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Simple Summary: The objective of this review is to focus on the different nanovectors capable of
transporting genetic material such as small-interfering RNA (siRNA) in order to block the expression
of genes responsible for the development of cancer. Usually, these nanovectors are internalized by
cancer cells via the endo-lysosomal pathway. To increase the lysosomal cargo escape, excitation using
a lamp or a laser, can be applied to induce a more efficient leakage of siRNA to the cytoplasm, which
is the site of action of the siRNA to block the translation of RNA into proteins. This is the mechanism
of photochemical internalization.

Abstract: In the race to design ever more effective therapy with ever more focused and controlled ac-
tions, nanomedicine and phototherapy seem to be two allies of choice. Indeed, the use of nanovectors
making it possible to transport and protect genetic material is becoming increasingly important. In
addition, the use of a method allowing the release of genetic material in a controlled way in space and
time is also a strategy increasingly studied thanks to the use of lasers. In parallel, the use of interfering
RNA and, more particularly, of small-interfering RNA (siRNA) has demonstrated significant potential
for gene therapy. In this review, we focused on the design of the different nanovectors capable of
transporting siRNAs and releasing them so that they can turn off the expression of deregulated
genes in cancers through controlled photoexcitation with high precision. This mechanism, called
photochemical internalization (PCI), corresponds to the lysosomal leakage of the cargo (siRNA in
this case) after destabilization of the lysosomal membrane under light excitation.

Keywords: nanovectors; photochemical internalization; siRNA; cancer

1. Introduction on Cancer and Treatments

Currently, cancer stands out as the first cause of death in the world after heart dis-
ease [1]. The increase in aging and population, as well as the changes in the distribution
of the main risk factors, lead to rapid growth in cancer incidence and mortality. In 2020,
19.3 million new cases worldwide were identified, a number that is expected to increase to
28.4 million cases in 2040 [2].

Surgery, chemotherapy, radiotherapy, and hormone therapy are the main commonly
used treatments despite the limitations of the specificity toward cancerous tissues, which
lead to the key setbacks in cancer therapy as metastasis, tumor recurrence, and resistance to
the treatments [3]. Therefore, there is an urgent need to develop new strategies to effectively
kill cancer cells with little or no damage to healthy tissue.

Nanomedicine opens new hopes in solving many medical problems by developing
several nanomaterials of organic or inorganic natures. The intrinsic properties of these
nanomaterials, such as their nanometric size and large surface-to-volume ratio, open up
many possibilities to explore their potential for the biomedical applications, especially for
drug delivery, overcoming the chemotherapy limitations as systemic toxicity and multi-
drug resistance mechanisms (MDR) [4].

Cancers 2022, 14, 3597. https://doi.org/10.3390/cancers14153597 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14153597
https://doi.org/10.3390/cancers14153597
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-1176-5335
https://orcid.org/0000-0001-9641-212X
https://doi.org/10.3390/cancers14153597
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14153597?type=check_update&version=2


Cancers 2022, 14, 3597 2 of 17

Nowadays, several nanomedicines, a term that includes all nanomaterials used for
biomedical applications [5], such as liposomes and albumin-based nanoparticles, are clini-
cally approved for the treatment of cancer. Many others are in clinical trials and show great
promises such as chemotherapy delivery systems, hyperthermia agents, and genetic or
ribonucleic acid interference (RNAi) delivery systems [6].

2. Ribonucleic Acid Interference (RNAi) Technology

RNAi is a natural mechanism in eukaryotes for post-transcriptional gene silencing
through (i) chromatin remodeling, (ii) inhibition of protein translation, or (iii) direct degra-
dation of messenger RNA (mRNA) [7]. It was first discovered in 1998 by Fire and Mello
research on Caenorhabditis elegans [8] and it serves as epigenetic regulator and defense
mechanism against exogenous genes (e.g., viral or bacterial genes) and endogenous genes
(e.g., transposons) [9–11]. In addition, it is considered as a promising strategy for treatment
of cancer, primarily by specifically targeting key molecules involved in the molecular
pathways of carcinogenesis [12,13]. RNAi mediates its action through non-coding short
double-stranded RNA (nc-sdRNA) such as small-interfering RNA (siRNA) and microRNAs
(miRNA). Single miRNA can inhibit the expression of several target genes simultaneously;
however, to trigger gene silencing; siRNA is considered more efficient and specific than
miRNA [14].

Here, we focus on siRNA; thus, a description of the mechanism of action, siRNA-based
cancer therapies, and barriers to siRNA delivery will be discussed in the following paragraphs.

2.1. Mechanism of Action of siRNA

The biogenesis of siRNA starts with the presence of long dsRNA, which originates
from different sources (e.g., viral, bacterial and synthetic RNA) in the cytoplasm (Figure 1).
An enzyme called Dicer, a dsRNA-specific endoribonuclease from the RNase III protein
family, cleaves the long dsRNA to about 21 nucleotides (nt) dsRNA called siRNA with
19 nt of complementary bases and a 2-nt overhang at each 3′-end. Afterwards, the formed
siRNA duplex is loaded into a multiprotein RNA-induced silencing complex (RISC), in
which a catalytic engine called the Argonaut protein (Ago-2) cleaves the passenger strand,
keeping the active RISC with the guide strand. The siRNA guide strand recruits the RISC
to complementary sequences in target mRNAs. A perfect siRNA base-pairing with mRNA
causes direct mRNA cleavage by the catalytic RNase H domain of Ago-2, resulting in gene
silencing, an effect that could last up to 7 days in rapidly divided cells and several weeks in
nondividing cells [15,16].

