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Background. Structural uncertainty can affect model-based economic simulation estimates and study conclusions.
Unfortunately, unlike parameter uncertainty, relatively little is known about its magnitude of impact on life-years
(LYs) and quality-adjusted life-years (QALYs) in modeling of diabetes. We leveraged the Mount Hood Diabetes
Challenge Network, a biennial conference attended by international diabetes modeling groups, to assess structural
uncertainty in simulating QALYs in type 2 diabetes simulation models. Methods. Eleven type 2 diabetes simulation
modeling groups participated in the 9th Mount Hood Diabetes Challenge. Modeling groups simulated 5 diabetes-
related intervention profiles using predefined baseline characteristics and a standard utility value set for diabetes-
related complications. LYs and QALYs were reported. Simulations were repeated using lower and upper limits of
the 95% confidence intervals of utility inputs. Changes in LYs and QALYs from tested interventions were compared
across models. Additional analyses were conducted postchallenge to investigate drivers of cross-model differences.
Results. Substantial cross-model variability in incremental LYs and QALYs was observed, particularly for HbA1c
and body mass index (BMI) intervention profiles. For a 0.5%-point permanent HbA1c reduction, LY gains ranged
from 0.050 to 0.750. For a 1-unit permanent BMI reduction, incremental QALYs varied from a small decrease in
QALYs (20.024) to an increase of 0.203. Changes in utility values of health states had a much smaller impact (to
the hundredth of a decimal place) on incremental QALYs. Microsimulation models were found to generate a mean
of 3.41 more LYs than cohort simulation models (P = 0.049). Conclusions. Variations in utility values contribute to
a lesser extent than uncertainty captured as structural uncertainty. These findings reinforce the importance of asses-
sing structural uncertainty thoroughly because the choice of model (or models) can influence study results, which
can serve as evidence for resource allocation decisions.
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Highlights

� The findings indicate substantial cross-model variability in QALY predictions for a standardized set of
simulation scenarios and is considerably larger than within model variability to alternative health state utility
values (e.g., lower and upper limits of the 95% confidence intervals of utility inputs).

� There is a need to understand and assess structural uncertainty, as the choice of model to inform resource
allocation decisions can matter more than the choice of health state utility values.
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Introduction

Simulation models that are built to analyze the same
problem often produce different results, primarily
because the models use different data or different model
designs even when using the same data. Economic mode-
lers make different choices when designing their model
structures and selecting risk equations and other para-
meter values. These different choices lead to uncertainty
in model results, known in the modeling community as
structural or model uncertainty.1,2 Sources that can lead
to differences between models could be many, including

1) the type of model (e.g., Markov, statistical, discrete
event simulation, decision tree), 2) choices for implicit
and explicit data assumptions with a specific model, and
3) technical/methodological differences in implementing
the given model (e.g., inclusion or exclusion of poten-
tially relevant events, statistical models used to estimate
specific parameters, in which different shape properties
can affect extrapolation into the future).

Substantial effort has been put into understanding
and capturing 3 of the 4 leadings forms of uncertainty in
health economic modeling (i.e., parameter, heterogeneity,
and methodological uncertainty3–9), which are commonly
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addressed using probabilistic sensitivity analysis, refer-
ence cases, and prescribed guidelines.1,10–12 Addressing
structural uncertainty is relatively uncommon,2 despite
numerous recommendations1,13–15 and recognition that its
potential impact on results may be greater than other types
of uncertainty.16,17 This may be because, in part, it can be
more difficult to assess than other forms of uncertainties,
and there is relatively little guidance for addressing struc-
tural uncertainty formally.

Type 2 diabetes mellitus (T2DM) is a chronic and
progressive disease characterized by hyperglycemia.
Chronic hyperglycemia is associated with a number of
debilitating and life-threatening long-term macro- and
microvascular complications. Many of these complica-
tions share common risk factors, and the presence of one
can also increase risks for developing the others.18,19

Given its complex and interdependent pathophysiology,
modeling T2DM is particularly challenging. For this rea-
son, diabetes simulation models tend to be complex
and sometimes opaque.20–22 These models play an
important role in allowing health care policy makers to
make informed decisions when selecting between alter-
native health interventions. Given the important role
of these models in resource allocation considerations, it
is important that those responsible for model develop-
ment understand how structural uncertainty affects the
results they produce.

