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This report analyzes nuclear receptor (NR) subfamily 4A’s potential role in treating those
diagnosed with breast cancer. Here we reviewed the current literature on NR4 family
members. We also examined the relative gene expression of the NR4A receptor subfamily
in the basal, HER2 (human epidermal growth factor receptor 2) positive, luminal A, and
luminal B subtypes using data from tumor samples in The Cancer Genome Atlas (TCGA)
and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). These
data showed a positive link between NR4A1-NR4A3 expression and increased overall
survival and relapse-free survival in breast cancer patients. In addition, we observed that
high expression of NR4A1, NR4A2, and NR4A3 led to better survival. Furthermore, NR4A
family genes seem to play an essential regulatory role in glycolysis and oxidative
phosphorylation in breast cancer. The novel prognostic role of the NR4A1–NR4A3
receptors implicates these receptors as important mediators controlling breast cancer
metabolic reprograming and its progression. The review establishes a strong clinical basis
for the investigation of the cellular, molecular, and physiological roles of NR4A genes in
breast cancer.

Keywords: NR4A, breast cancer, survival, TCGA, METABRIC
INTRODUCTION

Breast Cancer (BC) is the most common cancer among women and is the second leading cause of
cancer deaths in women. Breast cancer affects women worldwide. In 2021, the United States
estimated over 280,000 new cases of the invasive disease and over 40,000 deaths (1, 2). This is
primarily due to the high metastasis rates, recurrence, and chemoresistance. BC is a heterogeneous
and complex disease exhibiting a great degree of intra- and inter-tumoral heterogeneity (3). BC can
be categorized into four subtypes: Basal, Human Epidermal growth factor Receptor 2 (HER2)
positive, Luminal A, and Luminal B. Each is determined by different genetic or epigenetic factors
(4). By such a classification, significant differences have been defined by their risk factors, incidence,
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treatment sensitivity, and prognosis as the basis for diagnosing
and treating this disease (5). Basal, commonly known as Triple
Negative Breast Cancer (TNBC), is the most aggressive and
malignant subtype since it lacks estrogen receptors (ER),
progesterone receptors (PR), and does not express the human
epidermal growth factor receptor 2 (HER2) (6). Current
traditional treatment options are not as effective at combating
this specific breast cancer due to its characteristics. These
characteristics make it difficult to treat this subtype with
hormone therapies and HER2 inhibitors. Standard treatment
options typically involve hormonal therapies and HER2
inhibitors, valid treatment options with other BC subtypes.
While therapeutic hormonal therapies for other subtypes are
effective, therapeutic resistance can form from prolonged
treatment (7). Accordingly, new therapeutic treatments that
target specific genes responsible for the regulation and
metastasis of tumors are needed to improve the prognosis of
patients diagnosed with BC.

This study will be focusing on NR4A (nuclear receptor
subfamily 4A), an orphan member of the steroid/thyroid/
retinoid nuclear receptor superfamily. These nuclear receptors
act as transcription factors to control downstream gene
expression and participate in diverse biological functions (8, 9).
NR4A receptors are modified by various cell-signaling pathways
depending on subcellular localization, levels of expression,
transcriptional modulation by coactivators and/or corepressors,
posttranslational modification, and interaction with other
transcription factors (9). Modulating the expression levels of
NR4A1, NR4A2, and NR4A3 can be a potential therapeutic
approach for breast cancer. As we outline herein, elucidating the
novel prognostic and regulatory roles of the NR4A family and
their function as essential mediators regulating breast
cancer progression.
GENERAL FUNCTIONS OF NR4A GENES

