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Purpose: To develop an automated reference frame selection (ARFS) algorithm to
replace the subjective approach of manually selecting reference frames for processing
adaptive optics scanning light ophthalmoscope (AOSLO) videos of cone photorecep-
tors.

Methods: Relative distortion was measured within individual frames before
conducting image-based motion tracking and sorting of frames into distinct spatial
clusters. AOSLO images from nine healthy subjects were processed using ARFS and
human-derived reference frames, then aligned to undistorted AO-flood images by
nonlinear registration and the registration transformations were compared. The
frequency at which humans selected reference frames that were rejected by ARFS was
calculated in 35 datasets from healthy subjects, and subjects with achromatopsia,
albinism, or retinitis pigmentosa. The level of distortion in this set of human-derived
reference frames was assessed.

Results: The average transformation vector magnitude required for registration of
AOSLO images to AO-flood images was significantly reduced from 3.33 6 1.61 pixels
when using manual reference frame selection to 2.75 6 1.60 pixels (mean 6 SD)
when using ARFS (P ¼ 0.0016). Between 5.16% and 39.22% of human-derived frames
were rejected by ARFS. Only 2.71% to 7.73% of human-derived frames were ranked in
the top 5% of least distorted frames.

Conclusion: ARFS outperforms expert observers in selecting minimally distorted
reference frames in AOSLO image sequences. The low success rate in human frame
choice illustrates the difficulty in subjectively assessing image distortion.

Translational Relevance: Manual reference frame selection represented a significant
barrier to a fully automated image-processing pipeline (including montaging, cone
identification, and metric extraction). The approach presented here will aid in the
clinical translation of AOSLO imaging.

Introduction

The application of adaptive optics (AO) to
ophthalmoscopes has revolutionized vision research
by allowing diffraction-limited imaging of the living
retina. AO flood-illuminated ophthalmoscopy (AO-

flood),1 AO scanning light ophthalmoscopy (AO-

SLO),2,3 AO-line scanning ophthalmoscopy (AO-

LSO),4 and AO-optical coherence tomography (AO-

OCT)5–7 are used by basic scientists and clinical

researchers to examine healthy8–14 and diseased

retinas.15–21 Confocal AOSLO is commonly used to
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visualize wave-guided light from cone and rod
photoreceptors,22 and multiply scattered, nonconfo-
cal reflected light may be split and recombined to
visualize photoreceptor inner segments,23 the retinal
pigment epithelium,24 or retinal ganglion cells.25

These techniques have led to strategies for informing
candidacy for human gene therapies19,23,26,27 and
offer a new avenue in studying mechanisms underly-
ing retinal health in animal models.28–36

While much of the focus in advancing AO
technology has been on hardware,37 the rate-limiting
step in applying AO more broadly to clinical settings
is often the processing and analysis of the images.
Without an efficient processing pipeline, AO oph-
thalmoscopes are impractical for clinical use due to
the significant effort currently required for processing
and analysis. Advances have been made in automatic
montaging of images of the cone photoreceptor
mosaic4,10,38 and identification of individual
cones,4,10,12,39–42 yet software for processing the raw
image sets is still lacking. Due to involuntary eye
motion and the relatively low signal from retinal
reflectance, AO image sequences must be registered to
a reference frame and averaged to increase the signal-
to-noise ratio (SNR).43–48 Reference frame selection
traditionally requires expert manual over-
sight,4,44,46,47,49 which is subjective and time consum-
ing. This process typically involves estimating the
overall eye motion within an image sequence so that
the reference frame will have a significant overlapping
area with other frames (hereby, referred to as being
spatially representative), and closely examining fea-
tures between frames to detect subtle expansions and
compressions that result from over- or under-sam-
pling regions of the retina during tremor and
drift.45,50 Frequently, humans may select multiple
reference frames within a video that appear to be
spatially segregated in order to increase coverage of
the retinal area. This approach aids the montaging
step where processed images from different retinal
locations are stitched together to form a large
composite image of the retina.

Algorithms that employ template-independent
image quality metrics (e.g., sharpness, contrast,
brightness) or statistical methods for automated
reference frame selection from AO-flood,51–53 AO-
LSO,40 and AO-telescopes54 have been proposed;
however, these metrics are not robust for detecting
motion artifacts within AOSLO images. Unsuper-
vised registration algorithms of raw AO-flood image
sequences have been developed,55,56 however their
efficacy in handling large motion artifacts has not

been demonstrated. Acquisition and postprocessing
schemes have been developed for OCT and AO-OCT
to correct for involuntary eye motion, but still require
manual selection of a registration template,49,57,58 or
require orthogonal raster scanning,59 which has not
been implemented in AOSLO. Real-time eye tracking
combined with AOSLO has been reported,60 which
would enable automated reference frame selection
through image analysis if motion artifacts were
eliminated. However, even with optical and digital
image stabilization, motion artifacts persist in a
significant portion of frames and could benefit from
an automated method of selecting minimally distorted
reference frames.

