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Abstract: Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and
mortality. Metabolomics allows for the identification of important biomarkers for CVDs,
essential for early detection and risk assessment. This cross-sectional study aimed to iden-
tify novel metabolic biomarkers associated with CVDs using non-targeted metabolomics.
We compared the metabolic profiles of 112 patients with confirmed CVDs diagnosis and
112 gender- and age-matched healthy controls from the Qatar Biobank database. Orthog-
onal partial least square discriminate analysis and linear models were used to analyze
differences in the level of metabolites between the two groups. We report here a signifi-
cant association between the indoleacetylglutamine pathway and cardiovascular diseases,
expanding the repertoire of gut microbiota metabolites linked to CVDs. Our findings
suggest that alterations in gut microbiota metabolism, potentially resulting in increased
production of indoleacetate, indoleacetylglutamine, and related compounds at the expense
of the cardioprotective indolepropionate, may contribute to this association. Our findings
may pave the way for novel approaches in CVD risk assessment and potential therapeutic
interventions targeting the gut-heart axis.
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1. Introduction
Cardiovascular diseases continue to be a leading cause of morbidity and mortality

globally, accounting for approximately 17.9 million deaths annually, which represents 32%
of all global deaths [1,2]. Effective prevention strategies focus on identifying high-risk indi-
viduals well before significant cardiovascular events occur, emphasizing the importance
of early detection and management [3]. In addition to traditional risk factors, extensive
research has led to the identification of novel biomarkers that enhance risk stratification,
allowing for better prediction of cardiovascular events and improved patient outcomes [4,5].
These biomarkers reflect various aspects of atherosclerosis development and include inflam-
matory markers, myocardial tissue-specific proteins, and other indicators that contribute to
more accurate risk assessments and treatment decisions [5]. Metabolic markers are among
the key biomarkers being explored for their predictive value in CVD risk assessment. These
biomarkers include, but are not limited to, acylcarnitines [6,7], branched-chain amino
acids [8], bile acids [9], and microbiota-derived metabolites [10]. The integration of various
biomarkers from cardiac, metabolic, and other pathways holds great promise in improving
the accuracy of CVD risk assessment and prognosis.
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Metabolomics enables the identification of diagnostic and prognostic biomarkers for
CVDs, which are crucial for early detection and risk stratification [11]. This capability is
integral to the development of metabolomic profiles, which can assist in the diagnosis and
management of CVDs [12]. Studies have identified specific metabolite patterns associated
with various cardiovascular conditions, such as coronary artery disease, heart failure, and
atrial fibrillation, which can potentially enhance risk assessment and guide preventive
interventions [13–15]. Metabolomics can also identify metabolic biomarkers of gut micro-
biota, which are increasingly acknowledged to play a significant role in cardiometabolic
health [11]. The integration of metabolomics into clinical practice has the potential to
significantly impact public health by reducing the burden of CVDs. Although it is not
yet widely used in clinical settings, it is possible to develop a metabolomic panel using
patient serum to assess disease severity and predict disease progression. This panel would
facilitate targeted and precision treatment approaches.

In this cross-sectional study, we conducted non-targeted metabolomics on serum
samples to compare the metabolic profiles of 112 patients with cardiovascular diseases and
112 gender- and age-matched healthy controls. Our results revealed a significant alteration
in the indoleacetylglutamine pathway associated with CVDs. We observed increased
levels of indoleacetylglutamine, its precursor indoleacetate (indole-3-acetic acid), and its
metabolite methyl indole-3-acetate, along with decreased levels of the cardioprotective
indolepropionate in CVD patients. This finding suggests a potential metabolic shift in
tryptophan metabolism by gut microbiota, further highlighting the intricate relationship
between gut microbial metabolites and cardiovascular health.

2. Materials and Methods
2.1. Data Source and Study Participants

This study gathered data from Qatar Biobank (QBB). The QBB database contains
detailed information about Qatari nationals and long-term residents (those living in Qatar
for 15 or more years) who are 18 years old and above. It includes basic personal details,
health information such as body mass index, blood pressure, and blood test results, as
well as information about CVDs history, medications, and metabolomics data on 1000 dif-
ferent metabolites [16]. All these measurements were performed at the Hamad Medical
Corporation’s central laboratory, which is certified by the College of American Pathol-
ogists. This research was approved by the Qatar Biobank’s institutional review boards
(QF-QBB-RES-ACC-00178).