The homologous orphan receptors, NR4A1, NR4A2, and
NR4A3, are a subfamily of the eukaryotic transcription factors
(10, 11). This nuclear receptor subfamily encodes 48 human
genes and has many biological functions. They have
physiological and pathological roles in the human body
specifically regulating homeostasis, proliferation, cell migration,
apoptosis, metabolism, DNA repair, glucose utilization, and
tumorigenesis (12–14). No endogenous ligand has been
identified for these nuclear receptors, but they are considered
constitutively active (11, 15). Although ligands are not identified,
some compounds characterized as ligands that bind the receptor
(8, 15). One compound, Cytosporone B (CnsB), an NR4A
agonist, has been shown to have increased pro-inflammatory
mediators when compared to a control that did not have CnsB
(15, 16). NR4A1-3 is commonly considered a molecular switch,
and its actions are regulated by a complex network of cellular
signaling pathways (11). They are an immediate early gene of
stressors and stimulated by peptide hormone, growth factors,
cytokines, inflammation, and most importantly, cellular stress
Frontiers in Oncology | www.frontiersin.org 2
(8, 15). They contain a potent sensor that detects changes in the
cellular microenvironment, and the NR4A receptors trigger
mitochondria biogenesis and improve mitochondrial functions
(12, 17). Previous studies have stated that the receptors played
roles in promoting DNA repair after cellular stress and can even
stimulate protective cells that would aid in the prevention of
further damage to cells (14). The same response is also seen in
neurons (18). When neurons are exposed to oxidative stress,
NR4A is induced through cAMP response element-binding
proteins (CREB), upregulated neuroprotective genes, and
increased neuronal survival (18). These nuclear receptors also
have an important role in immune function and are linked to
chronic inflammation, altered immune cell response, and cancer
development (8, 11, 12, 19, 20). NR4A3 was identified as a direct
transcriptional target of p53 (13). Once p53 is bound to NR4A3,
it induces transcription and leads to an increase in expression.
This overexpression has been determined to attenuate the
proliferation of cancer cells and promote apoptosis through the
increasing pro-apoptotic genes (13, 21). The role of the nuclear
receptors has been mainly studied in two different cancers:
blood-derived cancers and solid tumor cancers (15). The
studies on blood-derived cancers have suggested that NR4A
has tumor suppressor activity (15). In acute myeloid leukemia
(AML), NR4A is silenced by blocking the transcriptional
elongation rather than epigenetic promoter silencing (15, 22,
23). Treatment with dihydroergotamine was shown to reactivate
NR4A expression and enable elongation of the NR4A promoter,
previously hindered by RNA polymerase II (22, 23), and this led
to increased survival. Similar trends were shown for
Lymphomas, where NR4A3 expression was low and had poor
survival (14, 15, 21). Therefore, with an ectopic expression and
pharmacological activation, NR4A3 expression increased and
was measured to have a higher proportion of apoptotic cells than
before the treatment (21). In contrast, solid tumors showed
higher levels of NR4A1 and NR4A2 and were exhibited to be
prooncogenic (15). An experiment was performed and showed
that chimeric antigen receptor T- cells (CAR T-cells) that lacked
NR4A promoted tumor regression and prolonged survival of
cancer patients when compared to CAR T-cells that expressed
NR4A (24). It was determined that NR4A played a role in the
cell-intrinsic program of t-cell hyperresponsiveness. Studies that
have been performed concluded that an NR4A inducer would be
helpful in blood-derived tumors since it would increase the pro-
apoptotic genes. At the same time, N4A1/NR4A2 antagonists
would benefit solid tumors (15).
NR4A AND METABOLISM

Metabolic reprogramming is a typical hallmark of cancer cells
(25). Despite adequate oxygen availability, tumor cells tend to
generate aerobic glycolysis energy rather than consume the
energy produced via mitochondrial oxidative phosphorylation
(OXPHOS). This phenomenon is known as The Warburg Effect,
which often results in increased glucose uptake, an accumulation
of ATP, and lactate production in tumor cells in breast cancer,
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both elevated and reduced OXPHOS activity are observed. In the
case of elevated OXPHOS, invasive metastatic breast cancer cells
specifically favor mitochondrial respiration to increase ATP
levels through a mechanism that involves overexpression of
PGC-1a and increases mitochondrial biogenesis (26). It has
been shown that OXPHOS activity increases concomitantly
with the metastatic potential in primary breast cancer (27, 28).
Consistent with this, Alpha CUB-domain containing protein 1
(CDCP1), a transmembrane glycoprotein, drives breast cancer
cell metastasis by activating OXPHOS and fatty acid oxidation
(26, 29). Therefore, mitochondrial metabolism represents an
attractive target for anti-metastatic approaches.