Here, we sought to develop an automated refer-
ence frame selection (ARFS) algorithm optimized for
our primary imaging modality: confocal AOSLO of
the photoreceptor mosaic. Our algorithm comprises
two main modules: distortion detection to select the
least distorted frame(s) from an image sequence and
motion tracking to allow selection of multiple
reference frames from distinct spatial locations to
potentially increase coverage and aid in the creation
of montages. We compared the level of residual
distortion in images processed by ARFS and one
expert human observer (RFC), assessed the accuracy
of motion tracking, and determined how frequently a
group of human observers select one of the least
distorted frames in a sequence identified by ARFS.
ARFS may reduce the data backlog inherent in AO
imaging and allow researchers and clinicians to focus
on analyzing61 and interpreting62 AO images of the
retina.

Methods

Image Sequences

Image sequences were obtained using previously
described AOSLO22,50 and AO-flood systems.50 The
AO-flood had an exposure time of 6 ms, and the
AOSLO had frame rate of 16.6 Hz with a line rate of
approximately 15 kHz. Static sinusoidal distortion
resulting from use of a resonant scanner was corrected
in AOSLO images.2,3 To determine the planar scale of
retinal images in micrometers per pixel, images of a
Ronchi ruling were acquired at the focal plane of a
19-mm focal length lens, and an adjusted axial length
method63 was used to estimate the retinal magnifica-
tion factor based on the subjects’ axial length
measurements obtained via IOL Master (Carl Zeiss
Meditec, Dublin, CA). AO-flood images were up-
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sampled with bicubic interpolation to match the scale
of the corresponding AOSLO images using Photo-
shop CS6 (Adobe, San Jose, CA). This study followed
the tenets of the Declaration of Helsinki and was
approved by the institutional review board at the
Medical College of Wisconsin.

Algorithm Workflow

This algorithm was implemented in Matlab (Math-
Works, Inc., Natick, MA) and proceeded as follows
(Fig. 1). First, to eliminate frames that were either
saturated or acquired during blinks, frames were kept
only if their mean pixel intensity (Ī) was not an outlier
(l� 3r � Ī � lþ 3r), where l and r are the average
and SD of a given metric for the sequence,
respectively. To eliminate frames with large motion
artifacts and measure intraframe distortion (full
description following; Fig. 2), coefficients of determi-
nation (R2) obtained from linear regression of the
processed discrete Fourier transform (DFT) of frame
strips were summed (RR2), and outliers were rejected
(RR2 � l þ 3r). To identify spatially segregated
clusters of frames, motion tracking (Fig. 3) and
clustering (Fig. 4) were conducted and outliers were
rejected by the following metrics: normalized cross-
correlation (NCC) peak height: (NCC � l� 3r), and
distance (d) to cluster centroid (d � l þ 3r). NCC
peak heights are reduced by intraframe distortion, so
we conducted an additional ‘‘strict’’ rejection by
removing frames with the lowest 20% of NCC peak
heights. The frames from each distinct spatial cluster

with the lowest RR2 values from the intraframe
motion module were then output to the user for use in
their preferred method of registration and combina-
tion. Also, output to the user was the relative
coordinates of each frame, cluster assignment, and
number of frames in each cluster to inform the
registration process. Many parameters are currently
hard-coded, and should be tuned to the user’s dataset;
a list of parameters with tuning suggestions is given in
Supplementary Table S1.

