Figure 1).
For the first strategy, the largest cliques method shows the
biggest possible, maximally connected subgraphs of a network,
indicating which components go hand in hand most frequently
across distinct age groups (Figures 1C,D). For the physiological
network, weight, waist circumference, uric acid, systolic and
diastolic blood pressures appeared most frequently in the major
cliques (Figure 1C). In the pathological states network, insulin
resistance, hypertriglyceridemia, overweight and hyperglycemia
were most frequently found to occur within the largest cliques
(Figure 1D). For the second strategy, the networks were assorted
into different clusters, using the Louvain algorithm (Blondel
et al., 2008) for the physiological network, or the Spinglass
algorithm (Reichardt and Bornholdt, 2006) for the pathological
states network (Figures 1E,F). Four main clusters were found
in the physiological network (Figure 1E), with the main cluster
associated with weight, and followed by a cluster around urea. An
intermediary cluster was found around glucose and HbA1c, while
systolic and diastolic blood pressure remained separated from the
rest. For the pathological states network, the main cluster was
around hyperglycemia and the second was around low eGFR,
with an intermediate cluster around high blood pressure and
high temperature (Figure 1F). The metabolic components within
these clusters were related by metabolic pathways, establishing
metabolic modules.
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TABLE 2 | Pathological states criteria.

Physiological variables Pathological states Cut-off value Sex Age Organization References

1 Fasting glucose (mmol/L) 1 Hyper-glycemia >5.55 mmol/L IDF Alberti et al., 2009

2 HbA1c (%) 2 High HbA1c >6.5% ADA American Diabetes
Association, 2020

3 Basal insulin (pmol/L) 3 Insulin resistance M > 1.7 F > 1.8 X − Esteghamati et al.,
2009

4 HDL (mmol/L) 4 Low HDL M < 1.03 mmol/L F < 1.3 mmol/L X IDF Alberti et al., 2009

5 LDL (mmol/L) 5 High LDL >3 mmol/L ESC/EAS Mach et al., 2019

6 Triglycerides (mmol/L) 6 Hyper-triglyceridemia >1.7 mmol/L IDF Alberti et al., 2009

7 Uric Acid (umol/L) 7 Hyper-uricemia >405 umol/L ACR Khanna et al., 2012

8 Urea (mmol/L) 8 Azotemia >7.5 mmol/L — Tyagi and Aeddula,
2019

9 Creatinine (umol/L) 9 Low eGFR <90 ml/min X X KDIGO Levin et al., 2013

10 Waist (cm) 10 Overweight M > 90 cm F > 80 cm X IDF Alberti et al., 2009

11 Weight (Kg)

12 Height (cm)

13 Axilar temperature (◦C) 11 High Temperature >37◦C − Sund-Levander et al.,
2002

14 Systolic (mmHg) 12 High Blood Pressure >120/80 mmHg ACC/AHA Whelton et al., 2018

15 Diastolic (mmHg)

Threshold values employed for the classification of pathological states. Current criteria that are tailored for age and sex are indicated in the columns.

Both strategies lead to a selection of nodes that differs from
current MetS criteria (Figures 1A,B). While waist and weight
are frequently part of the largest clique of the network, they
are often clustered separately from the metabolic components of
triglycerides and glucose. Triglycerides, both as a physiological
variable or as pathological state, are frequently part of the
largest cliques and belong to the main cluster of the networks.
Hyperglycemia, on the other hand, is part of the main cluster
only in the pathological states network and is frequently part of
largest cliques but is not part of the largest cliques nor of the main
cluster as a physiological variable (glucose). Systolic and diastolic
blood pressures are also frequently part of the largest cliques, but
only as physiological variables and not as a pathological state.
They belong mainly to the cluster of overweight as pathological
states, but are in an independent cluster as physiological variables.
Finally, HDL cholesterol as a physiological variable was seldom
part of the largest cliques; however, it was part of the main cluster
in the pathological states network.

The Role of Metabolic Biomarkers Within
the Network Across a Lifetime
The relations between the physiological variables and
pathological states within the networks change with age.
We observed that obesity, whether as proxied by the weight and
waist circumference physiological variables, or as the overweight
pathological state, is the main influencer in the network. This
role was measured by eigencentrality, a measure of the first
and second order connections of a node, and remained stable
across all age groups (Figures 2A,C). In contrast, physiological
variables with characteristically tight homeostatic control, like
glycemic variables and temperature, were uninfluential in the
network (Figure 2C). For the pathological states network, the
largest influence, as measured by the hub score, a generalization

of eigencentrality for directed graphs, where only outgoing links
are measured, was exerted by overweight, with the components
of dyslipidemia becoming less influential from 25 to 34 years
old onward, while the pathological states associated with low
estimated glomerular filtration rate (low eGFR) steadily became
more relevant above 65 years old (Figures 2B,D). In order
to assess which nodes are intermediaries in the network, a
“betweenness” measure is required. The most useful here is
betweenness flow, where flow is taken as the minimum weight
associated with each disjoint path between any two nodes.
The betweenness flow of a node is then the sum of the flows
that are lost if that node is removed from the network. It is
therefore a measure of how much flow is mediated by a given
node. This property is called gatekeeping, since it represents the
potential to disconnect the flow. High intermediacy biomarkers
of the flow between systems were uric acid, insulin, HbA1c and
HDL in the physiological network, while hypertriglyceridemia,
insulin resistance, hyperglycemia and high HbA1c were the main
intermediaries between pathological states (Figures 2E,F). While
eigencentrality values are stable for each node regardless of age,
flow betweenness values change profoundly as a function of age
(Figures 2E,F).

