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Abstract 

BACKGROUND:  

Multi-center electronic health records (EHR) can support quality improvement initiatives 

and comparative effectiveness research in stroke care. However, limitations of EHR-

based research include challenges in abstracting key clinical variables from non-

structured data at scale. This is further compounded by missing data. Here we develop a 

natural language processing (NLP) model that automatically reads EHR notes to 

determine the NIH stroke scale (NIHSS) score of patients with acute stroke. 

METHODS: 

The study included notes from acute stroke patients (>= 18 years) admitted to the 

Massachusetts General Hospital (MGH) (2015-2022). The MGH data were divided into 

training (70%) and hold-out test (30%) sets. A two-stage model was developed to predict 

the admission NIHSS. A linear model with the least absolute shrinkage and selection 

operator (LASSO) was trained within the training set. For notes in the test set where the 

NIHSS was documented, the scores were extracted using regular expressions (stage 1), 

for notes where NIHSS was not documented, LASSO was used for prediction (stage 2). 

The reference standard for NIHSS was obtained from Get With The Guidelines Stroke 

Registry. The two-stage model was tested on the hold-out test set and validated in the 

MIMIC-III dataset (Medical Information Mart for Intensive Care-MIMIC III 2001-2012) 

v1.4, using root mean squared error (RMSE) and Spearman correlation (SC).  

RESULTS: 

We included 4,163 patients (MGH = 3,876; MIMIC = 287); average age of 69 [SD 15] years; 

53% male, and 72% white. 90% patients had ischemic stroke and 10% hemorrhagic 

stroke. The two-stage model achieved a RMSE [95% CI] of 3.13 [2.86-3.41] (SC = 0.90 

[0.88-0. 91]) in the MGH hold-out test set and 2.01 [1.58-2.38] (SC = 0.96 [0.94-0.97]) in 

the MIMIC validation set. 
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CONCLUSIONS: 

The automatic NLP-based model can enable large-scale stroke severity phenotyping from 

EHR and therefore support real-world quality improvement and comparative 

effectiveness studies in stroke. 

 

Keywords: Stroke; National Institutes of Health Stroke Scale; Electronic Health Records; 

Phenotyping; Natural Language Processing; Machine Learning. 

 

Non-standard Abbreviations and Acronyms 

 

AUC Area under the receiver-operating characteristic curve 

BIDMC Beth Israel Deaconess Medical Center 

CI Confidence intervals 

CONSORT Consolidated Standards of Reporting Trials 

CPT Current Procedural Terminology 

EHRs Electronic health records 

ICD International Classification of Diseases  

ICU Intensive care unit  

LASSO Least absolute shrinkage and selection operator  

MCA Middle cerebral artery 

MGH Massachusetts General Hospital 

MIMIC-III Medical Information Mart for Intensive Care III 

NIHSS National Institutes of Health Stroke Scale  

NLP Natural language processing 

RMSE Root mean squared error 

SC Spearman correlation 

STROBE STrengthening the Reporting of OBservational studies in Epidemiology  
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Introduction 

Real world studies using multi-center electronic health  records (EHR) can pave the way  for 

understanding patterns and practice variation in stroke care that can support process 

improvement and treatment decisions [1].  EHR can be particularly useful for quality of care 

improving efforts [2,3], investigating and addressing disparities in health care [4,5], 

understanding gaps in health care delivery [6], and designing effective measures to improve 

patient outcomes [7,8].  However, limitations of EHR-based research include challenges in 

abstracting  key clinical variables, such as stroke severity, from non-structured data at scale [9]. 

This is further compounded by missing data [10]. Accurately measuring stroke severity from EHR 

is critical for large-scale comparative effectiveness research and quality improvement [11,12].  