Intraframe Motion Detection

The goal of this module was to estimate distortion
within frames by detecting disruptions in the charac-
teristic frequency representation of the photoreceptor
mosaic. To begin, each frame was divided into strips
along the fast-scanning axis (strip size: 40 pixels) and
the DFT was calculated with 5123 512 sampling (512
is the nearest base-2 unit to the image width [~600
pixels], chosen to optimize speed without too much
aliasing). The strip size of 40 pixels was chosen
because it typically encompasses two to four rows of
photoreceptors (depending on field-of-view, retinal
location, health, etc.) and gives an adequate sample of
local photoreceptor geometry. The DFTs were
cropped to the lower 25% of frequency components
that, for our images, spared Yellott’s ring41,64 (an
annulus representing the modal spacing of photore-
ceptors). Pixels less than the mean of the non-zero
magnitude coefficients were set to zero to include only
frequencies with a significant contribution to the

Figure 1. Algorithm workflow. Frames from an AOSLO image sequence were rejected using the conventional definition of an outlier as
an observation being at least 3 SDs (r) away from the mean (l). They were rejected based on mean pixel intensity (Ī � l� 3r or Ī � lþ
3r), intraframe motion (RR2 � lþ 3r), NCC peak height (NCC � l� 3r) after motion tracking, and distance to cluster centroid (d � lþ
3r) after clustering. An additional ‘‘strict’’ rejection was conducted by removing frames with the lowest 20% of NCC peak heights. The
frames from each distinct spatial cluster with the lowest RR2 values were output.
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image in the analysis. The maximum coefficient in
each column was found, and the positions of the
maxima were recorded. In a strip without distortion,
the coordinates of the maxima are expected to be
arranged in an annulus centered about the zero-
frequency component, with a radius indicative of the
modal spacing of the photoreceptors (Fig. 2B).41,64

However, local distortion results in a shift from a
circular to a more linear arrangement of the

coordinates (Fig. 2C). Conducting linear regression
on the coordinates of the maxima and obtaining the
R2 value detected this. R2 values from each strip in a
frame were summed, and RR2 was used as a metric for
intraframe motion. Frames with a RR2 greater than l
þ 3r for the sequence were treated as outliers and
rejected from consideration. Figure 2A shows a frame
that would be rejected by this module due to its
relatively high intraframe motion, compared with the
frame in Figure 2D. This metric was used as the final
output criterion for a minimally distorted reference
frame after additional rejections by other modules
(following), as it was the best independent measure of
distortion employed.

Interframe Motion Tracking

Despite careful practice in image acquisition in a
controlled environment, involuntary eye movements
have a significant impact on the temporal and spatial
relationships between consecutive frames at the level
of magnification afforded by AO. Currently, humans
select multiple reference frames within a video from
subjectively determined spatial loci while viewing the
sequence consecutively. We sought to develop this
module to objectively determine the relative spatial
positions of the frames, and sort them into spatial
clusters (below), such that the least distorted frame
from each cluster could be output automatically. To
accomplish this, image-based motion tracking was
conducted using full-frame NCC between consecutive
frames (first pass) and groups of frames (second pass;
Fig. 3). We used an implementation of NCC that was
developed in-house using the Matlab function fft2.46

The position of the maximum value in an NCC matrix
signifies the linear transformation that results in
maximum signal overlap. Due to edge artifacts
inherent in NCC, an elliptical window was centered
at the zero displacement position with radii that were
two-thirds the dimensions of a frame (allowing a
maximum displacement between frames of ~400
pixels). For two frames capturing overlapping regions
of the retina, there will be a distinct peak in NCC
matrix with a full-width-half maximum (FWHM)
related to feature size, image contrast, and distortion
within and between frames.

The height of this distinct peak may not be the
global maximum for the NCC matrix if there are
artifacts in the image such as partial blinks, or
prominent features (e.g., blood vessels, pathological
hyporeflectivity, etc.) that move into view between
frames due to eye motion. For this reason, we
developed a custom peak-finding algorithm tailored

Figure 2. Intraframe motion process. (A) Raw AOSLO frame
exhibiting both a normal cone mosaic and a prominent motion
artifact resulting in blurring of the photoreceptors. (B) Log10-scale
image of the DFT calculated from the strip outlined in blue from
(A). The red line indicates the least-squares linear regression of the
maxima across columns, with an R2 value of 0.0085. (C) Log10-scale
image of the DFT calculated from the strip outlined in orange from
(A). The R2 value of this regression is 0.98, suggesting a significant
distortion. (D) Raw AOSLO frame exhibiting no obvious distortions.
(E) Log10-scale image of the DFT calculated from the strip outlined
in blue from (D), R2 ¼ 0.011. (F) Log10-scale image of the DFT
calculated from the strip outlined in orange from (D), R2 ¼ 0.046,
possibly suggesting a subtle distortion, but could also be within
the normal limits of variability for this frame. Scale bars, 50 lm.
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to our distribution of image and photoreceptor sizes.
First, a square mask with a side length of 21 pixels
(slightly larger than the average size of the FWHM of
an NCC peak) was centered on the global maximum
and it was determined whether any other element in
the NCC matrix exceeds 1 – (1/e) times the global
maximum. If not, the global maximum was accepted
as the true peak of the NCC matrix and the relative
spatial positions were recorded. If there were com-
peting local maxima, the NCC matrix was smoothed
using a Gaussian kernel (size: 10 pixels, r: 1) and the
absolute values of horizontal and vertical gradients