The NR4A subfamily regulates cellular proliferation in a tissue-
dependent manner in breast cancer, which means their roles are
different in each subtype (19, 30). As described above, in some
cancers, the NR4A subfamily can promote proliferation, but in
others, they inhibit it. However, results about the roles of the
receptors are not consistent. This could result from the nuclear
receptors binding lipophilic molecules, which allows it to sense
environmental, systemic, and local factors (31). Nuclear receptors
derive their ligands from dietary derived factors and metabolism,
al lowing them to regulate glycolysis and oxidative
phosphorylation (9). Previous studies showed an increase in
glucagon, which led to an increase in NR4A1, NR4A2, and
NR4A3 in a cAMP-dependent process (32). The overexpression
of the nuclear receptors induces the expression of other target
genes, including Glut2, leading to an increase in gluconeogenesis.
This occurs since the expression of the receptors transcriptionally
upregulates the rate-limiting enzymes in gluconeogenesis (33).
This causes a shift that favors gluconeogenesis, leading to a
suppression of glycolysis and, in conjugation, low ATP and cell
arrest. In HCC, it has been shown that NR4A1 interacts with
phosphoenolpyruvate carboxykinase (PEPCK1), the rate-limiting
enzyme in gluconeogenesis, to increase gluconeogenesis and
suppress glycolysis, resulting in ATP depletion and cell growth
arrest (33). In addition, reduced expression of NR4A1 activated
glycolytic pathway in acute promyelocytic leukemia cells (34).

As for the roles of NR4A receptors in the mitochondria, there
have been direct links that prove the role of NR4A in
mitochondrial production and fuel oxidation. The nuclear
receptors are essential for the biogenesis and enzymatic
components of the TCA cycle and the ETC (35). Through a
downregulation of isocitrate dehydrogenase 1, NR4A1 had been
shown to induce oxidative and endoplasmic reticulum stress (36).
NR4A1 binds to the mitochondrial bcl-2. In doing so, it weakens
the mitochondrial membrane potential. This causes a pro-
apoptotic complex (36). These are some mechanisms in which
the nuclear receptors can be viewed as having tumor suppression
qualities (12). However, there is still a lack of comprehensive
bioinformatic study on this topic. Altogether, NR4A receptors are
important factors in the processes of carcinogenesis, apoptosis,
DNA repair, proliferation, migration, inflammation, metabolism,
and angiogenesis (9). Therefore, modulating the expression levels,
activity, and nuclear export of NR4A receptors, can develop new
cancer treatments. As we outline herein, the novel prognostic role
of the NR4A1–NR4A3 receptors implicate these receptors as
Frontiers in Oncology | www.frontiersin.org 3
important mediators controlling breast cancer metabolic
reprograming and its progression.
BIOINFORMATIC ANALYSIS

NR4A Family Gene Expression Is
Associated With the Clinical Outcome
of Breast Cancer Patients
First, the mRNA expression of the NR4A receptors was
measured in cancer tissues and compared to their mRNA
expression in normal tissues (Figure 1A). All three receptors
showed a significantly lower level of gene expression in
cancer tissues when compared to normal tissues (p-value
<0.0001, 0.0041, 0.0003, respectively). The GENT2 database
was used to graph the overall survival (OS) of breast cancer
patients (Figure 1B) (37). The expression of the NR4A
receptors is divided by the median expression level. In all
three receptors, NR4A1, NR4A2, and NR4A3, a higher gene
expression level led to better survival (p-value <0.001). We
also found that the expression of NR4A receptors was
significantly associated with the relapse-free survival (RFS)
of breast cancer patients using Kaplan-Meier analysis from
(kmplot.com) source (Figure 1C) (38). Unfortunately, these
datasets only have the median analysis, and thus we could
not divide samples into quartile.