Whole Network Topology as a Biomarker
for Metabolic Homeostasis
As well as local properties of the physiological variables and
pathological states networks, global properties also change
with age. Topological properties of these networks for all the
age groups are summarized in Table 4. These topological
properties describe the structure of the network in several
aspects. For undirected networks transitivity and clustering
coefficient, measures of the proportion of triangles in the
network, and characteristic path length, a measure of the
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TABLE 3 | Physiological variables means and pathological states prevalence.

Age groups

Total <25 25−34 35−44 45−54 55−64 >65

Physiological variable Slope Mean ± SD

Waist (cm) 0.3*** 88 ± 12 82 ± 11 87 ± 12 91 ± 12 93 ± 12 93 ± 11 94 ± 12

Systolic blood pressure (mmHg) 0.3*** 113 ± 14 109 ± 11 109 ± 12 113 ± 14 115 ± 14 121 ± 16 124 ± 19

Diastolic blood pressure (mmHg) 0.2*** 74 ± 10 71 ± 9 73 ± 9 76 ± 11 77 ± 10 79 ± 11 78 ± 11

Weight (Kg) 0.17*** 68 ± 15 63. ± 13 68 ± 15 72 ± 15 71 ± 14 70 ± 14 68 ± 13

Basal insulin (pmol/L) 0.12ns 58 ± 48 55 ± 36 54 ± 52 57 ± 42 60 ± 62 59 ± 40 59 ± 44

Creatinine (umol/L) 0.12** 72 ± 29 70 ± 14 74 ± 45 70 ± 16 70 ± 17 74 ± 18 88 ± 78

Uric Acid (umol/L) 0.09ns 322 ± 87 323 ± 92 326 ± 90 319 ± 87 315 ± 82 331 ± 88 335 ± 85

Fasting glucose (mmol/L) 0.028*** 5 ± 1.5 4.6 ± 0.5 4.7 ± 0.7 5 ± 1 5 ± 2 5 ± 2 6 ± 2

Urea (mmol/L) 0.026*** 5 ± 1 4 ± 1 5 ± 2 4 ± 1 5 ± 1 5 ± 1 6 ± 2

HbA1c (%) 0.022*** 5.5 ± 1 5.1 ± 0.5 5.1 ± 0.6 5 ± 2 6 ± 2 6 ± 2 6 ± 2

Triglycerides (mmol/L) 0.019*** 1.6 ± 1 1.1 ± 0.6 1 ± 1 2 ± 2 2 ± 1 2 ± 1 2 ± 1

LDL (mmol/L) 0.016*** 3 ± 1 2.5 ± 0.6 3 ± 1 3 ± 2 3.2 ± 0.8 3.3 ± 0.9 3.2 ± 0.8

HDL (mmol/L) 0.0004ns 1.2 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 1.3 ± 0.3

Height (cm) −0.098*** 162 ± 9 162 ± 9 164 ± 9 162 ± 9 159 ± 9 160 ± 10 159 ± 10

Axilar temperature (◦C) −0.0053*** 37 ± 0.5 37.2 ± 0.5 37.0 ± 0.5 37.0 ± 0.5 37.0 ± 0.5 36.8 ± 0.5 36.7 ± 0.6

Pathological states Chi-square Prevalence (%)

Overweight *** 60 38 52 73 80 82 80

Low eGFR 463*** 22 4.6 11 18 34 51 75

Hyperglycemia 228*** 13 1.5 4.4 12 23 28 31

High Blood Pressure 202*** 21 11 11 22 28 42 41

High LDL 189*** 49 24 42 51 62 65 62

Hyper-triglyceridemia 159*** 33 14 32 41 44 48 43

High HbA1c 116*** 5.6 0.7 0.6 5.2 8.8 12 18

Azotemia 41*** 3.2 0.4 2.4 3.8 6.1 7.5 15

Insulin resistance 10.3** 14 9.2 12 13 14 16 12

Low HDL 8.8** 47 43 46 53 50 42 39

Hyperuricemia 4.5* 15 13 19 14 14 18 21

High Temperature 0.05ns 1.1 0.9 0.4 0.9 1.7 0.6 0

Mean ± SD of each of the 15 physiological variables and prevalence of each of the 12 pathological states are displayed for each group. Linear regressions for the
physiological variables and chi-squared tests for trends of the pathological states prevalence are given. Significance of the trend with age is indicated by *p < 0.05,
**p < 0.01, and ***p < 0.001. ns, not statistically significant.

distance between nodes, are important descriptors of structure.
For directed networks a third parameter is reciprocity, the
proportion of bilateral connections in the network. Noticeably,
for the pathological states network, we found that reciprocity
was lower and transitivity was greater than would be expected
for random networks of the same size, number of links or dyads
(Table 4). Characteristic path length was lower than would be
expected for random networks. Moreover, the local transitivity of
physiological variables reaches a peak in the life decade between
25 and 34 years old, and from then on, the transitivity begins to
decrease (Figures 3A,C). However, this decrease is not the result
of a reduction in the weighted degree distribution (strength) of
the correlations within the network, which are similar across
all age groups (Figure 3E), instead it is related to an increase
in the number of edges within the network, as presented by
network density (Table 4). In other words, the organization of the
physiological variables changed independently from the strength

of the relationships between the variables. Over a lifetime, nodes
within a cluster tend to connect more within themselves rather
than outside the cluster. This topological change results in a
modularity increase in the physiological network (Figure 3D).
However, this trend was not shared with the pathological states
network. In this network, there is a trend toward increasing
transitivity until the 45 to 54 years old age groups group,
and a decrease in older groups (Figures 3B,C). Pathological
states became increasingly correlated as a function of age, until
reaching a maximum in the decade between 45 and 54 years old
(Figure 3C). This clustering change is related to the weighted
degree distribution of the pathological states network (Figure 3F)
and to an increase in the density of the network (Table 4). In
these networks modularity, a measure of how well separated are
the clusters, decreases from the 35 to 44 years old group onward
(Figure 3D). Three stages become apparent: a healthy stage,
where the clustering of both networks increases; a transition