2.2. siRNA-Based Cancer Therapies

Recently, siRNA has emerged as a promising therapy for the treatment of several
disorders, including cancer [17,18]. Its essential therapeutic strategy stems from its ability
to suppress oncogenes and mutated tumor suppressor genes, as well as genes involved
in MDR mechanism, resulting in the sensitization of cancer cells to treatment [19,20].
Anticancer siRNA targets can be categorized into (i) molecules involved in carcinogenesis,
including molecules involved in oncogenic pathways, regulation of cell cycle, and apoptosis
pathway; (ii) molecules involved in tumor–host interaction such as in cell adhesion, tumor
extracellular matrix, tumor immune evasion, angiogenesis, invasion, and metastasis; and
(iii) molecules participated in tumor resistance to chemotherapy, such as MDR and DNA
repair proteins [14].

The first human clinical trial of siRNA encapsulated in targeted cyclodextrin polymer-
based nanoparticles (CALAA-01) was started in 2008 by Calando Pharmaceuticals (Pasadena,
CA, USA) for solid tumor cancer treatment. This phase I study was terminated in 2012 [21].
Table 1 summarizes siRNA-based cancer therapeutics in clinical trials.
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Table 1. Anticancer siRNA-based therapeutics in clinical trials.

Name/Sponsor Route of
Administration

Delivery
System

Targeting
Moiety Target Gene Disease

Clinical Trail
Number (Clini-
calTrials.gov)

Phase/Status Period Ref

CALAA-01/Calando
Pharmaceuticals i.v.

Cyclodextrin
polymer-based

nanoparticle
Transferrin RRM2

Solid tumors
(Melanoma,

gastrointestinal,
prostate, etc.)

NCT00689065 Phase
I/Terminated 2008–2012 [21]

siG12D
LODER/Silenseed Ltd.

Endoscopic
intervention

Biodegradable
Polymeric

matrix
—–

KRAS(G12D)
and G12X
mutations

Locally advanced
pancreatic cancer NCT01188785 Phase

I/Completed 2011–2013 [22]

siG12D-LODERs plus
chemotherapy
(Gemcitabine +

nab-Paclitaxel or
Folfirinox or modified
Folfirinox) /Silenseed

Ltd.

Endoscopic
intervention

Biodegradable
Polymeric

matrix
—–

KRAS(G12D)
and G12X
mutations

Locally advanced
pancreatic cancer NCT01676259 Phase

II/Recruiting 2018–Est.2023 [23]

ALN-VSP02/Alnylam
Pharmaceuticals i.v. Lipid

nanoparticle —– VEGF
KSP

Solid tumors with
liver involvement.

NCT00882180
NCT01158079

Phase
I/Completed

2009–2011
2010–2012 [24]

TKM-PLK1 (TKM-
080301)/National

Cancer Institute (NCI)

Hepatic
Intra-Arterial

Administration

Lipid
nanoparticle —– PLK1 Primary or secondary

liver cancer. NCT01437007 Phase
I/Completed 2011–2012

[25]

Arbutus Biopharma
Corporation i.v.

Cancer,
neuroendocrine

tumors,
adrenocortical

carcinoma

NCT01262235 Phase
I/II/Completed 2010–2015

Arbutus Biopharma
Corporation i.v. Hepatocellular

Carcinoma NCT02191878 Phase
I/II/Completed 2014–2016

DCR-MYC/Dicerna
Pharmaceuticals, Inc. i.v. EnCoreTM lipid

nanoparticle
—– MYC

Solid tumors,
multiple myeloma,

lymphoma
NCT02110563 Phase

I/Terminated 2014–2016 [26]
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Table 1. Cont.

Name/Sponsor Route of
Administration

Delivery
System

Targeting
Moiety Target Gene Disease

Clinical Trail
Number (Clini-
calTrials.gov)

Phase/Status Period Ref

NBF-006/Nitto
BioPharma, Inc.