There are various ways to evaluate structural uncer-
tainty, including examining the response of model results
to changes in a structural assumption (e.g., altering the
parametric form of an important risk equation, use of
static or dynamic transition rates, disease states to
include), presenting alternative results from scenario
analyses or through model averaging where multiple
structural changes are considered simultaneously.2,3,23

Although uncommon in the literature, these approaches
provide an indication of the impact of alternative choices
made during the model development process and struc-
tural uncertainties arising from the model(s) considered
by the same analyst(s). An alternative approach to captur-
ing structural uncertainty would be to compare the differ-
ent ways groups of analysts may differ in their approach
to the same problem.4 Such a comparison would have a
natural advantage in assessing the robustness of results of
an individual study problem (e.g., confidence should be
high when a treatment is cost-effective under all reasonable
combinations of structural assumptions).

One way to pragmatically perform this multiway eva-
luation of structural uncertainty (while simultaneously
minimizing risks that the individual results will still be cor-
related) is to bring many independent simulation models
to bear on the same decision problem (i.e., with simulation

of the same standardized scenario). For modeling diabetes
treatments, use of a dedicated network such as the Mount
Hood Diabetes Challenge (www.mthooddiabeteschallen-
ge.com) is both an effective and efficient option. The
Mount Hood Diabetes Challenge has regularly held con-
ferences in which up to 10 or more diabetes modeling
groups have met biennially since 2000 to cross-validate
the models by running standardized simulation scenar-
ios.22,24–26 A key aspect of diabetes simulation models is
to capture the impact of the progression of diabetes and
its complication on quality-adjusted life-years (QALYs).
Economic evaluations of antidiabetes treatments often
show relatively small incremental differences in QALYs
between treatment arms. For example, a recent systematic
review of 124 model evaluations of blood glucose–lowering
interventions reported an average incremental difference of
0.409 QALYs.27 Structural uncertainty is likely to be impor-
tant, as small absolute variations in QALYs can have out-
sized impacts on incremental cost-effectiveness ratios.

As part of the 2018 Mount Hood Diabetes Challenge,
11 diabetes models simulated a set of standardized sce-
narios designed to inform our knowledge of how model
estimates respond to different health state utility value
assumptions and how model estimates vary across mod-
els with different structures, something that cannot gen-
erally be examined without such a large and diverse
group. The aim of this article is to leverage these cross-
model estimates for a standardized set of simulation sce-
narios to 1) assess the magnitude of structural uncer-
tainty by comparing outputs of a large number of
diabetes models, 2) compare outputs related to para-
meter uncertainty by varying health state utility values to
quantify the degree of uncertainty generated, and 3)
investigate the drivers of cross-model differences.

Methods

The results provided by the 11 diabetes modeling groups
that participated in the 9th Mount Hood Diabetes Chal-
lenge (see below) were pooled and analyzed to address
the 3 objectives. All modeling groups approved the use
of their results and contributed to this article.

9th Mount Hood Diabetes Challenge

The 9th Mount Hood Diabetes Challenge ran over 2 days
in October 2018, during which modeling groups gathered
to compare and discuss methodologies, data, and
developments in diabetes simulation modeling. Instruc-
tions on the modeling challenges were posted in advance
on the Mount Hood Diabetes Challenge website (https://
www.mthooddiabeteschallenge.com/), and all registered
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modeling groups were invited to participate. Although
the conference featured 3 challenges,26 this article focuses
on the Quality-of-Life Challenge only. Participation in
the challenge required submission in advance of results
and model and methods documentation. Results were
discussed among participating modeling groups at an
allocated congress session.

Quality-of-Life Challenge

The instructions for the Quality-of-Life Challenge can be
found in Supplementary Material 1. Briefly, the chal-
lenge instructions included a set of standard patient base-
line characteristics and a set of utility values for a wide
range of likely health states and model features, which all
modeling groups were asked to use (reference case). The
baseline characteristics (Table 1) were chosen to reflect a
typical patient with diabetes enrolled in a randomized
controlled trial for diabetes and sourced from the Action
in Diabetes and Vascular Disease-PreterAx and Diami-
croN Controlled Evaluation (ADVANCE) trial.28 In the
event that a model required input values not included in
the instructions, the groups were asked to source their
assumptions from published literature and to submit
documentation with the results.