Frontiers in Physiology | www.frontiersin.org 5 October 2020 | Volume 11 | Article 587994

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-587994 October 6, 2020 Time: 13:46 # 6

Barajas-Martínez et al. Metabolic Physiological Networks

FIGURE 1 | Physiological subsystems identified by Data-driven association. Representative networks (A) for the physiological variables network and (B) for the
pathological states network. Physiological variables and pathological states clusters are shown as largest cliques (blue connections), and, as clusters (nodes within
color highlighted areas). In both metabolic physiological networks, the red subgraph shows the currently accepted MetS components. The diameter of the network –
the two furthest nodes path – is highlighted in purple. (C) Frequency of physiological variables composing the largest clique of each age group network.
(D) Frequency of pathological states fully associated within largest cliques as shown by the pathological states network. The frequency of appearance of a node
pertaining to a certain cluster (membership) was registered. Since 7 networks were generated (all participants, and 6 age-range groups), a node belonging to the
same cluster across the entire lifespan would reach a value of 7. In panel (E), the frequency value represents how many times a node is part of the same cluster for
the physiological variables, where the Louvain algorithm was used to determine clusters. Three main clusters appear, with blood pressure variables making a fourth.
(F) Cluster membership of pathological states using the spinglass community algorithm that selects the group of nodes most likely to be found in the same state.
Three main clusters appear, with different groups of pathological states in each one.

stage, where the clustering of pathological states increases,
while the clustering of physiological variable decreases; and a
disease stage, where the clustering of both networks decreases

(Figure 3C). The proportion between clustering coefficient and
characteristic path length in a network can be summarized
by the small world index to compare structural changes in
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FIGURE 2 | Network modeling highlights physiological and pathological interactions. Centrality measurements identify the role of each physiological variable or
pathological state within the metabolic network. (A) Physiological network from 35 to 44 years old, and (B) pathological network from 55 to 64 years old, as
examples of the different centrality contribution that each node has. Influence is measured by eigencentrality and is represented by node color, while betweenness is
measured by flow and represented by node size. The values from these examples are emphasized inside gray rectangles. (C) Most influential nodes in the
physiological variables network, Weight and waist, are indicated. (D) Most influential nodes as seen by eigencentrality in the pathological states network. Overweight,
dyslipidemia and low eGFR are indicated. (E) Gatekeeping nodes, as seen by flow betweenness, that mediate the associations between those physiological variables
that are not directly connected. (F) Gatekeeping nodes that are the route between unconnected pathological states. The most meaningful nodes in this regard are
hypertriglyceridemia, insulin resistance, hyperglycemia and high HbA1c as age increases. * indicates values unlikely to be found by chance alone in CUG tests.

TABLE 4 | Topological properties of the physiological variables and pathological states networks.

Total Age groups

<25 25−34 35−44 45−54 55−64 >65

Physiological variables networks

Density 0.73 0.47 0.63 0.53 0.49 0.39 0.26

Global transitivity 0.79 0.71 0.74 0.70 0.70 0.67 0.47

Characteristic path length L 1.27 1.38 1.40 1.57 1.67 1.54 1.85

Clustering coefficient C 0.84 0.67 0.78 0.69 0.63 0.58 0.51

Smallworld Index 1.3 1.9 1.3 1.4 1.5 2.1 2.3

Pathological states networks

Density 0.48 0.33 0.40 0.40 0.42 0.39 0.30

Reciprocity 0.07 0.10 0.04 0.06 0.04 0.06 0.03

Global transitivity 0.91 0.69 0.79 0.79 0.83 0.78 0.67

Characteristic path length L 1.19 1.27 1.15 1.23 1.20 1.25 1.09

Clustering coefficient C 0.50 0.41 0.41 0.43 0.43 0.42 0.32

Smallworld Index 2.8 3.5 3.3 3.1 3.1 3.1 4.6

Global measurements for topological properties are shown for each network. In the case of the pathological states network, since it is directed, reciprocity of the
network is also shown.
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FIGURE 3 | Topological properties from physiological and pathological networks. Network structural changes as a function of age can be seen using several
topological metrics. (A) Physiological network of the third decade of life as a visual example of weighted transitivity in a tightly intertwined network. (B) Pathological
network of the fifth decade of life as an example of weighted transitivity in a directed network. These two networks represent the greatest transitivity in all age groups.
(C) Weighted transitivity of each network as the mean ± S.E.M. from all life decades, n = 2572. The values that come from the physiological network nodes are
highlighted in blue and for the pathological states network in pink. (D) Weighted transitivity of each network as the mean ± S.E.M. value of the 12 tested pathological
states from all the age groups. Frequency distribution of the weighted degree (strength) of the network in each life decade (E) for the physiological networks and (F)
for the pathological states networks. Age dissociates physiological variables, as seen by the reduction of the weighted transitivity in the physiological network, but
without a significant change in the weighted degree, while pathological conditions become more associated with age, as seen in the pathological network, reaching
a peak at the fifth decade of life.

our matching networks of increasing age. For the physiological
networks of groups starting below 54 years, the small-world index
has values between 1.3 and 1.9, increasing to values above 2 in
the groups above 55 years old. All pathological networks had a
greater small world index than the corresponding physiological
networks, which increased substantially in the age group above
65 years old and concurrently with a decrease in the global
clustering coefficient.