Six-hundred twenty-three participants in this study were divided into two groups:
controls and individuals with CVDs. The inclusion criteria for the CVD group (n = 173)
required participants to have a documented self-reported diagnosis of CVDs (e.g., who
reported a history of heart attack, coronary artery disease, angina, or stroke) and to be
actively receiving treatment with at least one medication aimed at managing their condition
as verified by prescription records. The control group (n = 450) included participants who
had no history of CVDs and were not diagnosed with any cardiovascular conditions.
Individuals in both groups were excluded if they had comorbidities that could interfere
with the results, such as severe renal insufficiency, chronic obstructive pulmonary disease,
or cancer. Additionally, pregnant or breastfeeding women were excluded from both groups.
Using propensity score matching, the age, BMI, and gender were matched using the R
(matchit) package (V. 4.2.1), resulting in a total of 224 analyzed participants with n = 112
in each group. This will help to reduce confounding and increase the validity of the
study’s findings.
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2.2. Metabolomics

All participant serum samples were subjected to untargeted metabolomics using
established protocols by Metabolon [17]. Metabolites measurement was performed using a
Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) interfaced with a heated electrospray ionization (HESI-
II) source and Orbitrap mass analyzer operated at 35,000 mass resolution along with Waters
ACQUITY ultra-performance liquid chromatography (UPLC) (Waters Corporation, Milford,
MA, USA). A thorough explanation of the process has already been provided [17]. In brief,
the serum samples were initially processed through methanol extraction to remove proteins.
The extracted samples were then divided into five parts: two parts were analyzed with
different reverse-phase UPLC-MS/MS techniques with positive ion mode electrospray
ionization (ESI), one part was analyzed with reverse-phase UPLC-MS/MS with negative
ion mode ESI, another part was analyzed with hydrophilic interaction chromatography
(HILIC)-UPLC-MS/MS with negative ion mode ESI, and the final part was reserved as a
backup sample.

Hits were matched with pre-existing library entries of over 3300 pure standard chemi-
cals to identify the compounds. Compounds were divided into several groups according to
their sources. Internal standards and quality checks have been previously published [18].
In short, to adjust for discrepancies in sample preparation and instrument performance, a
combination of stable isotope-labeled chemicals was utilized as internal standards. The
stability and repeatability of the procedure were tracked over time using quality control
samples. To reduce variability and guarantee the integrity of the samples, a systematic
methodology was employed for pre-analytical sample management, including sample
collection, storage, and preparation.

2.3. Statistical Analysis

The clinical data (anthropometrics, blood pressure, lipid, liver, and kidney profiles)
were compared between the two groups using Student’s t test/Mann–Whitney U test based
on their Gaussian distribution test results. The metabolomics data were log-normalized.
SIMCA® was used to perform multivariate analyses: Principal Component Analysis for
quality control and orthogonal partial least squares discriminant analysis to identify metabo-
lites associated with each group. R language (V. 4.2.1) was used to fit linear models using
the in-built lm (y~x) function: the primary independent variable (x) in linear regression
analysis was the control/CVD classification, whereas the dependent variable (y) was each
metabolite. The model included the first two principal components from PCA analysis, age,
gender, and body mass index (BMI) as confounding variables. False Discovery Rate (FDR)
was used to adjust nominal p-values, and FDR < 0.05 was considered significant. Spear-
man’s correlation was performed between the top FDR-significant metabolites and clinical
parameters in the cohort. To assess the discriminatory potential of indoleacetylglutamine
and other candidate metabolites for CVD, receiver operating characteristic (ROC) curve
analysis was performed.
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3. Results
3.1. General Characteristics of Participants

We employed propensity score matching techniques to balance the demographic
characteristics of age, BMI, and gender between groups. As a result of this procedure,
the final sample consisted of 224 participants, evenly distributed with 112 individuals in
each group. Despite the application of propensity matching to balance age, gender, and
BMI between groups, Table 1 shows that age and BMI remained significantly different
between the study groups. However, the difference was notably reduced, compared to the
unmatched dataset.

Table 1. Demographic characteristics of participants.