The modeling groups were asked to populate their
models using a standard (and widely used) set of utility
values (Table 2) for diabetes-related complications from

a published systematic review29 and to document health
states within their models that have a utility value attached
to them. All modeling groups were asked to apply utility
decrement values additively (where feasible). Modeling
groups were asked to source utility values for health states
not included in the challenge instructions from published
literature and to add to the documentation.

The challenge consisted of multiple simulations to
examine the impact of utility values on QALYs. First,
modeling groups were requested to simulate the reference
case as specified over a 40-year time horizon, separately
for males and females, without an initial impact on bio-
markers (the control group) and for 5 different interven-
tion profiles common in the management of patients with
T2DM:

i. 0.5%-point permanent reduction in HbA1c
ii. 10 mm Hg permanent reduction in systolic blood

pressure
iii. 0.5 mmol/L (19.33 mg/dL) permanent reduction in

low-density lipoprotein cholesterol
iv. 1-unit permanent reduction in body mass index

(BMI; kg/m2)
v. All above interventions combined

Modeling groups were requested to standardize model
assumptions around biomarker evolution; for instance,
HbA1c and systolic blood pressure to be kept constant

Table 1 Characteristics of a Representative Patient (Applied to Both Males and Females) Used in Simulations Sourced From
Ref. 28

Patient Characteristics at Baseline

Current age 66 y
Duration of diabetes 8 y
Current/former smoker No
HbA1c 7.5%
Systolic blood pressure 145 mm Hg
Diastolic blood pressure 80 mm Hg
Total cholesterol 5.2 mmol/L
High-density lipoprotein cholesterol 1.3 mmol/L
Low-density lipoprotein cholesterol 3.0 mmol/L
Body mass index 28 kg/m2

Albumin:creatinine ratio 14.2
Peripheral vascular disease No
Micro or macro albuminuria (albuminuria �50) No
Atrial fibrillation No
Estimated glomerular filtration rate 70 mL/min/1.73 m2

White blood cell count 7 3 109/L
Heart rate 79 bpm
Hemoglobin 14 g/dL
History of macrovascular disease No
History of microvascular disease No
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over time and not allow for evolution (increase or
decrease over time). A 0% discount rate for both life
years (LYs) and QALYs was stipulated.

The simulation was repeated using all the lower limit
of the 95% confidence interval of the standardized set of
utility values (Table 2) and then with the upper limit of
the 95% confidence interval. To further examine the
impact of varying individual health state utility values on
incremental QALYs, modeling groups were asked to
vary the utility value for each health state one at a time
with the lower and upper 95% confidence intervals and
report incremental QALYs (all others assuming the
mean value) for the control group and for the 0.5%-
point reduction in HbA1c profile.

The modeling groups were requested to submit
detailed results for each treatment profile for each simu-
lation, including estimated LYs and QALYs, and cumu-
lative event rates for each health state, in advance of the
congress. Modeling groups that submitted their chal-
lenge results prior to the congress and participated in the
event were included in this article. All modeling groups
agreed to include their simulation results in a peer-
reviewed publication prior to the meeting. Resimulation
was not allowed; however, modeling groups were given
the opportunity to check their submitted results post-
challenge, and where applicable, updated results can be
added to the appendix.

Post-challenge Statistical Analysis

Estimating structural uncertainty. Submitted results were
collated, and the variability across different models was
assessed by calculating the mean and standard deviations
of reported outputs (LYs, QALYs, incremental LYs, and
incremental QALYs). Incremental outcomes in LYs and
QALYs across different models were ordered from lowest
to highest, ranked, and plotted to facilitate comparisons
between models and by intervention profiles. The Spear-
man’s rank-order correlation test was used to assess the
strength and direction of association between the rank-
ings of incremental LYs and QALYs across all models.

Impact and contribution of health state utility values. Re-
sults (incremental LYs and QALYs) from repeated simu-
lations using the lower and upper limit of the 95%
confidence intervals of utility values were also collated.
These were compared with the reference case simulation
results to provide an illustration of the relative magni-
tude of structural uncertainty in comparison with para-
meter uncertainty. Results were presented in figures to
facilitate visualizing the impact of utility values within
and across different models.