NR4A1, 2 Genes Are Overexpressed in
Luminal Breast Cancer While Their
Expression Is Downregulated in Basal
Breast Cancer
Using data extracted from METABRIC, the breast cancer
subtypes and the expression levels of the receptors were
analyzed. NR4A1 showed a significantly lower expression in
the basal when compared to the HER2 subtypes, but no other
significance was noted in other subtypes (p-value 0.0074)
(Figure 2A). NR4A2 is significantly under-expressed in the
basal subtype relative to all other subtypes (p-value <0.0001)
(Figure 2B). On the other hand, there was no significant
difference in the expression levels of NR4A3 in the basal
subtype compared to all other breast cancer subtypes.
However, it was down-regulated in all cancerous subtypes
compared to the normal subtype (p-value 0.0048, 0.002,
0.0016, and 0.001, respectively) (Figure 2C).

NR4A2 Expression Was Significantly
Associated With ER, PR, and HER2 Status
NR4A1 showed significantly lower expression levels in the
estrogen receptor-negative and HER2 positive compared
to patients’ estrogen receptor-positive and HER2 negative.
Still, there was no difference in the progesterone status
of BC patients (p-value 0.0407 and 0.0041 respectively)
(Figure 3A). NR4A2 levels were significantly lower in
patients who were ER-, PR-, and HER2+ when compared
to their counterparts (Figure 3B), while NR4A3 showed no
April 2022 | Volume 12 | Article 777824
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difference (p-value <0.0001, <0.0001, and <0.0001,
respectively), (Figure 3C).

COMPARISION OF NR4A EXPRESSION
WITH THE STAGES, GRADES, SIZE,
LYMPH NODE STATUS OF THE TUMORS,
AND AGE OF THE PATIENTS

A significantly higher level of NR4A1 expression was found in
tumor stage four relative to tumor stage one and three. However,
there was no difference in the levels of the other receptors (p-
value 0.0099 and 0.0218, respectively), (Figure 4A). NR4A1 and
NR4A2 had significantly lower expression in grade 3 tumors
when compared to grades 1 and 2, but there was no difference
Frontiers in Oncology | www.frontiersin.org 4
when evaluating the expression of NR4A3 (p-value 0.0011,
0.0338, <0.0001, and <0.0001, respectively) (Figure 4B). All
three nuclear receptors’ expression levels did not influence
tumor size (Figure 4C). NR4A1 showed a significantly higher
gene expression in patients that were diagnosed lymph node-
positive relative to those lymph node-negative. At the same time,
there was no significant difference in the levels for NR4A2 and
NR4A3 (p-value 0.0308) (Figure 4D). NR4A1 showed a
significantly lower gene expression in those 65-85 when
compared to those 20-45 and 55-65 (p-value 0.0167 and
0.0046, respectively). However, the opposite trend was shown
for NR4A2, with those 65-85 having a significantly higher gene
expression than all other groups (p-value 0.0003, 0.0001, 0.0453,
respectively). Finally, there was no significant difference in
NR4A3 expression between age groups (Figure 4E).
A

B

C

FIGURE 1 | NR4A family gene expression in breast cancer increases survival. (A) RNA-Seq mRNA expression data for normal and breast cancer tissue from
METABRIC database in normal (n = 148) and cancerous (n = 1826) breast tissue samples. (B) Kaplan–Meier overall survival (OS) curves for patients with breast
cancer divided by the median value into low and high NR4A mRNA expression (n = 251 per group) using the GENT2 data set. (C) Kaplan-Meier analysis
(kmplot.com) of relapse-free survival (RFS) based on the mean value of NR4A1, NR4A2, and NR4A3 in breast cancer (n = 4934), with the cutoff values of 282, 373,
and 74, respectively. Probes 202340_x_at, 216248_s_at, and 207978_s_at used, respectively. P values calculated using a logrank test for OS and Cox regression
model was used for RFS. Data were analyzed by an unpaired t-test. Statistically significant values of **p < 0.01, ***p < 0.001 and ****p < 0.0001 were determined.
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NR4A Family DNA Methylation Was Not
Associated With Gene Expression in
Breast Cancer
To determine if epigenetic regulation of the NR4A family gene
promoter contributes to the expression of NR4A genes, we
analyzed methylation levels of the NR4A1, 2, and 3 genes
using the TCGA HumanMethylation450 Array patient data.
Correlation analysis in the TCGA dataset showed a non-
significant correlation between methylation and expression
levels of NR4A1 and 2 and a non-significant inverse
correlation between methylation and expression levels of
NR4A3 in breast cancer patients (Figures 5A, B). These results
indicate that DNA methylation of NR4A genes may not be a
potential epigenetic modification resulting in the expression
differences between the cancerous and normal-like subtypes of
breast cancer.