were calculated to find local maxima. The parameters
of the smoothing kernel were found to be effective in
eliminating low amplitude peaks without diminishing
distinct peaks in our images. The horizontal and
vertical gradient matrices were subjected to element-
wise multiplication, and the peak of this combined
matrix was detected as an outlier (l þ er; this time
using a slightly more liberal outlier definition). If a
single distinct peak could not be detected using this
outlier criterion, the relative position of the sample
frame was not offset from the template frame, and it
was noted that no connection could be made between

Figure 3. Motion tracking process. (A, B) Two AOSLO frames with approximately 1 second between acquisitions. (C) The NCC matrix
calculated for the frames in (A) and (B) after application of an elliptical mask (image cropped to mask boundaries). The peak of the NCC
matrix is indicated by the arrows, which correspond in this case to a horizontal offset (dx) of approximately 72 pixels and a vertical offset
(dy) of approximately 44 pixels. (D) An AOSLO frame from the same video as (A) and (B). (E) An AOSLO frame from a video acquired from
the same subject at a different retinal location, showing an extreme example of an NCC calculated from nonoverlapping retinal areas. (F)
The NCC matrix calculated for the frames in (D) and (E), processed as in (C). Because no distinct peak can be found, these frames (n and n
þ 1) would define the last frame in a group (D; � n) and the first frame in the next group (E; . n). (G) Result of first pass of motion
tracking. Relative spatial locations of the images are recorded, and frames are grouped based on successful peak finding. (H) Template
and sample groups are registered to one another using a transformation vector with direction and magnitude dependent on a weighted
average of NCC maxima calculated as described in the text. Scale bar, 50 lm.
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Figure 4. Clustering process. (A) Manually simulated coordinates of frames for demonstration of the spatial clustering process. (B) Result
of k-means clustering, each color represents a different cluster. For the purpose of demonstration, the number of partitions was manually
set to 8, rather than using the silhouette statistic, which would have selected 3. (C) To prevent overclustering, frames may be absorbed by
other clusters based on overlapping area. The large solid black circle represents the region in which a frame would overlap by more than
75% area (A . 75%) with a frame at the current cluster centroid (largest cluster absorbs first and proceeds to the smallest). (D) Filled
circles represent frames whose cluster assignments are constrained after being absorbed. (E) The next largest cluster has a chance to
absorb frames, but no unconstrained frames overlap with the current cluster centroid by more than 75%. The smallest cluster does not
absorb any frames because at this point all other cluster assignments are constrained. (F) Clusters with fewer frames than a user-defined
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the template and the sample frames. Otherwise, the
position of the peak in the gradient matrix was used
as the center of a 21 3 21-pixel window on the NCC
matrix, and the maximum and its position were
calculated within that window. This process contin-
ued for each frame in the image sequence, and an
approximate set of coordinates was generated from
the relative offsets (Fig. 3C).

A second pass was then conducted under the
assumption that connections between consecutive
frames could not be made due to a large saccade.
Frames were grouped based on successful peak
finding, such that a new group was defined at each
failure to find a peak in the NCC matrix of two
consecutive frames (Fig. 3F). Groups could have
length greater than or equal to 1, which allowed for
the special case where the first frame in a sequence
had no overlapping area with the next frame in the
sequence (Fig. 3G). This is especially important for
subjects with severe nystagmus, as consecutive frames
rarely overlap, and it becomes necessary to attempt to
align frames from across the sequence. Groups were
combined by attempting to register a few key frames
between a template and a sample group: the first and
last frames in each group, as well as the frame nearest
the template group centroid (referred to as template
central). The comparisons conducted were: template
first to sample first, template last to sample last, and
template central to sample first. It was designed this
way to minimize the number of NCC calculations
while conducting a diverse search to find an
overlapping area. This was conducted in order of
decreasing group size and included all nonredundant
group comparisons. Each time a peak was success-
fully detected, its position and magnitude was
recorded. A transformation vector was then con-
structed whose direction and magnitude was deter-
mined by a weighted average of the square of the
NCC peak heights detected, and the coordinates of all
frames in the group were transformed by this vector
(Fig. 3H). Using a weighted average vector helps
ensure that the alignment of groups is biased toward
high signal overlap and robust to false peak detection
errors. If no connections can be made between a
group and any other, it is considered an isolated
group without any spatial connection to the remain-

ing frames, and is processed separately for the
remainder of the algorithm. During motion tracking,
the average NCC maximum of each successful
connection (note that most frames are compared
twice) was recorded and used as an inference of
intraframe distortion. This was used as an additional
criterion for outlier rejection (NCC � l � 3r).