Investigate potential drivers for variations in reported out-
comes. Each model application was characterized for a

Table 2 Standard Set of Utility and Disutility Values Used to Populate Health-States Sourced from Ref. 29

Disease Category Complication Level Provided in Mt. Hood QoL Challenge

Utility/Disutility Values

Control Lower 95% CI Upper 95% CI

Baseline utility value Type 2 diabetes mellitus without complications 0.785 0.681 0.889
Acute metabolic disorder Minor hypoglycemia event –0.014 –0.004* –0.004*

Major hypoglycemia event –0.047 –0.012* –0.012*
Comorbidity Excess body mass index (each unit .25 kg/m2) –0.006 –0.008 –0.004
Retinopathy Cataract –0.016 –0.031 –0.001

Moderate nonproliferative background diabetic retinopathy –0.040 –0.066 –0.014
Moderate macular edema –0.040 –0.066 –0.014
Vision-threatening diabetic retinopathy –0.070 –0.099 –0.041
Severe vision loss –0.074 –0.124 –0.025

Nephropathy Proteinuria –0.048 –0.091 –0.005
Renal transplant –0.082 –0.137 –0.027
Hemodialysis –0.164 –0.274 –0.054
Peritoneal dialysis –0.204 –0.342 –0.066

Neuropathy Peripheral vascular disease –0.061 –0.090 –0.032
Neuropathy –0.084 –0.111 –0.057
Active ulcer –0.170 –0.207 –0.133
Amputation event –0.280 –0.389 –0.170

Cerebrovascular disease Stroke –0.164 –0.222 –0.105
Coronary heart disease Myocardial infarction –0.055 –0.067 –0.042

Ischemic heart disease –0.090 –0.126 –0.054
Heart failure –0.108 –0.169 –0.048

* Disutilities converted to annual values
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set of key characteristics of the model and how the
modelers simulated the reference simulations, which
included microsimulation methodology, number of
health states with utility implications, the use of the UK
Prospective Diabetes Study (UKPDS) cardiovascular
and mortality risk equations, the use of additive utilities,
and the inclusion of BMI disutility. The individual
groups were consulted to ensure the models were cor-
rectly classified. LYs and incremental QALYs results
were then plotted to facilitate comparison, and differ-
ences in mean life expectancies and incremental QALYs
were compared across each of the subgroups. Regression
analyses were conducted to test for associations between
model characteristics and modeling approaches and
model outcomes, using a 2-step approach. First, a 2-way
fixed effect regression analysis was conducted to identify
which models consistently produce higher or lower esti-
mates across the intervention profiles simulated. Pre-
dicted average model effects across all 5 intervention
profiles were then regressed against characteristics and
modeling approaches to identify possible associations
with outcomes.

Results

Eleven modeling groups participated in the Quality-of-
Life Challenge (Table 3). The Cardiff Model submitted 2
sets of results, one using UKPDS 68 risk equations and
the other using UKPDS 82 risk equations, yielding 12
sets of model results. Brief descriptions of participating
groups can be found in Supplementary Material 2.
Model-specific documentation of health states with util-
ity values and a description of the utility approach used
for handling multiple complications can be found in Sup-
plementary Material 3.

The number of health states with assigned utilities
in the different models ranged from 10 to 38. Most

models employed the additive approach to incorporate
(dis-)utility values for comorbidities, but this was not
possible for all models. IQVIA-CDM used the minimum
approach per health state but added disutility for BMI,
hypoglycemia events, and new events such as myocardial
infarction and stroke; the Treatment Transition Model
(TTM) used the minimum approach; and SPHR applied
a multiplicative effect. Model characteristics and model-
ing approaches applied during the challenge are pre-
sented in Table 4.

The results reported at the congress are presented in
this article. Results for TTM reported in this article were
reported in error because of incorrect input values. The
spirit of the Mount Hood Challenges is to explore all
modeling groups’ results as they were originally presented
to maintain the fidelity of discussions and conclusions
that occurred at the conference. Corrected TTM results
are therefore presented in the supplementary materials.