NR4As Co-Expression Status With
Glycolysis and Oxidative Phosphorylation
Gene Hallmarks in Breast Cancer
With the availability of METABRIC as a big dataset, we
performed co-expression correlation analysis between NR4A
genes and the glycolysis and oxidative phosphorylation gene
sets (Gene Set: HALLMARK_GLYCOLYSIS (39) and Oxidative
Phosphorylation (Kegg: 00190)) using the mRNA expression
data from 1904 patients. Our data showed that NR4A1 has a
negative correlation with 16 genes from the pathway and 26
genes in the oxidative phosphorylation pathway (Figure 6A, B).
These data were further analyzed incorporating p values
(Figures 7A, B). In the case of NR4A2, we have seen 26 and
39 genes negatively correlated with NR4A2 expression in
glycolysis and oxidative phosphorylation, respectively showing
Frontiers in Oncology | www.frontiersin.org 5
that NR4A2 might have a key role in suppressing these pathways
compared to the other NR4A family members. Also, NR4A3
expression was negatively correlated with 9 and 30 genes in
glycolysis and oxidative phosphorylation pathways, respectively.
Altogether, this result shows NR4A family genes might play an
important regulatory role in glycolysis and oxidative
phosphorylation in breast cancer.
METHODS

cBioPortal Database Analysis
The PAM50 gene signature was used to analyze BC patients’
different intrinsic molecular subtypes (40). This was achieved
using two publicly available databases, the TCGA (41) and the
METABRIC (42), containing clinical reports for BC patients. The
TCGA project (1108 of Breast Invasive Carcinoma from TCGA
(TCGA, Firehose Legacy)) contains gene expression profiles,
methylation, copy number variation and mutation information
from different cancer types. In addition, METABRIC dataset
contain gene expression data and corresponding clinical data of
targeted sequencing of 2509 primary breast tumors with 548
matched normals. The RNASeq data was performed on Breast
Invasive Carcinoma samples with clinical information available at
the TCGA data portal, cBioPortal for Cancer Genomics (http://
www.cbioportal.org/). In the case of TCGA, gene expression data
is reported as in RSEM normalized count (log intensity levels) for
1108 Breast Invasive Carcinoma samples. Gene expression data
from 1904 breast tumors (Expression log intensity levels (Illumina
Human v3 microarray)) and clinical information data from
METABRIC were also used. According to the PAM50
classification, METABRIC BC dataset was divided into 5
A B C