Test Variable Control Group
(n = 112)

CVDs Group
(n = 112) p Value

General
characteristics

Gender (M/F) 68/44 67/45 0.99
Age 47 (42–51) 53 (46–55) 0.000

Waist size (cm) 91.5 (85.7–99.2) 98 (91.7–106) 0.000
Hips size (cm) 104.5 (100–113) 107 (100–115) 0.527
BMI (kg/m2) 29.2 (25.9–33.2) 30.8 (27.5–34.1) 0.029

Systolic blood pressure
(mmHg) 116 (108–123) 126 (119–136) 0.000

Diastolic blood pressure
(mmHg) 75 (69–82) 79 (73–87) 0.006

Glycemic profile

Fasting blood glucose
(mmol/L) 5.1 (4.8–5.6) 6.4 (5.4–9.2) 0.000

HbA1C (%) 5.5 (5.2–5.8) 6.5 (5.9–7.8) 0.000
C-peptide (ng/mL) 2.4 (1.8–3.2) 3.1 (2.2–4.0) 0.001

Insulin (uU/mL) 9.7 (6.7–14) 15 (9.9–23.1) 0.000

Lipid profile

Total cholesterol (mmol/L) 5.2 (4.8–5.7) 4.9 (4.2–5.6) 0.014
HDL-cholesterol (mmol/L) 1.3 (1.1–1.5) 1.1 (0.9–1.4) 0.009
LDL-cholesterol (mmol/L) 3.2 (2.7–3.9) 3.0 (2.1–3.5) 0.007

Non-HDL-cholesterol
(mmol/L) 3.9 (3.3–4.5) 3.7 (2.9–4.4) 0.182

Triglyceride (mmol/L) 1.21 (0.9–1.7) 1.68 (1.2–2.4) 0.000

Kidney function

Creatinine (µmol/L) 69.5 (60–81) 74 (64–84.2) 0.020
Chloride (mmol/L) 69.5 (60–81) 74 (64–84.2) 0.001

Urea (mmol/L) 101 (100–102) 100 (99–102) 0.004
Bicarbonate (mmol/L) 4.7 (3.8–5.2) 5 (4.1–6.5) 0.370

Total protein (g/L) 27 (26–28) 27 (25–28) 0.445

Cardiac function
NT-proBNP (pg/mL) 72.9 (4.1) 73.3 (3.9) 0.057

Homocysteine (µmol/L) 20.6 (12.6–38.8) 28.7 (15.4–51.1) 0.099

Liver function

Albumin (g/L) 8.7 (7.2–10.2) 9.6 (7.4–11.4) 0.427
ALT (U/L) 45.1(2.7) 44.8 (3.0) 0.100
AST (U/L) 21 (15–28) 22 (18–30.2) 0.256
GGT (U/L) 18 (15–20.2) 18 (15.7–22) 0.001

Data are presented as mean (SD)/median (IQR) for parametric/non-parametric variables. Mean/median between
the study cohorts were compared using Student’s t/Mann–Whitney U test, respectively. Categorical variables
were compared using Fisher’s exact test. Abbreviations: HbA1C, glycated hemoglobin; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; NT-proBNP, N-terminal pro–B-type natriuretic peptide; ALT, alanine
transaminase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase.
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3.2. Multivariate Analysis

Non-targeted metabolomics analysis was performed to investigate the metabolic sig-
natures of the CVD group compared to the control group. Orthogonal partial least squares
discriminant analysis (OPLS-DA) was used to identify the best distinguishing components
between the two groups as shown in Figure 1. The scatter plot in Figure 1A clearly exhibits
the distinct separation of the two groups. Figure 1B displays the corresponding loading
plots, revealing the primary metabolites responsible for distinguishing the two groups.
These include indole-related metabolites, glucose, N-acetyltyrosine, deoxycarnitine, and
N-acetyltyrosine.
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Figure 1. OPLS-DA score (A) and loading plots (B), depicting the metabolic profile difference and
most discrepant metabolites between CVD (n = 112) and control (n = 112) individuals. OPLS-DA
illustrates the clear separation between CVD patients and healthy control individuals based on their
metabolic profiles. Each point represents an individual subject. The model identified one predictive
and three orthogonal components (R2Y = 0.798; Q2 = 0.450). The loading plot reveals the metabolites
most responsible for the separation between CVD and control groups. Metabolites highlighted in
green are the key discriminators, while less influential metabolites are shown in gray to reduce
visual noise. * indicates a compound that has not been officially confirmed based on a standard, but
that Metabolon is confident in its identity.
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3.3. Univariate Analysis

Linear model analysis revealed a number of FDR (≤0.05) significant changes between
the two studied groups. Table 2 and Figure 2 show the most significant metabolites. Results
show an increase in indoleacetylglutamine, methyl indole-3-acetate, and indoleacetate, and
a decrease in indolepropionate in the CVD group. The full list of metabolites is provided in
Supplementary Table S1.

Table 2. Linear regression analysis to determine the most FDR-significant metabolites associated with
CVD, while adjusting for age, gender, BMI, and principal components 1 and 2.