Cross-Model Variations in Reported Outcomes

Reported outcomes (LYs and QALYs) for the reference
case simulation (control group) were compared across
models (Figure 1). Mean estimated LYs and QALYs
were 17.69 years (SD, 2.82) and 12.26 (SD, 1.51), respec-
tively. LYs ranged from 11.7 to 19.6 years for males and
14.1 to 23.8 years for females, with a difference of 7.9
and 9.8 years between the lowest and highest reported
values, respectively. QALYs ranged from 8.7 to 12.6 for
males and 10.4 to 15.0 for females, with a difference of
4.0 and 4.6 QALYs, respectively.

Incremental LYs and QALYs for each model and
intervention (males and females combined) are presented
are Figure 2 (full results can be found in Supplementary
Materials 4 and 5), showing substantial variability in
outcomes. This was particularly apparent for the HbA1c
and BMI intervention profiles, where there was a 15-fold

Table 3 Participating Modeling Groups

� BRAVO Diabetes model
� Cardiff model (UKPDS 82 and UKPDS 68)a

� Centers for Disease Control and Prevention and Research Triangle Institute (CDC/RTI) type 2 diabetes cost-effectiveness model
� Economics and Health Outcomes Model of T2DM (ECHO-T2DM)
� IQVIA Core Diabetes Model (IQVIA CDM)
� Modeling Integrated Care for Diabetes based on Observational data (MICADO) model
� Michigan Model for Diabetes (MMD)
� PROSIT Disease Modelling Community
� SPHR Type 2 Diabetes Treatment model (SPHR Type 2)
� Treatment Transition Model (TTM)
� UKPDS Outcomes model version 2 (UKPDS-OM)

aCardiff modeling group used 2 different sets of risk equations, and results from both were submitted.

604 Medical Decision Making 42(5)



difference between the lowest and highest reported incre-
mental LYs for the HbA1c intervention profile and at
least a 10-fold difference for incremental QALYs for the
BMI intervention. The Spearman’s rank-order correla-
tion test indicated a non–statistically significant associa-
tion between the rankings of reported LYs and QALYs
for both of these intervention profiles. When the Prosit,
MMD, TTM, BRAVO, and MICADO models were
excluded, less variation in incremental outcomes was
observed.

Impact of Health State Utility Values on Lifetime
Outcomes

Changing utility values to the lower or upper limits of
the 95% confidence intervals resulted in a decrease and
increase in QALYs, respectively. Within each model,
reported QALYs were similar across interventions and
by sex. However, comparisons across models indicate
considerable cross-model variability. The Cardiff models
(both UKPDS 68 and 82) reported the smallest change
(60.16 QALYs, 1.5% change), and a change of up to
63.52 QALYs (31% change) was reported by the
BRAVO modeling group. Eight of the 12 models showed
a greater than 15% change in reported QALYs when
changing utility values to the lower and upper limits
(results presented in Supplementary Material 6).

Figure 3 shows the effect of utility changes (error bars
representing the lower and upper limits of the 95% confi-
dence interval) on incremental QALYs for the ‘‘All inter-
ventions combined’’ profile. Although varying utility
values had an impact on incremental QALYs within
each of the models, the observed variation across models
was much more prominent. This was similarly observed
across the other intervention profiles (full results and fig-
ures presented in Supplementary Materials 7 and 8).

In comparison with the observed cross-model varia-
bility, the effect of changing the utility value associated
with each health state was of a much smaller magnitude.
These changes resulted in very small changes to the
incremental QALYs (to the hundredth of a decimal
place) and are presented in Supplementary Material 9.
However, this effect was highly variable across models.
For example, changing the utilities for stroke to the
lower 95% CI limit resulted in a 10.5% change in incre-
mental QALYs reported by BRAVO, while CDC/RTI
and IQVIA reported a negligible change. It was also
observed that the relative change in incremental QALYs
due to utility change of certain health states such as
ischemic heart disease and myocardial infarction are gen-
erally consistent across models, but for rarer outcomesT
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such as blindness and amputation, a greater variation
was observed.

It was found postchallenge that some modeling groups
(e.g., BRAVO, SPHR, CDC/RTI, MICADO, MMD)

varied their baseline utility value (without complications) in
parallel with varying utility values associated with complica-
tions, whereas others kept this constant using the base value.
The potential for systematic differences in reported

Figure 1 Comparison of life-years (LYs) and quality-adjusted life-years (QALYs) across all modeling groups (control). *The
results for the Treatment Transition Model include simulations with incorrect input values, resulting in volatile interactions
between interventions and changes in utilities. Corrected values (postchallenge) are reported in the supplementary materials.