The National Institutes of Health Stroke Scale (NIHSS) is the gold standard for measuring stroke 

severity in the clinical environment [9]. The Joint Commission requires the NIHSS to be 

performed on all patients that receive thrombolytics or undergo thrombectomy, and those 

presenting within 12 hours of symptom onset [13]. Unfortunately, NIHSS is not always 

documented in the EHR and when documented, it is frequently in clinical notes and not as 

structured data [9]. This creates limitations for performing population level research or 

conducting quality improvement, particularly in the case of acute ischemic stroke, patients not 

meeting the criteria for acute treatments or interventions [14], patients seen at smaller 

community or non-stroke centers [15–17] or admitted to non-Joint Commission accredited 

centers [17]. An additional limitation is that NIHSS is not always documented for hemorrhagic 

stroke patients.  While scores including the Intracerebral Hemorrhage and Hunt and Hess scores 

are used for hemorrhagic stroke patients, the NIHSS can be used to predict mortality and 

correlates with hemorrhage volume [18,19], and serves as a common score across all stroke 

subtypes for population level research [20,21]. NIHSS can be abstracted from clinical notes by 

chart review, however this is labor intensive [22]. Prior studies have developed machine learning 

models using structured data, such as International Classification of Diseases (ICD) codes and 

Current Procedural Terminology (CPT) codes to measure stroke severity [23]. However, models 

only restricted to structured data, besides not considering missing data [10], leave out the 

extensive data available in unstructured notes that would allow for more accurate phenotyping.  

Existing natural language processing (NLP) models can only be applied to notes with documented 

NIHSS score or its subcomponents, and therefore not applicable for missing data, and have not 

been validated in other datasets [24]. The lack of standardization in stroke severity assessment, 

documentation and reporting in EHR databases precludes the advancement of population level 

stroke-related comparative effectiveness research [25,26]. 
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Here we aimed to develop an NLP model that automatically reads EHR clinical notes to accurately 

predict the NIHSS score of patients presenting with acute stroke. We used regional EHR linked to 

the American Heart Association’s (AHA) Get With The Guidelines (GWTG) – Stroke Registry [27] 

as the gold standard dataset and validated the model on an external independent dataset. This 

model is intended to enable large-scale EHR stroke severity phenotyping even when the NIHSS 

or its subcomponents are not documented or recorded. 

 

Methods 

Study Population 

We included adult patients (≥ 18 years old) with acute stroke (ischemic and hemorrhagic). The 

study was approved by the Mass General Brigham Institutional Review Board; a waiver of 

informed consent was obtained for this observational study. This study consists of retrospective 

data analysis and is reported in accordance with the STrengthening the Reporting of 

OBservational studies in Epidemiology (STROBE) statement [28]. 

 

Datasets 

Our stroke cohort was derived from two sources: 1) patients admitted with acute stroke at  

Massachusetts General Hospital (MGH) between  March 2015 and December 2022 were identified 

through the AHA GWTG – Stroke Registry linked with EHR [27]; 2) stroke admissions from the 

publicly available de-identified database Medical Information Mart for Intensive Care III (MIMIC-

III) v1.4 [29], which contains medical records for ICU admissions at Beth Israel Deaconess Medical 

Center (BIDMC) between 2001 and 2012. Patients with acute stroke in the MIMIC dataset were 

identified using the ICD coding system [24]. Further details on cohort derivation are provided in 

Supplementary Information.  
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Clinical notes 

The EHR data in our study comprised free text admission notes (MGH) and discharge summaries 

(MIMIC), which consist of semi-structured text written by physicians. The MGH notes were 

extracted for the first and second dates of admission, given our goal to measure and predict 

admission stroke severity. All available notes were extracted, including among others, any 

neurology notes, emergency department, assessment and plan, history and physical (H&P), 

operative, procedures, consults, discharge instructions, discharge summaries, hospital course, 

progress, transfer, nursing, physical therapy and occupational therapy notes. For model external 

validation, we used discharge summaries from the MIMIC dataset, since the NIHSS scores are 

mainly stored in this type of notes. The discharge summaries include the patients’ initial history 

and physical and admission clinical exams. The notes from each patient were preprocessed (see 

Table S.1.) and converted into a structured format consisting of binary variables. Each variable 

indicated the presence or absence of an n-gram (single word [unigram], or sequence of 2 

[bigrams] or 3 [trigrams] words) in the notes (see Supplementary Information). 