FIGURE 2 | Differential NR4A family gene expression in breast cancer subtypes. (A–C) Gene expression of the NR4A1–NR4A3 in METABRIC by Pam50 gene
expression subtype classification. Scatterplots show that there is significant association between breast cancer subtypes and the level of NR4A gene expression in
breast cancer patients. Basal (n=199), HER2+ (n=220), Lum A (n=679), Lum B (n=461) and Normal-like (n=140) subtypes. Data were analyzed by one-way ANOVA
followed by Tukey’s post hoc test. Statistically significant values of *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001 were determined.
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subtypes, including the Basal (n=199), HER2+ (n=220), Lum A
(n=679), Lum B (n=461) and Normal-like (n=140) subtypes.
Clinical data for each TCGA sample is downloaded directly
from the TCGA Data Portal. ER, PR, and, HER2 status are
assessed using the IHC information. The expression analyses of
NR4A1–NR4A3 transcripts in the subtypes and histological
grades were performed using one-way analysis of variance (one-
way ANOVA) and the student’s t-test. All analyses are performed
in Graphpad Prism, version 8. P-values <0.05 were considered
statistically significant differences.
Frontiers in Oncology | www.frontiersin.org 6
Survival Analysis
Kaplan–Meier Plotter (http://www.kmplot.com) is an online
public database evaluating the effect of genes on patient clinical
outcomes in different cancers. This public tool is operated by a
PostgreSQL server that could integrate gene expression and
clinical data simultaneously The Kaplan-Meier Plotter database
(http://kmplot.com/analysis/) (38) was used to analyze the
correlation between the expression levels of NR4A1–NR4A3
and breast cancer patient relapse-free survival (RFS). Kaplan-
Meier analysis (kmplot.com) of relapse-free survival (RFS) based
A B C

FIGURE 3 | NR4A family gene expression is partially correlating with estrogen receptor breast cancer ER+, PR+ and HER2 subtypes. (A–C) Relative expression of
NR4A family genes in different breast cancer tumors based on ER (ER+ = 1511, ER- = 474), PR (PR+ = 1040, PR- = 940), and HER2 (HER2+ =247, HER2- = 1733)
status examined by IHC. Data were analyzed by an unpaired t-test. Statistically significant values of *p < 0.05, **p < 0.01, ****p < 0.0001, and ns: not significant
were determined.
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A

B

D

E

C

FIGURE 4 | Relative expression of NR4A family genes in different breast cancer tumors, (A) stages, (B) grades, (C) lymph node metastasis, and (D) tumor sizes and patients’
age (E). NR4A2 mRNA expression was significantly elevated with increasing age in breast cancer patient while NR4A1 mRNA expression was significantly downregulated
with increasing age in breast cancer patient. Tumor size (1-20 = 593, 20-30 = 724, 30-180 =567), tumor stage (I = 475, II = 800, III = 115, IV = 9), tumor grade (I = 165,
II = 740, III = 927), lymph node status (LN- = 993, LN+ = 911), Age ( 20-45 = 247, 45-55 = 368, 55-65 = 502, 65-85 = 749, >85 = 38). Data were analyzed by one-way
ANOVA followed by Tukey’s post hoc test. Statistically significant values of *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns, not significant were determined.
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on the mean value of NR4A1, NR4A2, and NR4A3 in breast
cancer (n = 4934), with the cutoff values of 282, 373, and 74,
respectively. Probes 202340_x_at, 216248_s_at, and 207978_s_at
used, respectively. In addition, Kaplan-Meier overall survival
analysis of breast cancer patients divided by the median
expression level (into low and high NR4A mRNA expression
(n = 251 per group) of the NR4A1–NR4A3 family was performed
in a platform for exploring Gene Expression patterns across
Normal and Tumor tissues named GENT2 (http://gent2.appex.
kr/gent2/) (37). P values calculated using a log-rank test for OS
Frontiers in Oncology | www.frontiersin.org 8
and Cox regression model was used for RFS. Also, a data was
analyzed by one-way ANOVA followed by t-test.

Correlation Analysis
The OXPHOS-related gene signature comprised 132 genes
obtained from the gene set “KEGG_OXIDATIVE_
PHOSPHORYLATION” in The Molecular Signatures Database
hallmark gene sets (MsigDB, software.broadinstitute.org/gsea/
msigdb). The Glycolysis-related gene signature comprised 200
genes obtained from the gene set “HALLMARK_GLYCOLYSIS”
A

B

FIGURE 5 | Expression of NR4A family gene is not correlated with the promoter methylation in breast tumors. (A) TCGA breast invasive carcinoma DNA methylation
(Illumina Infinium HumanMethylation450) and gene expression microarray datasets were analyzed. (B) Representative statistics demonstrated correlation between
NR4A family gene expression and its DNA methylation. Gene expression were not found to be correlated with DNA methylation.
A B