DISCUSSION

Metabolic homeostasis loss is the main driver of non-
communicable diseases and their resulting mortality. These
complex diseases involve diverse combinations of risk
biomarkers that occur more often together than by chance
alone (Alberti et al., 2009). Currently, however, only five such
factors are monitored for the assessment of metabolic health
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(overweight, high triglycerides, low HDL cholesterol, high
systolic blood pressure, and high fasting plasma glucose). By
adopting a network approach, in this study, we have shown
that, in reality, not only the level of each individual factor is
important, but also their correlations, both local and global.
Local properties of the network are equivalent to current
reductionist approaches, while global properties provide new
metrics that can be used as markers of metabolic health.
As allostatic load on body metabolism increases with age,
changes in the ratios between different physiological variables
represent the adaptive adjustment of their corresponding
setpoints in order to accommodate an increasing burden of
internal failures and cumulative external insults (Fossion et al.,
2018; Goldstein, 2019). Here, we have shown that the number
of correlations present within the networks, represented as
network density (Table 4), the number of connections of each
node, represented as the node’s degree, and the strength of
the correlation, represented as weighted degree, all change
gradually across age groups and reflect this adaptive adjustment
(Figure 3). Therefore, topological properties that emerge
from the structure of the networks reflect how whole−system
interactions within the physiological network change over a
lifetime and, in particular, show how, as age increases, the loss
of metabolic homeostasis is revealed by these changes. For
example, local weighted transitivity measures the probability
that the neighbors of a node are connected among themselves.
This measure has the advantage of being largely independent
from the size of the network (Barabási et al., 2003). Changes
in this metric give insight into how the cumulative impact of
metabolic insults increases and decreases the relations between
physiological variables and pathological states. At the global
level, transitivity and the clustering coefficient of the network
are two indicators of how the network’s connections become
aggregated or disaggregated as a function of age. Therefore,
these changes in the networks’ structure echo the underlying
homeostatic changes.

The transition from health to disease, in the case of complex
diseases, can be described by three-state models (Chen et al.,
2017). In the healthy stage, regulated variables are kept within
strict bounds and physiological response systems increase their
activity proportionally in order to compensate the impact of
interaction with the environment. In the transition stage (from
35 to 54 years old) regulated variables increase their correlation
with their physiological response system as metabolic insults
are not fully compensated. At this stage internal malfunctions
can be buffered, but at the expense of the development of
pathological states, that then begin to correlate, leading to an
ever-increasing burden (Figure 3). Finally, homeostasis is lost,
and pathological states lead to disease onset in an irreversible
fashion, resulting in a decrease in the clustering of both network
types. Regulated variables are now fully dysregulated from
their corresponding regulatory system variables and correlations
are lost. Our results show that the transition from health to
disease is reflected in our topological metrics as a result of
the changes in the correlations between physiological variables
and the corresponding association between pathological states.
The different network metrics we evaluated show that our

networks are not random (Table 4). Although a formal, large-
scale topological characterization of our physiological networks
falls beyond the scope of this work, and would potentially
require the addition of many more variables, it is interesting
to point out that the observed properties of scale free and
small world are properties that are frequently found in complex
biological systems (Song et al., 2005). It has been argued that
these topologies confer properties of network robustness and
adaptability that are desirable as properties with a homeostatic
interpretation (Fossion et al., 2018; Toledo-Roy et al., 2019).
Nevertheless, considering the wide structural diversity found
in real-world networks, classification of these complex systems
remains an active area of development (Hilgetag and Goulas,
2016; Broido and Clauset, 2019).

Individual biomarkers were described in the context of
the network through centrality measurements of influence
and intermediacy. The important influence of weight
on the metabolic network was found in both network
approaches and was sustained across all age groups (Figure 2).
Additionally, weight-associated physiological variables and
their corresponding pathological states were most frequently
embedded within the largest cliques. Both these results exhibit
the central role of weight inside the metabolic networks. This
has been confirmed in a large cross-sectional study, where
long term sustained weight loss was seen to improve overall
metabolic risk (Knell et al., 2018). However, some classically
established MetS components, such as HDL cholesterol, are
seldom present within the largest cliques, indicating a more
peripheral role within this network. In this regard, some of
the biomarkers we used have a high flow betweenness in the
network, suggesting that they behave as an “exchange currency”
among several metabolic subsystems. This was the case for
triglycerides, insulin, uric acid and glucose, whether considered
as physiological parameters or as pathological states (Figure 2).
These nodes have the potential of disconnecting the flow within
the network, and therefore may serve as sensitive indicators of
alterations from several different systems. This suggests that
they are key components in the transmission of disruptions
between different metabolic subsystems. Additionally, these
metabolic subsystems, as identified by our clustering strategies,
are also those that would be considered as the natural ones from
a medical perspective (Goh et al., 2007; Chan and Loscalzo,
2012). Our results show that different, relatively independent,
metabolic modules arise, that communicate through some
gatekeeping exchange molecules. With age, this modularity
increases in the case of the physiological variables network
(Figure 3C). Such modularity is a measure of how much the
networks tend toward a community structure. Furthermore,
there is a strong correspondence between the clusters that were
found in the physiological variables network and those found in
the pathological states network, suggesting that the associated
pathological states emerged from the underlying relationships
between the corresponding physiological variables and are,
therefore, not just a byproduct of chance or prevalence alone.
These two approaches complement each other, reinforcing
their respective conclusions where both reach similar results.
This was the case for the clustering of metabolic components
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in both the physiological variables networks, the pathological
states networks (Figures 1E,F), and the corresponding centrality
measurements (Figure 2).