 

Outcomes and gold standard  

Our outcome was the initial (admission) total NIHSS score. For the MGH cohort, the gold standard 

scores were obtained from the AHA GWTG – Stroke Registry [27]. For the MIMIC cohort, gold 

standard scores were obtained by applying rule-based regular expressions (regexes) to the notes 

for extraction of the scores, followed by manual note review for expert validity by a neurologist/ 

neurointensivist (SFZ) (see Supplementary Information). After chart review, for MGH patients, 

notes with any discrepancy between the GWTG gold standard and the neurological exam 

documented in the note or the NIHSS, if also documented in the note, were removed. For MIMIC 

patients, any notes that did not have a documented NIHSS were removed.   

 

Statistical Analysis 

First, we split the MGH data randomly into a training set (70%) and hold-out test set (30%), as in 

previous studies [30–32]. With the training data, we developed a linear regression model using 

the least absolute shrinkage and selection operator (LASSO) that utilized the text-based features 

from the notes to predict the patients’ NIHSS scores. We performed 100 iterations within the 

training data of five-fold cross validation to determine the best regularization parameter (see 
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Supplementary Information). The relative importance of the variables was assessed by 

magnitude of the regression coefficients. 

We then created a two-stage model, applied on the MGH hold-out test set and externally validated 

on the MIMIC validation set. (1) Stage 1: In the first stage notes were checked for the NIHSS and, 

if detected, the score was directly extracted. This stage used simple hard-coded regular 

expressions. (2) Stage 2: For notes where the NIHSS score was not detected/documented, we 

applied the LASSO model to estimate the NIHSS from information contained in the note. 

To evaluate the model, we used the root mean squared error (RMSE) and Spearman correlation. 

We performed 1000 iterations of bootstrap random sampling with replacement to calculate 95% 

confidence intervals (CI).  

We report overall results for the two-stage model on all notes in the MGH hold-out test set and 

MIMIC validation set (those that contain extractable NIHSS scores and those that do not). We also 

report results separately for stage 1 (for notes with extractable NIHSS) and stage 2 (for notes 

where the NIHSS scores were not documented and LASSO model was used to predict the score).  

 

Results 

Patients Characteristics 

 

Our study cohort for analysis after inclusion and exclusion criteria (Figure 1) included a total of 

4,163 patients (MGH n = 3,876; MIMIC n = 287) with an average age of 69 [SD 15] years, majority 

males (53%), White (72%) and presenting with ischemic stroke (90%). There were no observable 

differences in age, sex, race between train, test and external validation sets (Table 1). The median 

NIHSS was 5 vs 13 for the MGH vs MIMIC datasets. When looking at the distribution of NIHSS 

scores (Figure 2), we observe that the majority of patients in the MGH cohort had a score <5, while 

the MIMIC cohort displays a higher frequency of scores between 6 and 23. For approximately the 

entire MIMIC cohort (99%), the admissions were of emergency type, while for the MGH cohort 

the admissions included emergency (85%), urgent (14%) and elective (1%) types.  
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Figure 1. CONSORT (Consolidated Standards of Reporting Trials) chart. The number of patients 

is represented by ‘n’ and the number of visits by ‘N’. 

 

GWTG – Get With The Guidelines Stroke registry; MIMIC – Medical Information Mart for Intensive 

Care-MIMIC III; MGH - Massachusetts General Hospital; NIHSS – National Institutes of Health 

Stroke Scale. 

Figure 2. NIHSS score distribution for (a) MGH and (b) MIMIC cohorts. MIMIC – Medical 

Information Mart for Intensive Care-MIMIC III; MGH - Massachusetts General Hospital. 

(a) 

(b) 
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Model Performance 

The two-stage model was able to predict the NIHSS score with an RMSE of approximately 3 in the 

MGH hold-out test set and an RMSE of 2 in the MIMIC external validation set, as presented in table 

2. For both, the Spearman correlation was at least 90%. The statistics regarding the number of 

documents with NIHSS utilized for the first stage of the model for both sets are presented in 

Supplementary Information, Table S.2. We observed that the number of visits with only one 

NIHSS documented was almost double for the external validation set (77%), compared to the 

hold-out test set (40%). MIMIC discharge summaries are more succinct narratives, when 

compared to MGH admission notes that tended to include narratives from more than one 

department and from multiple healthcare professionals. 