Figure 2 Comparisons of incremental life-years (DLYs) and incremental QALYs (DQALYs) across different models by
intervention profile. *The results for Treatment Transition Model (TTM) include simulations with incorrect input values,
resulting in volatile interactions between interventions and changes in utilities. Corrected values (postchallenge) are reported in
the following Supplementary Materials.
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outcomes by modeling groups’ approach was tested, and
we found no difference (Supplementary Materials 10).

Impact of Model Characteristics and Modeling
Approaches on Reported Outcomes

Models were subgrouped based on model characteristics
and modeling approaches applied during the challenge
(Table 4). Of the 12 participating models (including the 2
versions of the Cardiff Model), 9 were microsimulation
models, 4 had more than 20 health states with utility
implications, 8 models used the UKPDS mortality risk
equation, 10 incorporated UKPDS cardiovascular risk
equations, and 9 were able to apply additive disutility
weights as per the challenge instructions. For the LYs
outcome, microsimulation models appear to report more
LYs than nonmicrosimulation (cohort) models (by at
least 3.30 years) across all 5 intervention profiles. Greater
LYs were also reported in models with \20 health states
with utilities and among models that incorporated the
UKPDS mortality risk equation. However, these differ-
ences were small (ranging from 0.04 to 1.92), and none
were statistically significant. For the incremental QALYs

outcome, there were no obvious patterns as to how out-
comes differed by model characteristics and modeling
approaches across the intervention profiles. Full results
and figures are presented in Supplementary Materials 11.

The regression analyses identified BRAVO and MMD
models as consistently producing larger estimates across
the intervention profiles, whereas CDC/RTI, MICADO,
IQVIA CDM, and TTM produced smaller estimates
(Supplementary Material 12). Similar to the subgroup
analysis, microsimulation models appear to report more
LYs than cohort simulation models (by 3.41 years, P =
0.049). No significant associations were observed with
any other characteristics or modeling approaches for
both outcomes.

Discussion

The results of the 9th Mount Hood Diabetes Quality-of-
Life Challenge provide a unique opportunity to examine
the importance of structural uncertainty using the
reported outcomes of 11 different diabetes simulation
models (reporting 12 sets of model results). This chal-
lenge provided valuable insights into variation in out-
comes produced by different diabetes models and for
different intervention profiles, despite controlling for
baseline patient characteristics and, to a certain extent,
simulation assumptions. The findings indicate substan-
tial cross-model variability in QALY predictions for a
standardized set of simulation scenarios, despite the long
familiarity between modeling groups (some relationships
going back 20 years) and the development of guidelines
to enhance model comparability.20,22 Interestingly, the
observed cross-model variations were considerably larger
than within-model variability to alternative health state
utility values (e.g., lower and upper limits of the 95%
confidence intervals of utility inputs). Cross-model differ-
ences may conceivably be even larger in other disease
areas, which have not developed this type of shared mod-
eling community. The potential importance of underlying
model assumptions, structure, and data sources may con-
sequently affect important decisions regarding funding/
reimbursements and research priorities. This reinforces
the need to look critically beyond just parameter uncer-
tainty and to integrate tests of structural uncertainty in
model-based analysis.

Although uncertainties due to utility values are routi-
nely assessed through sensitivity analyses,30,31 it is much
more difficult to ascertain the impact of using different
models to inform such decisions. The findings from this
challenge indicate that variations in utility values of
diabetes-related complications had a smaller impact on

Figure 3 Impact of utility values on incremental quality-
adjusted life-years (QALYs) within and across the different
models for the ‘‘All interventions’’ combined profile. The error
bars indicate the impact of change in all utility values (to the
lower and upper limits of the 95% confidence interval). *The
Treatment Transition Model (TTM) reported a large change
in incremental QALYs for the upper limit due to input error;
therefore the upper limit error bars were omitted for TTM.
The results for TTM include simulations with incorrect input
values resulting in volatile interactions between interventions
and changes in utilities. Corrected values (postchallenge) are
reported in the following Supplementary Materials. ^No error
bars were shown for ^Prosit, as these results were unavailable.
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incremental outcomes than cross-model variability. For
example, the incremental QALYs associated with a 0.5%
reduction in HbA1c ranged from 0.066 for the TTM
model to 0.331 for the Prosit model, which represents a
5-fold change in outcomes. To put this variation into
context, the change is of a larger magnitude compared
with the probabilistic uncertainty reported in the evalua-
tion of the blood glucose–lowering intervention in the
UKPDS study.32 Ideally, all sources of uncertainty (not
just parameter uncertainty) should be considered.