Finally, it is worth mentioning that another advantage of
network analysis is that it can be used as part of an automated

process for discovering and analyzing patterns in large datasets,
with the assistance of experts to ensure a relevant and adequate
interpretation (Merico et al., 2009). In this way, networks can
be extended in an iterative process in order to accommodate
new biomarkers in a way that can both enrich and refine the

FIGURE 4 | Metabolic physiological network construction from matrices. (A) Correlation of 15 physiological variables and their corresponding 12 pathological states
associations were modeled using Spearman correlation and ε value, respectively. (B) Adjacency matrix as a heatmap where the darker the red indicates a greater
monotonic relationship between two physiological variables, as calculated by the Spearman rank correlation rho. (C) ε Value between each pair of pathological
states, a darker red indicating a greater probability of coexistence. In both heatmaps, rows and columns are ordered by weighted degree, and on the left side of the
heat maps the resulting hierarchical dendrogram is shown. For directed networks some nodes lacked outgoing links, this is presented as blank rows. (D) Undirected
network of physiological variables for the whole sample. The edges are weighted by the rho value in the Spearman correlation. The size of the node shows the flow
betweenness of a node, the eigencentrality is shown by its color and the color shadowed areas indicate the Louvain clusters. (E) Directed network of pathological
states. The edges are weighted by the ε value, the size of the node shows the flow betweenness of each node, the eigencentrality is shown by its color and the color
shadowed areas indicate spinglass clusters. (F) In both networks, the red subgraph shows the components of MetS, while the blue subgraph highlights the largest
clique and the diameter of the network is in purple. For Spearman correlation, values with p > 0.001 were discarded, whereas for ε, values below 1.96 were
discarded.
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TABLE 5 | Glossary.

Glossary Symbol Definition R_package:function References

Graph G = (V, E) A network, composed of a set of nodes (V) and links (E)

Adjacency matrix A An array of rows and columns that contains the
connections of the network

Subgraph S ⊆ V A subset of nodes and their links contained in the original
network

igraph:induced.subgraph

Vertex V A node

Edge E A link

Centrality C A measure that describes a node’s overall role in the
network

Borgatti and
Everett, 2006

Degree Number of links that a node has sna:degree Freeman, 1979

Strength The sum of the weights of the links attached to a node igraph:strength Barrat et al., 2004

Flow f A measure that describes the strength of the links in a path
between nodes

Radial measures Those centralities that are based on pair-wise connections Borgatti and
Everett, 2006

Eigencentrality v = λ-1Av This centrality of each node is proportional to the sum of
the centralities of those nodes to which it is connected.

sna:evcent Katz, 1953

Hub score Eigencentrality
from A*t(A)

Eigencentrality of the matrix that takes into account only
out-going links

igraph:hub_score Kleinberg, 1998

Medial measures Those centralities that are based on the number of walks
that pass through a node

Borgatti and
Everett, 2006

Flow betweenness The amount of flow mediated by a given node. This
illustrates the gate-keeping role of a node, i.e., the potential
to disconnect the network.

sna:flowbet Koschützki and
Schreiber, 2008

Cluster, community A set of nodes with many links between themselves and
few nodes to the outside of the community (the rest of the
network).

Blondel et al., 2008

Clique A subgraph where all nodes are fully connected between
themselves.

Eppstein et al.,
2010

largest clique The clique(s) with the largest size possible contained in the
network

igraph:largest.cliques Eppstein et al.,
2010

Louvain, Cluster An algorithm for finding communities that works through
modularity optimization.

igraph:cluster_louvain Blondel et al., 2008

Spinglass, Cluster An algorithm for finding communities based on simulated
annealing and a spin-glass model.

igraph:spinglass.community Reichardt and
Bornholdt, 2006

Topology The structural characteristics of the network

Size The number of nodes in the network.

Density The ratio of links that are present in a network to all the
possible edges it could contain.

igraph:graph.density Faust and
Wasserman, 1994

Reciprocity The ratio of bidirectional links in a directed graph. igraph:reciprocity

Characteristic path length L The average of all the shortest paths between each pair of
nodes in the network

igraph:average.path.length West, 1996

Transitivity, local Transitivity and clustering coefficient are two slightly different
ways of counting triangles in a network. Both can be local,
when only one node and their neighbors are considered, or
global, when the whole network is considered. It represents
the ratio of all the triangles present to all the possible
triangles in the network.

igraph:transitivity Barrat et al., 2004

Transitivity, global T igraph:transitivity Barrat et al., 2004

Clustering coefficient, local DirectedClustering:ClustF Onnela et al., 2005;
Fagiolo, 2007