 

Error Analysis 

The distribution of the two-stage model predicted vs target NIHSS is presented in Figure 3. We 

performed a manual review of the model errors to better understand the dispersion and identify 

the main types of misclassifications (see Supplementary Information, Table S.3).  

 

First, we identified cases with fluctuating symptoms i.e. improvement or worsening of the 

neurological exam. These changes in exam occurred for example between teleconsultation/ 

outside hospital presentation and arrival to the stroke center ED, or between initial ED 

presentation and neurological consultation or admission to the ICU. In such cases the model 

either predicted one of the scores, an average or a score within the range documented. For 

example, in a case where the GWTG gold standard NIHSS was 30, and the note documented 

improvement in the NIHSS from 30 to 22, the model predicted an NIHSS of 21. This case yielded 

an absolute error of 9 compared with the first documented score, however, the model prediction 

score of 21 was very close to the improved score of 22.  

 

A second type of error occurred when there was discrepancy between the sum of the NIHSS 

subcomponents and the documented NIHSS score.  As an example, a note documented NIHSS as 

20, while the individual subcomponents added to a total of 29. In this case the regexes captured 

“NIHSS 20” while the subcomponents added to 29 which was also the GWTG gold standard score.   

 

We also identified cases where the note indicated a range of scores, but not the exact target score 

documented in the GWTG registry. An illustration of this scenario is a case where the NIHSS 

documented in the note was “15+/- 3”, the GTWG gold standard was 14, and the model prediction 
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was 15.71. Even though in this example the error was relatively small, it demonstrated that in 

certain cases a model error up to 3 points might be acceptable. 

 

Finally, we observed that our model performance decreased for NIHSS scores greater than 30. 

This is likely the result of smaller number of cases with NIHSS greater than 30, as depicted in 

Figure 2, and therefore not enough cases for model development and learning. Types of errors for 

greater scores included cases due to fluctuating symptoms, as already illustrated, and cases with 

fewer clinical details documented in the exam sections of the notes, with many of the notes 

documenting the patients were “comatose” or “unresponsive”, and fewer details on motor exam. 

 

 

Figure 3. Two-stage model predicted versus target NIHSS scores in the (a) MGH hold-out test set 

and (b) MIMIC external validation set. MIMIC – Medical Information Mart for Intensive Care-

MIMIC III; MGH – Massachusetts General Hospital. 

    

(a)                                                                (b) 

 

Features Importance 

The relative importance of the top 20 modeling variables is presented in Figure 4. The initial 

number of variables in the training vocabulary was 7,565, which was reduced to 347 by LASSO 

regularization (see Supplementary Information Table S.4). We observe that indication of lack of 

movement, not answering questions or following commands are all associated with higher stroke 

severity scores. Gaze deviation, use of urinary catheter, a middle cerebral artery (MCA) stroke, 

facial palsy and paralysis are also associated with higher scores. On the other hand, ‘drift’ 
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contributed the most to lower prediction scores, being associated with lower scores for the NIHSS 

motor subcomponents (arms and legs). A level of consciousness of “alert and responsive”, as well 

as the word ‘deni’ (denies), meaning that the patient is responsive, also contributed to lower 

scores. 

 

Figure 4. Relative feature importance given by the LASSO model coefficients for the top 20 

features. 

 

 

Discussion 

In this work we developed an NLP model that automatically “reads” EHR clinical notes to 

determine the NIHSS score of adult patients presenting with acute stroke. The model achieved 

good performance with an RMSE of approximately 3 and Spearman correlation of 90%. The 

modeling variables most indicative of higher scores were related to patients either being 

unresponsive, with MCA stroke, urinary catheter and other neurological deficits, such as facial 

palsy, paralysis or gaze deviation. The variables contributing the most to lower scores were 
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related to the patients being alert and responsive, with lower scores in the motor subcomponents 

of the scale. Our findings suggest that automated EHR phenotyping of stroke is feasible in large 

and diverse cohorts. 