Clustering

All frames whose relative positions could be
determined by NCC were then sorted into spatial
clusters (Fig. 4). The number of clusters was
automatically determined using the silhouette statis-
tic65 and the cluster assignments were determined
using the k-meansþþ algorithm (Fig. 4B).66 The
maximum number of clusters allowed in this first
step was the number of remaining candidate frames
divided by a threshold for the minimum number of
frames per cluster set by the user. k-means was
conducted with five replicates to balance speed and
accuracy. Recall that groups of frames defined during
interframe motion tracking could have lengths less
than this threshold and would be processed separately
if they could not be absorbed into another group;
these groups would be rejected at this stage. During k-
means partitioning, each coordinate is treated as a
discrete point, rather than a range of coordinates with
overlapping area, which may result in over-clustering.
To account for this, a frame was absorbed into
another cluster if its area had at least 75% overlap
with the centroid of that cluster (Figs. 4C–E). The
threshold of 75% overlap was arbitrarily chosen as a
balance between improving SNR and increasing
retinal coverage with multiple processed images. This
progressed in order of decreasing cluster size (i.e., the
number of members in a cluster). After a frame was
absorbed, it could not be absorbed by any other
cluster (Fig. 4E). Clusters containing fewer than the
user-defined threshold for the minimum number of
frames per cluster were rejected as being insufficient
to boost SNR (Fig. 4F). The distance between each
frame and its cluster centroid was recorded and
frames that were considered outliers (l þ 3r) were
rejected. This allowed for dynamic correction of
underclustering, but may benefit in the future by an

 
threshold are rejected. (G) Large solid black circles represent the boundary at which a frame is greater than 3 SDs (r) away from the cluster
centroid. Frames within the cluster but outside this boundary are rejected. (H) The final result for this set of coordinates is two spatially
distinct clusters of frames from which the least-distorted frame can be determined and used as references for registration and averaging.
Scale bar, 50 pixels for (A–H).
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absolute rejection threshold related to the aforemen-
tioned absorption threshold.

Distortion Analysis

To assess the ability of ARFS to select minimally
distorted reference frames, residual distortion in
registered AOSLO image sequences was compared
between ARFS- and manually-derived reference
frames. All manually derived reference frames were
identified by one expert observer (RFC). For nine
healthy subjects (age: 24.6 6 3.5 years; l 6 r; 7
males, 2 females), 10 reference frames were selected
from one video at 18 temporal from the foveola (1T;
Supplementary Table S2). A 1.88 3 0.88 field-of-view
(FOV) AO-flood image sequence was obtained at the
same locations, and processed as previously described
(Fig. 5A).50 Briefly, AO-flood images underwent flat-

field correction for uneven illumination, RFC man-
ually selected a reference frame with minimal motion
blur, and the 80 frames with the highest cross-
correlation were registered to the reference frame
and the stack was averaged. Averaged AOSLO
images (Fig. 5B) were manually aligned to the
undistorted AO-flood image in Photoshop CS6, and
cropped to a common 0.558 area. The AO-flood and
AOSLO images were subjected to local histogram
equalization, then registered using a rigid transform
in ImageJ software (National Institutes of Health,
Bethesda, MD).67 Strip-registration46 was then con-
ducted using the AO-flood image as the reference
frame, maintaining all registration parameters set by
the human observer. Distortion in the AOSLO images
was calculated as the mean registration transform
magnitude (henceforth, referred to as pixel shift
vector, or ‘‘PSV’’ magnitude) for every row in the