Clustering coefficient, global CC DirectedClustering:ClustF Onnela et al., 2005;
Fagiolo, 2007

Small world index SWI A measure that describes the relation between CC and L in
a network against what would be expected in a random
network.

qgraph:smallworldIndex Watts and Strogatz,
1998

A brief description for quick reference of specialized terms.
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generated network models (Aittokallio and Schwikowski, 2006).
Unfortunately, many of these biomarkers cannot be monitored
continuously, or their measurement is relatively expensive.
However, the correlation networks that arise from transversal
studies that consider a wide age spectrum can provide a means
for studying the relations among physiological variables at a
population level, while at the same time reducing the costs and
difficulties associated with a longitudinal study. Of course, there
are subtleties and limitations associated with the interpretation
of such transversal data that apply equally to our work. In spite
of this, comparisons between cross-sectional and longitudinal
data, as well as retrospective studies, are in good agreement
with the trends presented in Table 3, which reinforce the role
of aging as the origin of the changes we observe (Chiu et al.,
2015; Gu et al., 2018). Transversal studies are complementary to
longitudinal approaches and result in an useful approximation
(Fossion et al., 2017). In fact, the narrow age cohort approach we
have employed is useful for demonstrating the increasing (and
decreasing) covariances that occur between variables due to the
underlying aging process. Nevertheless, there is, of course, no
cross-sectional design that can account for the correlated changes
that occur within a given individual (Hofer and Sliwinski, 2001).
In addition, although our study is transversal in nature, and the
generated networks are static, certain network properties, such as
a low characteristic path lengths and high clustering coefficient
in small world networks, are known to affect dynamic properties,
such as the velocity of the spread of a disease (Jansson, 2020).

Our work provides the layout for evidence-based rationale
for adding (or replacing) other CVD risk factors (e.g., CRP
or family history) to the definition of MetS (Kahn et al.,
2005). For instance, the physiological variables network does
not rely on the particular values of cut-offs and illustrates
that some variables that are not monitored currently, such
as uric acid, may be better early indicators of metabolic
burden. It is important to notice that uric acid is not
used traditionally as a biomarker of metabolic disorders,
even when in our network analysis it is more frequently
embedded within the largest cliques than blood pressure
components, triglycerides and HDL cholesterol (Figure 1C).
This result adds to the growing body of literature that
considers uric acid to be a relevant biomarker in MetS
(Kanbay et al., 2016). In summary, the physiological network
approach to metabolic homeostasis is capable of providing useful
insights on whole-system function that are inaccessible through
reductionist approaches.

CONCLUSION

Changes in network topology are global indicators of metabolic
homeostasis and do not rely on any single parameter or threshold
but, instead, assess the behavior of the whole system. Thus,
this novel conceptualization of homeostatic health allows for a
more holistic comprehension of a person’s physiology. Structural
properties, such as weighted transitivity or the small-world
index, may then serve as topological indicators of health for the
metabolic physiological network.

METHODOLOGY

Ethical and Human Research
Considerations
This study was carried out in accordance with current regulation
contained in the Mexican Official Normativity, NOM-012-SSA3-
2012. The Ethics Committee of the Facultad de Medicina of the
UNAM approved the procedures and protocols for this study
under project FM/DI/023/2014, all the participants provided a
written informed consent.

Study Population and Age Sub-Groups
We performed a transversal, community-based study of an
ethnically and educationally diverse sample within a large
public university, comprising 2572 participants. Each participant
answered a health questionnaire and underwent vital signs, and
anthropometric measurements along with fasting blood tests.
This resulted in a multi-dimensional data set. The sampling was
performed in successive steps from 2014 to 2019. The global
sample was divided into 6 groups of increasing age, beginning
with less than 25 years, and increasing in decades up to above
65 years of age. As a result, we obtained 6 age groups (see Table 1).

Anthropometric Measurements and
Laboratory Procedures
All tests were performed in the morning during a 4-h period
(from 6 a.m. to 10 a.m.) after verifying fasting and general
status. Anthropometric measurements (weight, height, waist
and hip circumferences) and vital signs (blood pressure and
temperature) were taken by trained medical staff using standard
procedures (World Health Organization [WHO], 1995; Whelton
et al., 2018). Blood samples were obtained from participants
who had fasted for 8 to 12 h. Samples were stored at
4−5◦C and submitted for chemical analysis of glucose, glycated
hemoglobin (HbA1c), insulin, triglycerides, total cholesterol,
HDL cholesterol, LDL cholesterol, uric acid and creatinine.
Fasting plasma glucose was measured using spectrophotometry
and potentiometry with a hexokinase kit (amorting PIPES,
NAD, Hexokinase, ATP, Mg2+, G6P-DH; AU 2700 Beckman
Coulter R). HbA1c was measured with High Performance Liquid
Chromatography (HPLC) analysis with the Variant R Turbo
kit 2.0, which consisted of 2 buffers and 1 wash solution.
Fasting plasma insulin concentrations were determined using
Chemiluminescence (Access Ultrasensitive Insulin, Unicell Dxl
800 Beckman Coulter R, Sensitivity: 0.03−300 U/mL). The
lipid profile was obtained with enzymatic colorimetric assay
(glycerol phosphate oxidase, cholesterol oxidase, accelerator-
selective, detergent, and liquid-selective detergent). Uric acid was
measured using the colorimetric method with uricase enzymatic
OSR6698, system AU2700/5400, Beckmann Coulter R. This
resulted in a set of 15 non-derivative, independent, continuous,
physiological variables. From the original data set, 14 particular
values associated with distinct variables were excluded, based on
two main criteria:

(1) Outliers based on physiologically improbable values that
are most likely to be erroneous as they would be incompatible
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with life. This included removing three values of blood pressure,
three values of axillar temperature, two glucose measurements,
two values of HbA1c, and one each of uric acid, and LDL.