Despite attempts to identify specific factors that drive
the differences observed across models, it was difficult to
identify a particular contributing factor (a downside to
our pragmatic use of multiway structural uncertainty
analysis). Our results indicated that differences across
models overshadowed differences between subgroups of
models organized by key structural assumptions (Appen-
dix 11 and 12 in the Supplementary Materials), although
there were some regularities. For example, we found that
microsimulation models generated more mean LYs than
cohort simulation models did, and this difference was
statistically significant (P = 0.049), despite the small
sample size. This is consistent with the convexity of most
mortality risk equations (i.e., with risks that increase and
at increasing rate). But much of the cross-model differ-
ences are likely attributable to combinations of differ-
ences in many structural assumptions in the 11 unique
diabetes models (12 sets of results). It may also be the
correlation between model characteristics and modeling
approaches drives the differences observed.

We acknowledge the clear limitation of the current
analysis, in particular, that it provides only an initial
exploration as to why results vary across models. How-
ever, it does illustrate the difficulties of teasing out spe-
cific factors as key drivers. An alternative approach to
testing structural uncertainty (as mentioned in the intro-
duction) is to assess the impact of changing aspects of a
model design (and to document this as per current prac-
tice with 1-way sensitivity analyses on key parameters).
However, such practices are uncommon, as results (e.g.,
from the omission of a particular health state) may not be
meaningful to consider for decision making, and there is
currently a lack of guidance for addressing structural
uncertainty formally. This lack of clarity further highlights
the need for greater model transparency and a better
understanding of the structural elements of a model. These
are important considerations and should be an area of
focus for future research. These can also inform the design
of future Mount Hood Challenges, including specification
of more detailed model reporting and outcomes collection
and perhaps even greater model transparency to support
deeper analyses of the observed variations across models,

for example, the extent and number of diabetes-related
complications evaluated and the approach of integrating
these complications and changes to cumulative complica-
tion events across models. There were also differences in
how models incorporated the impact of possible interven-
tions; for instance, not all models use BMI as an indepen-
dent determinant of disease progression, which may
explain the large variations in outcomes observed for the
BMI intervention profile. A model registry is a way of
routinely capturing additional information that would
enable future investigation of underlying factors that pro-
duce differences in outcomes across models.

A potentially concerning aspect of structural uncer-
tainty is that models used in health technology assess-
ments are often judged in relation to an incremental cost
per QALYs gained threshold. Given the wide variation
observed, there is scope to achieve a desired outcome by
choosing a particular model structure. One way to ensure
greater model consistency is to institute model registries,
which require a model to run a standard set of reference
simulations. Leveraging the cooperative effort and par-
ticipation of the Mount Hood Diabetes Challenge Net-
work, the group has already taken a step down this road
by initiating a diabetes model registry and running simu-
lation challenges to promote transparency in diabetes
simulation modeling. Challenge results from registered
models such as those presented in this article are made
available22,24–26,33 in an effort toward improving consis-
tency in simulation modeling. In a similar fashion to ran-
domized controlled trials, requiring all models to register
and report results for simulated reference case outcomes
would be one way to increase model transparency but
could also provide an opportunity to quantify the level
of structural uncertainty (as presented in this article). It
may also be possible to capture uncertainty by parame-
terizing variation observed within the registry for inter-
ventions that have an impact on particular risk factors
(e.g., interventions that affect body weight could draw
on the variation in uncertainty from the simulations for
the change in BMI; see Figure 2).