Figure 5. Distortion analysis. (A) Registered and averaged AO-flood image used as an ‘‘undistorted’’ template for determining
distortions in AOSLO images. (B) Registered and averaged AOSLO image using either ARFS- or human-derived reference frames. (C) A
representative set of pixel shift vectors (PSV) resulting from strip-registration of an AOSLO image to an AO-flood image. The magnitude of
each vector is represented by its position on the x-axis and the angle is represented by the color according to the inset color-map. For
example, the upper-most rows of the AOSLO image required an approximately 2.25-pixel rightward shift (cyan), the point just below this
strip had nearly perfect registration with the AO-flood image (~0 pixels), and the strip below that point required an approximately 2-pixel
leftward shift (red). (D) Average PSV magnitudes using either ARFS- or human-derived reference frames for registration and averaging of
AOSLO images. ARFS-derived images resulted in PSV magnitudes of 2.75 6 1.60 pixels and human-derived images resulted in PSV
magnitudes of 3.33 6 1.61 pixels (P¼ 0.0016; Mann-Whitney U test; n¼ 90). (E) Distribution of PSV magnitudes for each approach. Scale
bar, 50 lm.
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AOSLO image. A representative example for ARFS is
shown in Figure 5C. The distributions of mean PSV
magnitudes for each ARFS- and human-derived
reference frame were compared by Mann-Whitney U
test due to violation of the normality assumption
requisite of parametric tests. Descriptive statistics
were also calculated to determine which distribution is
shifted more toward the ideal PSV magnitude (0
pixels).

Motion Tracking Validation

To validate the motion-tracking module, a motion
trace was obtained from the same image sequences as
in the distortion analysis (Supplementary Table S2),
and each group of frames with known spatial
locations were registered together and cropped to a
common area. Using the first frame as a reference, the
frames were reordered to minimize mean squared
error (MSE) between images calculated using the
Matlab function immse. The cumulative MSE for the
stack of images was calculated under the assumption
that registration errors would result in significant
increases in MSE between frames. This was compared
against the cumulative MSE for unregistered and
strip-registered sequences.

Comparison of Human Frame Selection and
ARFS Metrics

The agreement between human and ARFS refer-
ence frame selection was assessed. Datasets were
obtained from 5 to 10 subjects each from 4
pathological categories (normal, n ¼ 9 datasets
processed by 7 observers; subject age: 25.2 6 3.2
years; 7 males, 2 females), achromatopsia (ACHM; n
¼ 10 datasets processed by 9 observers; subject age:
24.4 6 12.1 years; 5 males, 5 females), albinism (n¼ 5
datasets processed by 1 observer; subject age: 16.2 6

12.9 years; 5 females), and retinitis pigmentosa (RP; n
¼ 10 datasets processed by 6 observers; subject age:
39.5 6 13.8 years; 6 males; 4 females; Supplementary
Table S3). The discrepancy in the number of datasets
is the result of an initial examination of an arbitrary
division of datasets between beginner and expert
reference frame selectors. No significant difference
was found between the groups so the data were
pooled. All albinism datasets were processed by a
single ‘‘expert,’’ so only five were included. For this
analysis, the minimum frame per cluster threshold in
ARFS was held at five. The proportion of frames
selected by humans that were not rejected by ARFS
was calculated, and for those that were rejected, the

module responsible for the rejection was recorded.
Because intraframe motion is our final determinant
for ranking, we determined the intraframe motion
rank of each frame selected by humans and deter-
mined the distribution of ranks for each pathological
category.

Results

Distortion Analysis

ARFS-derived reference frames resulted in a
significant decrease in residual distortion relative to
manually derived reference frames. ARFS- and
human (RFC)-derived reference frames resulted in
PSV magnitudes of 2.75 6 1.60 pixels and 3.33 6

1.61 pixels (P¼0.0016; Mann-WhitneyU test; n¼90),
respectively (Fig. 5D). The medians for the PSV
distributions were 2.42 and 3.29 pixels for ARFS and
RFC, respectively. The skewness for ARFS wasþ2.12
andþ1.33 for RFC, indicating ARFS was more right-
skewed (Fig. 5E).

Motion Tracking Validation

ARFS-registered sequences reduced cumulative
MSE compared with unregistered sequences, but not
as well as strip-registered sequences. The average
slope of increasing MSE of unregistered, ARFS-
registered, and strip-registered sequences are 0.063,
0.044, and 0.022, respectively (Fig. 6). From a visual
inspection of all registered videos, it was found that
the ARFS motion tracking process led to a registra-
tion error in a few videos of approximately 10 pixels,
but the primary source of the increased MSE was
local distortion between frames, which is not correct-
ed for by full-frame NCC (Supplementary Video S1).