FIGURE 6 | Co-expression correlation analysis between NR4A1–NR4A3 genes and the (A) glycolysis and (B) oxidative phosphorylation marker genes related
markers using HALLMARK_GLYCOLYSIS and KEGG_OXIDATIVE_PHOSPHORYLATION gene sets. The association between genes was measured using the
Pearson correlation coefficient (r). Correlation heatmap (Pearson r) of the transcriptomes from METABRIC breast cancer project samples (n= 1985). Red color refers
to negative correlation, and the blue color indicates positive correlation.
April 2022 | Volume 12 | Article 777824

http://gent2.appex.kr/gent2/
http://gent2.appex.kr/gent2/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yousefi et al. NR4A Family Genes
in The Molecular Signatures Database hallmark gene sets. Then,
the mRNA expression levels of these genes has been extracted
from METABRIC and Pearson’s correlation analysis was used to
to test their co-expression. All analyses are performed in
GraphPad Prism, version 8.

Methylation Analysis
DNA methylation (Illumina Infinium HumanMethylation450)
datasets were extracted from UCSC Cancer Browser (https://
www.cancer.gov/tcga), along with the clinical-pathological
phenotypes. Methylation (HM450) beta-values for genes in 885
cases (Breast Invasive Carcinoma (TCGA, Firehose Legacy) were
used. The data was downloaded from the TCGA database. The
RNA-seq data and methylation data for level 3 were downloaded
from TCGA, and the selected samples were all patient tissue
samples. In the downloaded RNA-seq data and methylation data,
the data with incomplete clinical information were excluded.
Only the samples that had undergone RNA sequencing and
methylated chip data were retained in the remaining data to
make it possible to perform a linkage analysis of transcription
and methylation. Pearson’s correlation test calculated the
correlation between the gene methylation degree and the
corresponding gene expression. As mentioned, Pearson’s
correlation analysis was used to analyze of the correlation
between the methylation degree and gene expression.
SUMMARY

According to the 2021 American Cancer Society statistics, BC has
the highest number of estimated new cases and the second-highest
number of deaths (43). There are multiple available treatments for
BC that have proven effective. However, there are often cases of
relapse or drug resistance following the completion of treatment.
Frontiers in Oncology | www.frontiersin.org 9
Therefore, it is important to emphasize that BC diagnosis time is
critical, as early detection will allow for quicker treatment
intervention. The NR4A family of orphan receptors, NR4A1–
NR4A3, belongs to the superfamily of nuclear receptors, which
regulate genes involved in proliferation, cell migration, and
apoptosis. Here, we report on the clinical and prognostic value of
NR4As and their relevance in prognosis and therapeutics for BC
patients. Using the large genomic studies, TCGA and METABRIC,
we were able to analyze the expression of NR4A1–NR4A3 in all BC
subtypes, including Basal, Her2, Luminal A, and Luminal B. Basal
BC is considered to be aggressive and metastatic, and effective
therapeutic treatments are minimal (44). NR4A1 and NR4A2 have
been studied in breast cancer (30, 45, 46). Consistent with our
analysis, it has been shown that NR4A1 reduced during the
development of mouse basal-like mammary tumors and
significantly downregulated in human TNBC samples. More
specifically, TNBC cell lines with little endogenous NR4A1
inhibited cell proliferation, viability, migration, and invasion by
down-regulating the JNK1–AP-1–cyclin D1 pathway (45). This is
probably why this subtype has a very poor prognosis and is often
associated with cancer relapse following completion of treatment.
Also, the nuclear receptor NR4A2 participates inmultiple metabolic
regulations and plays paradoxical roles in tumorigeneses (11). For
example, NR4A2 interacted and recruited corepressors, the SWI/
SNF complex, to the promoters of CD36 and FABP4 to suppress
their transcriptions. Because of this, the fatty acid uptake was
hampered, leading to the inhibition of breast cancer cell
proliferation (46). In another study, Llopis, S., et al. showed the
dichotomous roles of the NR4A2 in breast cancer (30). They
showed a higher NR4A2 expression level in the normal breast
epithelium compared to breast carcinoma cells, which strongly
correlated with an increase in relapse-free survival in a cohort of
breast cancer patients. However, NR4A2-silenced breast xenografts
models showed significantly decreased growth compared to the
A B