(2) Anthropometric measurements which were inconsistent
between themselves. For example, exceedingly high values of
waist circumference in an underweight participant. Thirteen
values of waist and one value of height were discarded
on this account.

Pathological States Assessment
From these physiological variables, thresholds were defined in
order to distinguish normal values from abnormal values, thus
categorizing health status or a pathological state (Table 2). We
would like to emphasize that the thresholds used here are not
diagnostic of disease; instead they are low enough values that
indicate increased risk. Most of our criteria are backed up
by major health societies and organizations, however, when a
consensus was not available, we used literature-based cut-off
values that best correlated with the increased risk-prevention
view of the harmonized MetS criteria (Sund-Levander et al.,
2002; Alberti et al., 2009; Esteghamati et al., 2009; Khanna
et al., 2012; Levin et al., 2013; Whelton et al., 2018; Mach
et al., 2019; Tyagi and Aeddula, 2019; American Diabetes
Association, 2020). Thus, the pathological states described here
are not diseases per se, but an indication that physiological
values do not represent normal health status. Three of the
physiological variables that we measured do not have a
pathological state by themselves alone. For instance, high blood
pressure was determined by either elevated systolic or diastolic
values. For insulin and creatinine, two derived indices were
calculated: Homeostasis Model Assessment Insulin Resistance
index (HOMA-IR) (Wallace et al., 2004) for the pathological
state of insulin resistance, and eGFR for chronic kidney disease
(Levin et al., 2013).

Network Modeling
Network science is now an important are of science in itself
with applications in many different fields. The construction
of complex networks of nodes, and links between them that
represent interactions, permits the simultaneous visualization
and analysis of potentially large numbers of such interactions
where global properties of the system that are not apparent at
the local level manifest themselves. The vast majority of networks
have links that are associated with known, experimentally verified
interactions, such as in a food web or a social network. In
this paper, however, we will use Complex Inference Networks
(Stephens et al., 2009, 2018), where the interaction represented
by a network link is inferred rather than directly observed,
by examining co-occurrences between variables. Such co-
occurrences may be in space or time, or both. Here, we consider
co-occurrences – correlations – in time1.

It has been observed that two models of metabolism are
possible. In the first one metabolic risk increases progressively
as an increasing function of certain physiological variables

1Networks that consider links associated with correlations in time have also been
considered in Ivanov et al. (2017) and Lin et al. (2020).

(Wijndaele et al., 2006; Knell et al., 2018). In the second one,
metabolic homeostasis is bimodal, and as such, risk increases
significantly only upon exceeding certain thresholds associated
with the diagnosis of the pathological state (Stern et al., 2005;
Alberti et al., 2009). Therefore, to encompass both possibilities,
we created Complex Inference Networks for both employing
accessible biomarkers that probe the underlying metabolism.

In the first case, the coupling between two physiological
variables can be explored through their rate of change in the
population. Here, a monotonic association would be found
between those variables that interact directly or indirectly
within the physiological network. We tested the physiological
variables datasets for normality using the Shapiro−Wilk test and
screened them for extreme values. Since the data sets were not
normally distributed and had extreme values expected to be
real, we selected the Spearman Rank Correlation (Batushansky
et al., 2016) as a measure of correlation. We modeled the
metabolic physiological network as a continuous association
of pairs of variables. For this monotonic correlation model,
a correlation matrix was constructed for the 15 chosen
physiological parameters (Figure 4). Significant correlations were
established at a value of p < 0.001, indicating that the relation
does not support the null hypothesis that the independent
and dependent variables are unrelated. The weight of the
Spearman’s rho correlation was squared in order to obtain only
positive values.

For the second case, a pathological states network was
constructed using currently accepted thresholds from the
literature. Here, cut-off values allow the comparison of the
tails of the distributions across age groups. The objective here
was to indicate whether the participants within the tail of
the distribution of one physiological variable have a greater
probability of being also in the tail of the distribution of another
physiological variable than would be explained by the prevalence
of the pathological states alone. This probability of being in a
pathological state B given that the individual is in a pathological
state A was described using the following binomial test:

ε =
Nx (P (c|x)− P (c))
√
Nx (1− P (c)) P (c)

This test is not necessarily reciprocal, thus giving a weighted
directionality to the relationship. If a pathological state is
probably the origin of another, their ε value would be expected to
be high in that direction, while it could be low in the opposite one.
For this binomial test the null hypothesis is that the probability
of presenting condition C is not affected by having condition X.
The statistical significance, ε, is a measure of the extent to which
the null hypothesis is verified by the data. In the circumstance,
which is valid here, where the binomial distribution can be
approximated by a normal distribution, ε > 1.96 corresponds
to the standard 95% confidence interval (Easton et al., 2014).
As the pathological states network is based upon thresholds
accepted by medical consensus, this network adheres well to the
known progression of MetS. However, the employment of cut-
off values for asserting associations between states may result
in an association toward the most sensitive, low thresholds.
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Exceedingly low thresholds can make pathological states seem
more prevalent and bias the direction of ε (Easton et al., 2019).
In consequence, care was taken for the selection of thresholds
consistent with the preventive scope of MetS.