Metabolite Sub Pathway Super-
Pathway Estimate SE p-Value FDR

Indoleacetylglutamine Tryptophan
Metabolism Amino Acid 0.836 0.127 4.91 × 10−10 4.14 × 10−7

Methyl
indole-3-acetate

Food
Component/Plant Xenobiotics 0.564 0.093 6.42 × 10−9 2.71 × 10−6

Indolepropionate Tryptophan
Metabolism Amino Acid −0.645 0.132 1.85 × 10−6 5.21 × 10−4

Indoleacetate Tryptophan
Metabolism Amino Acid 0.405 0.094 2.32 × 10−5 4.89 × 10−3
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Figure 2. Boxplots comparing metabolite levels between CVD and control groups. *** FDR < 0.001,
**** FDR < 0.0001.

3.4. Spearman’s Correlation Analysis

Spearman’s correlation analysis (Figure 3) revealed two distinct patterns among the
top FDR metabolites in our study. Indoleacetylglutamine and indoleacetate show significant
positive correlations with BMI, waist size, and hip size, indicating a link to obesity-related
metrics. They also correlate positively with triglycerides, a key marker of dyslipidemia,
which is a major risk factor for CVD. Additionally, indoleacetylglutamine is positively
associated with uric acid, which has been implicated in hypertension and endothelial
dysfunction, factors that elevate CVD risk. In contrast, indolepropionate exhibits a reverse
pattern and appears to be cardioprotective. It shows a significant positive correlation with
magnesium, which is known to reduce arterial stiffness, improve endothelial function, and
lower blood pressure.
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4. Discussion
Early detection and risk stratification using novel biomarkers and metabolomics are

essential for reducing the global impact of cardiovascular diseases and improving public
health strategies. Our study identifies indoleacetylglutamine pathway as a significant
metabolic pathway associated with cardiovascular diseases. Thus, providing insights into
its potential role in the pathophysiology of CVDs, particularly through gut microbiota-
derived metabolic pathways.

Our multivariate and univariate analysis show a significant elevation of indoleacetyl-
glutamine in the CVDs group. Additionally, its precursor, indoleacetate (also known as
indole-3-acetic acid), and one of its metabolites, methyl indole-3-acetate, were also found to
be significantly increased in this group. These findings suggest a potential metabolic path-
way that may be associated with the pathophysiology of CVDs. Indole-3-acetic acid (IAA)
is an important indole metabolite metabolized from tryptophan fermentation by the gut
microbiome [19]. In the liver, IAA can combine with glutamine to produce indoleacetylglu-
tamine [20]. Dou et al. [21] reported that high IAA is associated with increased cardiovascu-
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lar events and mortality in patients with chronic kidney disease (CKD), primarily through
mechanisms of endothelial inflammation and oxidative stress. Subsequent studies [22,23]
have consistently supported these findings, highlighting a significant association between
IAA and CVDs, particularly in the context of CKD. Data on indole-3-methyl acetate are
very limited. Stoll et al. [24] reported altered indole-3-methyl acetate levels among several
tryptophan metabolites in pediatric enthesitis-related arthritis fecal samples.

Recent studies have highlighted the crucial role of gut microbiota-derived metabolites
in human health, particularly in relation to cardiovascular outcomes [25,26]. Gut micro-
biota dysbiosis frequently occurs before the onset of clinical symptoms, implying that gut
microbial imbalance could be a primary trigger for cardiovascular diseases [27]. More-
over, the use of probiotics, to modulate the gut microbiota, has demonstrated protective
effects against cardiovascular disease, highlighting the importance of gut microbiota in
maintaining cardiovascular well-being [28]. For instance, the association between pheny-
lacetylglutamine and CVDs is well established [29], with several studies confirming its link
to heart failure, coronary heart disease, and other cardiovascular conditions [30–34]. The
mechanisms underlying these associations are thought to involve phenylacetylglutamine ef-
fects on adrenergic receptor signaling, platelet activation, and endothelial dysfunction [30].
However, emerging evidence suggests that other aromatic amino acids-derived metabolites
may also play significant roles in cardiovascular health [35].

Lee et al. [36] notably reported that both phenylacetylglutamine and indoleacetyl-
glutamine, in addition to trimethylamine N-oxide, are linked to negative neurocognitive
outcomes in pediatric CKD patients. Moreover, Nemet et al. [37] contributed to an atlas
mapping the relationships between gut microbial metabolites and cardiovascular risks,
revealing that phenylacetylglutamine and indoleacetylglutamine are associated with a
higher incidence of major adverse cardiovascular events.