Although there have been suggestions to address the
issue of structural uncertainty (for example, through
model averaging, parameterization, model discrepancy,
or scenario analyses), these approaches are not com-
monly applied to health economic decision model-
ing,2,23,34 and there is little guidance on how structural
uncertainty can be reduced. One potential way would be
to place more weight on results of models that have been
shown through external validation to be reliable in repro-
ducing observed outcomes. While the Mount Hood Dia-
betes Challenge Network has promoted such external
validation through challenges,25,26,33 external validation

608 Medical Decision Making 42(5)



is the exception rather than the norm for health economic
models. Addressing structural uncertainty is increasingly
pertinent as the number of diabetes simulation models
have grown substantially since the publication of the first
model by Eastman et al. more than 2 decades ago.35 At
least 33 diabetes models have been identified since 2000,
and simulation models have evolved in complexity and
vary in important ways. Therefore, validations should be
redone each time the model structure is modified. Again,
there may be a role for registries such as the Mount
Hood Diabetes Model Registry to report the results of
models undertaking specified external validations and to
produce metrics that could be used to give greater weight
to those models that are better able to replicate relevant
real-world results.

Our results also provide some indications of the rela-
tive magnitude of structural uncertainty in comparison
with parameter uncertainty. We examined the impact of
varying levels of utility for key complications. The mea-
surement of quality of life in health economics and in its
application to diabetes has been a key focus of
research.29,36–41 Although varying utility values had an
impact on incremental QALYs within each of the mod-
els, the observed variation across models was much more
substantial (Figure 3). This indicates that variations in
the utility values (often tested in sensitivity analyses) con-
tribute to a lesser degree compared with other aspects of
model uncertainty captured as structural uncertainty.
Importantly, there is limited investment in the develop-
ment of transparent publicly available disease-specific
models. For example, in diabetes, the overwhelming
majority of diabetes models use risk equations from the
UKPDS Outcomes Model.42 While there are require-
ments in health technology assessment process to use evi-
dence from large clinicals trials, there has not been the
same focus on investing in simulation models that can
translate the results of randomized controlled trials into
QALYs to facilitate evaluation and generate evidence for
reimbursement and/or pricing decisions and research
priorities. A value-of-information analysis may be a use-
ful way to guide prioritization in research and develop-
ment of future diabetes simulation models.

This study is subject to a number of limitations. First,
as the challenge involved the participation of many mod-
eling groups, simplification of the challenge instructions
was needed to ensure all groups ran their simulations
under the same challenge conditions. This included sim-
plifications such as not allowing for biomarker evolution.
This may have affected some models more than others,
particularly those that link biomarker changes and
health state transitions. In such models (ECHO-T2DM,
MMD, and UKPDS-OM), if biomarker evolution was

left active, it could result in greater changes to the incre-
mental QALYs. In addition, the rates of hypoglycemia
were not explicitly defined in the challenge instructions,
and in some models (e.g., ECHO-T2DM and the Cardiff
Model), this was an important driver. Second, not all
modeling groups ran their simulations identically because
of different interpretations of the challenge instructions.
For instance, some groups (BRAVO, SPHR, CDC-RTI,
MICADO, and MMD) varied their baseline utility value
(without complications) in parallel with varying utility
values associated with complications, while others kept
this constant using the base value. These discrepancies
did not appear to affect results systematically (Supple-
mentary Material 10). Third, modeling groups were
instructed to report only mean outcomes, and standard
errors were not captured. Results across models may
have substantial overlap, and this can be further investi-
gated with future challenges. Fourth, the results pre-
sented here for the TTM modeling group are those
presented at the challenge, which were based on incorrect
input values. This preserves the spirit of the Mount
Hood Challenges in exploring model results as they were
originally presented and maintains the fidelity of discus-
sions and conclusions as they occurred. In the interest of
fairness, TTM was provided an opportunity to correct
the simulations, and the results and corrected analysis
are presented in the appendix (Supplementary Material
4). Although rankings for some models were affected,
this difference was small, and it did not alter the conclu-
sion that there is large variation across models.

Conclusion

This Quality-of-life Mount Hood Diabetes Challenge
highlights the substantial variability in reported out-
comes across 11 different diabetes simulation models.
While much research has focused on obtaining appropri-
ate sets of utility values to adequately describe health
states, the results from this challenge demonstrated a
greater need to understand and assess structural uncer-
tainty, as the choice of models used to inform resource
allocation decisions can matter. These are important
considerations and should be an area of focus for future
research. Finally, the choice of a specific model or model
type alone does not reduce structural uncertainty or
guarantee the most accurate model result for a specific
analysis. Similar models (e.g., Markov) using the same
data may produce vastly different results. Technical
implementation of how the model is executed within a
specific analysis will always be critical; the devil is in the
details.
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