Comparison of Human Frame Selection and
ARFS Metrics

Humans were more likely to select a reference
frame rejected by ARFS for videos acquired from
subjects with pathology than for subjects with healthy
retinas, varying widely from 5.16% to 39.22% (Table
1). The most common ARFS rejection method, on
average, for all human-derived reference frames was
cluster size, ranging from 0.32% to 21.39% of frames,
while the least common was mean pixel intensity,
ranging from 0% to 0.36% of frames. It was relatively
uncommon that a human would select a frame that
was rejected based on intraframe motion, with a range
of 1.94% to 5.35%. More commonly, humans would
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select frames that were rejected based on NCC,

ranging from 2.26% to 12.30%. Figure 7 shows the

distribution of intraframe motion rankings of human-

derived reference frames (1 is best, 0 is worst). 5.24,

2.71, 7.73, and 3.89% (normal, ACHM, albinism, and

RP, respectively) of human-derived reference frames

ranked in the 95th to 100th percentile for intraframe

motion. Put another way, on average, humans

selected a minimally distorted reference frame 4.89%
of the time.

Discussion

The results from the distortion analysis show that
ARFS can automatically select minimally distorted
reference frames from AOSLO image sequences.
Automatically determining minimally distorted
frames is an important step in validating the
technique of AOSLO, and increases the accuracy of
measures of photoreceptor geometry.50 It is important
to note that even the least-distorted image in a
sequence may be unacceptably distorted, as is often
the case with images obtained from patients with
nystagmus. For example, if the frame with the lowest
RR2 value for the sequence had an average R2 of 0.5,
it is likely that this frame would be visibly distorted,
but because ARFS does not employ absolute thresh-
olds, it would still be output as the ‘‘minimally

Table 1. Comparison of Human Frame Selection and ARFS Metrics

Method of Rejection (%) Normal ACHM Albinism RP

Intensity 0.00 0.00 0.00 0.36
Intraframe motion 1.94 5.35 5.33 4.66
Normalized cross-correlation 2.26 12.30 10.67 3.94
Cluster size 0.32 21.39 18.00 7.35
Distance to cluster centroid 0.65 0.18 0.67 0.90
Not rejected 94.84 60.78 65.33 82.80

Figure 7. Intraframe motion ranks of human derived reference
frames. Histograms of intraframe motion ranking (1 is best, 0 is
worst) of human-derived reference frames for videosobtained from
subjects with normal retinas, ACHM, albinism, or RP. Frames below
the horizontal dashed lines were rejected by the intraframe motion
module (1.94%, 5.35%, 5.33%, and 4.66% for normal, ACHM,
albinism, and RP, respectively).

Figure 6. Motion tracking validation. (A) Raw AOSLO frame
representing an unregistered image sequence. (B) Frame outlines
with relative spatial locations representing full-frame registration
using the motion-tracking module described here. (C) An AOSLO
frame that has been subjected to strip registration.46 Note the
nonlinear warping likely to result in decreased MSE between
frames. (D) Each dotted line represents a separate group of frames
analyzed. The grouping was determined by successful peak finding
by the motion-tracking module, and the groups were maintained
for each registration method. Solid lines represent a linear
regression of all the dotted lines for a certain registration
method; the slope (m) of which gives an estimate of the average
performance of each registration method. Orange: unregistered
frames, m ¼ 0.063. Black: registered according to the relative
positions calculated by the motion tracking module, m ¼ 0.044.
Cyan: Strip registered, m ¼ 0.022.
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distorted frame’’ from that image sequence. Thus, the
burden still lies on the user to verify that the reference
frames selected are likely accurate representations of
the subject’s retina. This problem could eventually be
corrected if the measurements from ARFS were
aggregated for a large number of subjects and used
to create absolute thresholds for acceptable intra-
frame motion and NCC values. Further, rather than
selecting the least-distorted frame, some of the
measurements made by ARFS could be combined to
construct an artificial frame from the least-distorted
regions of multiple frames to best approximate an
undistorted image.47,48,50

When examining Table 1, it is important to note
that rejection criteria are intentionally strict, and
perceptually acceptable frames may be rejected.
Further, all rejections are based on statistics calculat-
ed for sets of observations that are commonly not
normally distributed, which warrants further investi-
gation into more complex statistical criteria for
rejection. This approach is useful as it is adaptive
and accounts for a wide range of factors that
influence the images, such as tear-film and fixation
instability, lens opacity, and detector gain. Approx-
imately 95% of human-selected frames from healthy
subjects were not rejected by ARFS, which suggests
that when a frame is determined to be an outlier, it is
probably obvious enough for a human to recognize.
The remaining 5% almost certainly harbored subtle
distortions that were missed by humans. It is apparent
that ARFS and humans agree less when examining
image sequences obtained from subjects with pathol-
ogies. With nystagmus, it becomes difficult to
estimate eye motion for an image sequence unless
there are prominent and unique features present.
Because ARFS compares groups of frames from
across the image sequence, where humans are usually
confined to viewing them in order, it is better
equipped to assign frames to spatial groups and build
clusters of frames. A human may see a minimally
distorted frame out of its spatial context, but it would
fail to register due to insignificant overlap. This is a
possible explanation for the relatively high proportion
of human-selected frames rejected by the cluster-size
method. One alarming finding is the frequency at
which humans select frames that are rejected based on
intraframe motion or NCC, which means that any
metrics extracted from those processed images are
likely to be confounded by significant local distor-
tions. This is especially concerning in cases of disease,
where the presence of these distortions may confound