FIGURE 7 | Co-expression correlation analysis between NR4A1–NR4A3 genes and the (A) glycolysis and (B) oxidative phosphorylation marker genes related
markers using HALLMARK_GLYCOLYSIS and KEGG_OXIDATIVE_PHOSPHORYLATION gene sets. The association between genes was measured using the
Pearson correlation coefficient (r). Correlation heatmap (P values) of the transcriptomes from METABRIC breast cancer project samples (n= 1985). Red color refers to
P values< 0.05, and the white and blue colors indicates P values > 0.05.
April 2022 | Volume 12 | Article 777824

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yousefi et al. NR4A Family Genes
control model, showing a biphasic role for NR4A2 in breast cancer
progression (30). NR4A3 has been previously shown to be a direct
target for p53, inducing its transcription. Mechanistically,
overexpression of NR4A3 attenuated the proliferation of breast
cancer cells and promoted apoptosis by augmenting the expression
of pro-apoptotic genes PUMA and Bax (13).

To date, there is no patient-centered clinical dataset validating
the role of NR4A gene expression in breast cancer. Thus, we
sought to investigate the role and functionality of NR4A in BC
patients using publicly available databases containing records from
large BC studies. Multiple research groups have extensively
studied the role and therapeutic benefits of NR4As as a potent
tumor suppressor or oncogene protein in breast cancer and, more
specifically, how it depends on the tumor subtypes. In this study,
we characterized gene expression of NR4A1–NR4A3 in all the
breast cancer subtypes (Basal, Her2, Luminal A, and Luminal B)
by using large genomic studies (TCGA and METABRIC).
Previous studies found NR4A family gene expression critical in
basal breast cancer progression andmetastasis (30, 35, 36, 45). Our
study found that NR4A1, 2, and 3 gene expressions are luminal
breast cancer-specific. Low gene expression of NR4A1 is observed
in basal, HER2, and luminal A subtypes compared to the Normal-
like subtype. NR4A2 mRNA overexpressed in both luminal A and
luminal B breast cancer relative to other subtypes. NR4A3 mRNA
expression was lower in all cancer subtypes compared to Normal-
like subtypes with no meaningful differential expression between
cancerous subtypes. In addition, NR4A1 and NR4A2 mRNA
expressions are lower in basal breast cancer when compared to
other subtypes of breast cancer. Also, when samples from all BC
intrinsic subtypes were analyzed as a group, NR4A1-NR4A3
expression is significantly downregulated in BC patients
compared to normal control subjects. Previously, using publicly
available clinical data and patient survival analysis has been shown
that having high levels of NR4A3 expression positively correlates
with increased survival rates for patients with breast cancer (13).
Consistent with this, our results showed a positive link between
NR4A1-NR4A3 expression and increased overall survival and
relapse-free survival in breast cancer patients.
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Interestingly, we found that NR4A1 expression is
progressively downregulated with an increase in age while
NR4A2 is upregulated. Previous studies have shown in HCC it
has been demonstrated that NR4A1 suppresses glycolysis in
different cancers (33, 34). The result of our correlation analysis
validated that NR4A1-NR4A3 expression is reversely correlated
with many glycolytic and oxidative phosphorylation targets,
suggesting the probable role of these receptors in regulating
these pathways in breast cancer. Finally, our methylation results
showed no significant positive correlation between NR4A1-
NR4A3 expression and their DNA methylation, suggesting that
these genes’ epigenetic regulation might not be the case in breast
cancer. In summary this review indicates prognostic role of the
NR4A1–NR4A3 receptors and implicates these receptors as
important mediators controlling breast cancer metabolic
reprograming and its progression.
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