A prior study [23] used administrative data including ICD and CPT codes, demographics, 

prescriptions/medications, hospital visit information, and comorbidities to predict the NIHSS. 

Using machine learning to assess stroke severity, the authors found that the main predictors 

included death within the same month as stroke occurrence, length of hospital stay following 

stroke occurrence, aphagia/dysphagia diagnosis, hemiplegia diagnosis, and whether a patient 

was discharged to home or self-care. Comparing the imputed NIHSS scores to the gold standard 

on the hold-out test set yielded a RMSE of 4.5 and Pearson correlation of 0.76. Based on the higher 

performance of our model, we hypothesize that using NLP and unstructured text notes can more 

accurately measure NIHSS, compared with using administrative data. 

 

Another study [24], combined BERT-BiLSTM-CRF and a random forests model for the task of 

NIHSS item and score recognition, achieving an F1-score of 0.90, which outperformed their rule-

based method (regexes) with F1-score of 0.81. The NIHSS item extraction showed best 

performance when using the rule-based method (regexes) with a precision of 1.00, recall of 0.95 

and F1-score of 0.97. The study was, however, focused only on extraction of the scores from note 

when documented and therefore cannot be applied when data is missing. On the other hand, our 

work focused both on extraction of the scores, when documented (stage 1) and also on developing 

a model to predict the scores (stage 2) and evaluate these against a gold standard. Our model can 

therefore be used to predict NIHSS from notes, even when missing or not documented.  

 

Other studies have predicted stroke severity by approaching the data as a binary task problem 

[32,33], and thus are not directly comparable to ours. In one study [33], a 3D-Convolutional 

Neural Network was trained to predict low (NIHSS < 5) vs. high (NIHSS ≥ 5) based on 

preprocessed diffusion-weighted imaging (DWI) images. The NIHSS category was predicted at 

admission and on day 7 of hospitalization achieving an area under the receiver-operating 

characteristic curve (AUC) of 0.85 and 0.90, respectively. However, limiting to a binary 

classification limits the utility of the model, especially in light of a NIHSS of 6 being put in the same 

category as an NIHSS of 42. In a different study [32],  the authors developed a random forests 

model that achieved a recall, precision and F1-score of 0.91 to predict improvement vs. worsening 

of NIHSS progression as a binary outcome from hospital admission until discharge, using baseline 

data within the first 72 hours of admission. By predicting NIHSS as a continuous variable, and 
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enabling the prediction of NIHSS even when it is not documented or is missing from the EHR, our 

model overcomes the limitations of these prior works. 

 

Our study has some limitations. While we validated our model in data from a different hospital, 

both hospitals are located in the same geographic region (Boston, Massachusetts). Nevertheless, 

the hospitals have different EHR systems, providers, and note types that increase generalizability.  

Future studies are required to assure generalizability of the model in other US and non-US 

populations. In future studies we will utilize the model across different hospitals and EHR 

systems in the US. Our model performance decreased for NIHSS scores greater than 30 due to 

fewer cases with high scores. Therefore, the model was not able to fully learn the patterns or main 

drivers for prediction of scores in that range. However, on closer examination of these cases, the 

patients’ clinical exams were very poor, with fewer clinical details documented for motor exam. 

Other cases included patients with fluctuating symptoms in the notes, making it difficult for the 

model to provide an accurate prediction. Future studies should investigate the model 

performance when developing the model with cohorts including higher NIHSS scores, using the 

methodology here presented. Finally, the model was trained with data from admission notes, and 

it was externally validated in discharge summary notes. Nonetheless, we did assess performance 

in a hold-out test set of admission notes and observed that the error was approximately the same. 

Additionally, the discharge summaries included the initial history and physical along with the 

admission exam. Another limitation consisted of the relatively small sample size of the MIMIC 

cohort, with a different distribution of NIHSS scores, compared to that of the MGH cohort. Thus, 

in future work we aim to validate the model in other cohorts with more diverse score 

distributions. 