our metrics, and thus our understanding, of the
organization of the retina.50

The distributions in Figure 7 are not skewed
toward highly ranked frames as one might expect,
indicating that humans do not tend to select frames
objectively determined to be minimally distorted.
Severe eye motion can significantly reduce the
population of perceptually acceptable frames, increas-
ing the likelihood for humans to select a minimally
distorted frame; this may explain the increase in
selection of the top 5% of frames in the albinism
datasets relative to normal datasets. The roughly even
distributions highlight the difficulty in selecting the
least distorted frame in a sequence. While there may
be a large population of seemingly acceptable frames,
the least distorted frame will yield the most accurate
measurements of the photoreceptor mosaic.50

With 32-GB random access memory and a 3.30-
GHz central processing unit, ARFS processing time
for a video may range from approximately 2 to 8
minutes per video, depending on the amount of eye
motion and subsequent number of frame groups. The
rate-limiting step is calculating NCC matrices, which
is more computationally complex than other registra-
tion methods, but more robust to variations in
illumination and image features.46 While expert
observers may select frames at a rate of approximately
2 frames/minute, setting the parameters to run ARFS
on a dataset (frequently comprising hundreds of
image sequences) requires approximately 2 to 5
minutes, which drastically reduces the total human
interaction time.

It is important to note that many parameters used
in this algorithm were determined empirically based
on our distribution of image and feature sizes (~6003

600 pixels and 5–10 pixels, respectively), and may
need to be adjusted for use with other systems and
image sets (Supplementary Table S1). This is espe-
cially important for the intraframe motion calcula-
tion, which assumes a range of photoreceptor spacing
before cropping the DFT. With significantly increased
or decreased magnification, too little of the relevant
frequency components or too many irrelevant fre-
quency components, respectively, would be included,
and thus decrease the sensitivity and specificity of the
analysis. A potential solution to this example would
be estimating modal spacing with automated detec-
tion of Yellott’s ring41,64 to inform the size of the
cropping window. Further investigation into dynam-
ically optimizing the parameters employed by ARFS
is warranted.

A major limitation of this algorithm is its image
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feature-specific nature. Currently, ARFS only func-
tions properly on confocal images of the cone
photoreceptors. The intraframe motion module was
designed to detect disruptions to a mosaic of regularly
spaced circular objects, and as such, would have an
adverse effect when applied to images of the nerve
fiber layer or capillaries. Adaptations of other
methods may bridge this gap.52 Further, ARFS
performance has not been rigorously tested in image
sequences where there is significant disruption to the
cone mosaic such that ARFS may mistake aberrantly
shaped or organized cones as being compressed or
stretched. Subjectively, sampling a large strip of the
retina typically makes the intraframe motion module
robust to such disruptions, and tuning this parameter
may resolve this issue. In the conceivable event that a
motion artifact expands a patch of cones that are
pathologically compressed, the intraframe motion
module may be biased to select this frame; however,
it is also possible that this frame would be rejected due
to a weak NCC peak height caused by intraframe
motion.

Our lab also collects multiply scattered non-
confocal AOSLO images referred to as split-detec-
tor23 and dark-field,24 but ARFS does not currently
function properly on these modalities. The broader
intensity profile in the features of these images
results in overmasking of the DFT’s during the
intraframe motion module, and the peaks of the
NCC matrices are wider than for confocal, rendering
the peak-finding algorithm ineffective during the
motion tracking module. For subjects with pathol-
ogies affecting the wave guiding of cone outer
segments, such as ACHM, cone inner segments are
still visible in split-detector images.19 Using the
registration transforms for split-detector images
and applying them to simultaneously acquired
confocal images has been useful in identifying any
residual signal in the confocal channel that would
otherwise be too weak to use for registration. Thus,
there is significant motivation to adapt ARFS to
other modalities and image features using more
generalizable methods.
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