Our results are further validated by the significantly decreased levels of indolepropi-
onate in the CVDs group. Indeed, indolepropionate (or indole-3-propionic acid), which is
also a gut microbiota-derived tryptophan metabolite, has shown significant cardioprotec-
tive effects in various CVDs models. Indolepropionate improves mitochondrial function in
cardiomyocytes [38], reduces atherosclerosis progression [39], and protects against diastolic
dysfunction in heart failure with preserved ejection fraction [40].

Our correlation analysis further corroborates these findings by revealing distinct
cardiovascular and metabolic risk patterns associated with the studied metabolites. In-
doleacetylglutamine and indoleacetate demonstrate significant positive correlations with
blood and key metabolic parameters, including glucose, HbA1c, insulin, and C-peptide.
These associations suggest their potential involvement in pathways linked to impaired
glucose regulation and hypertension. Notably, indoleacetylglutamine shows strong pos-
itive correlations with waist size and waist-to-hip ratio, highlighting its connection to
central adiposity and potential contributions to obesity-related cardiovascular risk. In
contrast, indolepropionate exhibits a markedly different profile, characterized by negative
correlations with BMI, waist size, waist-to-hip ratio, triglycerides, and positive correlations
with HDL cholesterol and magnesium. These findings align with its potential protective
role in cardiovascular health by promoting a favorable lipid profile and reducing markers
of obesity.

To assess the predictive ability of indoleacetylglutamine and other metabolites for
CVDs, we performed a receiver operating characteristic (ROC) curve analysis. The ROC
analysis (Supplementary Figure S1) demonstrated that these metabolites effectively dif-
ferentiate individuals with and without CVDs, thereby highlighting their potential as
predictive biomarkers.
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Several microbes producing tryptophan catabolites have been identified [19], but no
studies have yet used human data to pinpoint the main producers in the gut. In our study,
the concomitant increase in indoleacetylglutamine and indoleacetate and the decrease in
indolepropionate in the CVD group could be explained by a dysbiosis in the gut microbiota
which divert their metabolism into a pathway that favors the production of indoleacetate
and related metabolites at the expenses of indolepropionate (See Figure 4). These findings
suggest that manipulating gut microbiota may be a therapeutic possibility for the treatment
of many diseases associated with tryptophan metabolism.

The study presents several limitations that should be acknowledged. The cross-
sectional nature of the study limits the ability to establish causal relationships between
identified metabolites and CVDs. Furthermore, while this study identifies potential associ-
ations, it cannot definitively conclude the predictive ability of these metabolites for future
cardiovascular events. Additionally, it should be considered preliminary as the sample
size may still be insufficient to capture the full spectrum of metabolic variability across
different populations. It is important to note that these metabolites may not improve CVD
risk assessment beyond that of classic risk factors; however, our findings hold promise for
an improved understanding of the pathophysiology of CVDs and will help focus future
studies on gut–microbial metabolic outputs relevant to host cardiovascular health. Future
studies include conducting large-scale, prospective studies to track microbiome changes
across the cardiovascular risk spectrum and during acute events.
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5. Conclusions
In this study, we identified indoleacetylglutamine as a significant metabolite associated

with cardiovascular diseases, providing new insights into their pathophysiology through
gut microbiota-derived metabolic pathways, and reinforcing the importance of tryptophan
metabolism in CVD pathophysiology. The findings suggest that manipulating gut mi-
crobiota could be a potential therapeutic approach for treating diseases associated with
tryptophan metabolism. It is important to note that while these identified biomarkers may
have significantly advanced healthcare delivery, their optimal use requires integration with
comprehensive clinical data. Their interpretation should always be contextualized within
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the broader clinical framework, and relying solely on biomarkers without considering the
entire clinical picture can lead to incomplete or misleading conclusions.

Future studies should adopt a comprehensive approach that combines retrospective
analysis, prospective validation, and the application of artificial intelligence and machine
learning techniques to fully establish the predictive value of these biomarkers for cardio-
vascular diseases.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biom15030377/s1. Table S1. Linear regression analysis to determine
metabolites associated with CVD, while adjusting for age, gender, BMI and principle components
1 and 2. Figure S1: Receiver Operating Characteristic (ROC) curve analysis for evaluating the
predictive ability of indoleacetylglutamine (and other candidate metabolites) as biomarkers for
cardiovascular disease (CVD). The area under the curve (AUC) indicates the discriminatory power of
the metabolite(s) in distinguishing between individuals with and without CVD.
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