In summary, for the first case, physiological variables are
monotonically correlated along all their biologically plausible
spectrum. In this scenario the associations between parameters
are present even at healthy values and represent a continuum.
For the second case, pathological states are best regarded as
binomial. Upon reaching a threshold, the association between
these states either appears or increases significantly. This second
model resembles the current interpretation of MetS, as it requires
a co-occurrence higher than would be expected by chance and
contemplates cutoff values as all or nothing states (Alberti
et al., 2009). Finally, we used groups of individuals of different
ages in order to explore the progressive changes that occur
during the aging process and which result in an increasing
prevalence of MetS. From the systems biology perspective, the
network structure is a direct result of the coordination, or lack
thereof, of components that are linked by homeostatic feedback
(Goldstein, 2019).

Network Construction and Statistical
Analysis
For the construction of our considered networks we used
correlation matrices of physiological variables and pathological
states. These matrices were interpreted as weighted adjacency
matrices, where adjacency is represented by the Spearman rhos
or the ε values between each pair of metabolic components.
The resulting matrices were weighted and undirected for the
Pearson correlation matrix and weighted and directed in the case
of ε values (Figure 4). For the construction of the Spearman
correlation matrix, data-set normality testing, linear regression
and chi-squared tests for trends were all done with Prism
8.1.2(277), GraphPad Software, La Jolla, CA, United States,
www.graphpad.com. For the network construction RStudio, an
R language programming suite and igraph package (Csárdi et al.,
2016; R Core Team, 2020; RStudio Team, 2020).

Nodes within a network can be ranked according to several
centrality definitions that fall into two main groups, radial
measures and medial measures. Inferring causality exclusively
from centrality within networks requires caution, although
eigencentrality has been found to be the best centrality
measurement for this purpose, especially for small networks with
less than 30 nodes (Dablander and Hinne, 2019). Therefore, we
selected eigenvector for undirected networks and hub score for
directed networks as radial measures. For medial measures we
decided to use flow betweenness. These centrality values allow
for a direct comparison of either the influence of nodes (radial
measure) or gatekeeping (medial measure) within the network
(Borgatti and Everett, 2006). Eigencentrality corresponds to the
value of the first eigenvector of the graph adjacency matrix and
was interpreted as a measure of influence within the undirected
networks. These values were obtained using the evcent function
from the SNA package (Katz, 1953; Butts, 2019). For directed
networks, hub score and authority score, are a better way of

representing influence as these measures takes into account
the directionality of the links. Hub scores are defined as the
principal eigenvectors of A∗t(A), where A is the adjacency
matrix of the network. These values were calculated with the
hub_score function from the igraph package (Kleinberg, 1998).
Flow betweenness was used as a measurement of intermediation
within the network. Flow betweenness was calculated using
the flowbet function from the SNA package (Koschützki and
Schreiber, 2008). In order to test if the eigencentrality and flow
betweenness values obtained would be seen in a random graph
with the same number of vertices, edges or dyads, univariate
conditionally uniform graph tests (CUG test) were employed
with the cug.test function from the SNA package.

Networks can contain subgraphs, subsets of vertices with a
specific set of edges connecting them within the original graph,
that are of particular relevance (Aittokallio and Schwikowski,
2006). We sought two particular subgraphs within our models:
First, the graph corresponding to those variables associated with
the current definition of MetS, and second, the largest clique
within the graph. As there may be more than one combination
of nodes that result in a largest clique, we registered the number
of times each node appeared within a possible largest clique.
These maximally connected subgraphs − largest cliques − were
identified using the largest_cliques function of the igraph package
(Eppstein et al., 2010). Largest clique and current MetS variables
were highlighted as subgraphs, along with the graph diameter.

The largest clique is the biggest, maximally connected
subgraph of a graph and contains vertices such that each vertex
is connected with every other vertex of the clique. This gives
an idea of which vertices go hand in hand in each network
(Pavlopoulos et al., 2011). On the other hand, a cluster, as defined
using a suitable clustering algorithm, is a group of vertices
within a graph that are more densely connected to one another
than to other vertices (Csárdi et al., 2016). There are several
alternative algorithms for discovering communities of vertices
within graphs. For community detection within the networks
we used two different algorithms. For the Pearson model, the
Louvain algorithm was employed as a heuristic method based
on modularity optimization, with the cluster_louvain function
from the igraph package (Blondel et al., 2008). In the ε model,
the spinglass community algorithm selects those nodes with the
greatest probability to be found in the same state concurrently,
with the cluster_spinglass function from the igraph package
(Reichardt and Bornholdt, 2006). These two approaches to
identifying related biomarkers are complementary − clustering
strategies maximize the modularity of the network, while largest-
clique identification maximizes the transitivity of the largest
possible subgraph.

Topological properties were assessed as follows: Density,
reciprocity and characteristic path length of the networks were
calculated using the igraph package (Faust and Wasserman,
1994; West, 1996; Freeman, 1979). For the calculation of the
weighted transitivity and the clustering coefficient in directed and
undirected weighted networks the DirectedClustering package
was employed (Barrat et al., 2004; Onnela et al., 2005; Fagiolo,
2007; Clemente and Grassi, 2018). The Small world index, as
calculated by qgraph, was used as a summary metric of the
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network topology (Watts and Strogatz, 1998). CUG tests were
also performed for network density, reciprocity, transitivity and
characteristic path length. A glossary of specialized terms is
provided in Table 5.
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