The automatic NLP model presented herein enables automatic retrieval of NIHSS scores from 

unstructured data, thereby enabling large-scale stroke severity phenotyping from electronic 

health records. This work overcomes key limitations of prior models that use administrative data 

or NLP for prediction of stroke severity.  Our model can enable real world research and quality 

improvement studies to address process improvement, outcomes research, and health disparities 

in stroke care. Future directions include validating this model in additional electronic health 

datasets.  
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Table 1. Characteristics of the study population stratified by train, test and external validation 

sets. 

The number of patients is represented by n and the number of visits is represented by N. MIMIC – Medical Information 

Mart for Intensive Care-MIMIC III; ICH – intracerebral hemorrhage; IQR – Interquartile range [25th, 75th] percentiles; 

MGH - Massachusetts General Hospital; NIHSS – National Institutes of Health Stroke Scale; SAH - Subarachnoid 

hemorrhage. 

  

 MGH MIMIC 

Characteristic Train set 

(n=2,713) 

Hold-out test 

set 

(n=1,163) 

Full set 

(n=3,876) 

Validation set 

(n=287) 

Age (years), mean (SD) 68.4 (15.3) 69.1 (14.7) 68.6 (15.1) 70.3 (15.9) 

Male, n (%) 1,467 (54.1) 605 (52.0) 2,072 (53.5) 148 (51.6) 

Race, n (%)     

 White 1,958 (72.2) 826 (71.0) 2,784 (71.8) 219 (76.3) 

 Black or African American 201 (7.4) 82 (7.1) 283 (7.3) 23 (8.0) 

 Other 554 (20.4) 255 (21.9) 809 (20.9) 45 (15.7) 

Hispanic or Latino, n (%) 191 (7.0) 68 (5.8) 259 (6.7) 8 (2.8) 

Hospital admissions, N 2,814 1,193 4,007 287 

NIHSS, median [IQR] 4 [1, 12] 5 [2, 12] 5 [2, 12] 13 [7, 19] 

Admission type, N(%)     

 Emergency 2,404 (85.4) 1,016 (85.2) 3,420 (85.4) 285 (99.3) 

 Urgent 390 (13.9) 163 (13.7) 553 (13.8) 2 (0.70) 

 Elective 19 (0.7) 14 (1.2) 33 (0.8) 0 (0.0) 

Type of stroke, N(%)     

    Ischemic 2,530 (89.9) 1,085 (90.9) 3,615 (90.2) 254 (88.5) 

    ICH 162 (5.8) 69 (5.8) 231 (5.8) 51 (17.8) 

    SAH 28 (1.0) 13 (1.1) 41 (1.0) 8 (2.8) 

    Other unspecified 94 (3.3) 26 (2.2) 120 (3.0) 6 (2.1) 
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Table 2. Performance of the two-stage model and each individual model stage, in 95% confidence 

intervals. 

 

 
Two-stage  

model 

Stage 1  

(regexes) 

Stage 2  

(LASSO) 

Cohort 
RMSE  

[95% CI] 

SC  

[95% CI] 

RMSE 

[95% CI] 

SC  

[95% CI] 

RMSE 

[95% CI] 

SC  

[95% CI] 

MGH hold-

out test set 

3.13 

[2.86, 3.41] 

0.90 

[0.88, 0.91] 

1.93 

[1.49, 2.39] 

0.95 

[0.93, 0.97] 

3.72  

[3.38, 4.10] 

0.87 

[0.86, 0.89] 

MIMIC 

validation 

set 

2.01 

[1.58, 2.38] 

0.96 

[0.94, 0.97] 

0.61  

[0.00, 1.01] 

1.00  

[0.99, 1.00] 

4.00  

[3.32, 4.70] 

0.81 

[0.71, 0.89] 

MIMIC – Medical Information Mart for Intensive Care-MIMIC III; CI – confidence intervals; MGH – Massachusetts 

General Hospital; Regexes – regular expressions; RMSE – root mean squared error; SC – Spearman correlation. 
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