Lipid
nanoparticle GSTP

Non-Small cell lung,
pancreatic and

colorectal Cancers
NCT03819387 Phase

I/Recruiting 2019–Est.2023 [27]

Atu027/Silence
Therapeutics GmbH i.v. Liposomes —– PKN3

Advanced Solid
Cancer NCT00938574 Phase

I/Completed 2009–2012 [28]

Atu027-I-02 (Atu027
plus

gemcitabine)/Silence
Therapeutics GmbH

i.v. Liposomes —– PKN3
Advanced or

Metastatic Pancreatic
Cancer

NCT01808638 Phase
I/II/Completed 2013/2016 [29]

EphA2-targeting
DOPC-encapsulated

siRNA/M.D. Anderson
Cancer Center

i.v. Liposomes —– EphA2
Advanced or

recurrent solid
tumors

NCT01591356 Phase I/Active,
not recruiting 2015–Est.2024 [30]

Mesenchymal Stromal
Cells-derived Exosomes

with KRAS(G12D)
siRNA/M.D. Anderson

Cancer Center

MSC exosome CD47 KRAS(G12D)

Metastatic pancreatic
ductal

adenocarcinoma with
KrasG12D mutation

NCT03608631 Phase
I/Recruiting 2021–Est.2023 [31]

RRM2: M2 subunit of ribonucleotide reductase; VEGF: vascular endothelial growth factor; KSP: kinesin spindle protein; PLK1: Polo-like kinase 1; PKN3: protein kinase N3; MYC:
name of oncogene; DCR-MYC: anti-MYC DsiRNA formulated in EnCore lipid nanoparticles; EphA2: ephrin type-A receptor 2; DOPC: 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine;
KRAS(G12D): oncongene; MSC: mesenchymal stem cells; GSTP: glutathione-S-transferase P.
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Figure 1. Representation of gene expression leading to protein synthesis in “normal conditions” in
comparison with mechanism leading to mRNA degradation before protein synthesis in the presence
of siRNA.

So far, only four non-cancer related siRNA-based therapeutics are approved by the
Food and Drug administration (FDA), which are Patisiran, Givosiran, Lumasiran, and
Inclisiran branded as ONPATTRO®, GIVLAARI®, OXLUMO®, and LEQVIO®, respectively,
by Alnylam Pharmaceuticals (Cambridge, MD, USA) [32].

2.3. Hurdles to siRNA Delivery

The in vitro and in vivo delivery of “naked” siRNA, without a delivery system, can
come up against several extracellular and intracellular obstacles such as the rapid degra-
dation by nucleases (t 1

2 ~ 10 min), rapid renal clearance, activation of the innate immune
system, and the low accumulation in the target organ after systemic administration. More-
over, siRNA is characterized not only by low cellular uptake due to its negative charge and
high molecular weight (~13 kDa) but also by its inability to escape from the endo-lysosomal
compartments to the cytoplasm [33,34].

Thus, to circumvent these drawbacks two approaches are commonly used. The first ap-
proach is the chemical modification of the phosphate backbone, the heterocyclic nucleobase,
or the ribose sugar moiety in order to increase siRNA stability, affinity, and specificity
toward targets [35]. Three of the four FDA-approved siRNA therapeutics (Givosiran,
Lumasiran and Inclisiran) are composed of chemically modified siRNA conjugated to triva-
lent N-acetylgalactosamine (GalNAc), a ligand to asialoglycoprotein receptor (ASGPR),
resulting in hepatocyte-specific delivery. These GalNAc conjugates are fully modified at
the 2′ position of the ribose sugar with 2′-O-methyl (2′-OMe) or 2′-deoxy-2′-fluoro (2′-F) as
well as including phosphorothioate linkages. Unfortunately, chemical modifications are
associated with several limitations, such as toxicity and low biological activity [36,37].

The second approach is the incorporation of siRNA into delivery systems to ensure
efficient and safe administration of siRNA to the target site. For years, viral vectors
have been used for siRNA delivery due to their strong efficiency, but they raise safety
concerns due to their high immunogenicity and carcinogenic effects [38]. On the contrary,
nanomaterials are considered as potential candidates for siRNA delivery showing low
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immunogenicity and toxicity, ease preparation, and high loading capacity. Additionally, the
cargo is protected from degradation and nanomaterials can be active- or passive-targeted
delivery systems, stimuli-responsive release systems, and co-delivery systems of different
drugs simultaneously.

The first FDA-approved siRNA therapeutic, Patisiran, is composed of multicomponent
lipid nanoparticles (LNP) encapsulating partially chemically modified siRNA, in which
some of the nucleotides are chemically modified at 2′-OMe. These chemical modifications
reduce the nuclease degradation and innate immune system stimulation, while LNP pro-
vides the liver-specific delivery of siRNA via apolipoprotein E (ApoE) receptor endocytosis
aside from nuclease protection [39].

In general, nanomaterials are internalized in the cells by either nonendocytic or endo-
cytic route depending on several factors such as nanomaterials physicochemical properties
(e.g., size, shape, and charge); targeting moieties; etc. [40]. According to the mechanism
of internalization, the fate of the nanomaterials inside cells is determined, for example if
nanomaterials are internalized by clathrin-mediated endocytosis, then they will be trapped
in the endosomes, which subsequently fuse with lysosomes and degradation will take
place due to severe acidic conditions [4]. Therefore, the endo-lysosomal escape of nano-
materials for efficient cytosolic delivery of siRNA is mandatory in order to accomplish its
biological activity.

Several strategies have been developed to enhance the cytosolic delivery of siRNA [41]
such as proton sponge effect [42], fusogenic groups [43], and photochemical internalization
(PCI) technology. This review focuses on the PCI mechanism for siRNA release and the
next paragraphs will present a description of this mechanism with several examples of
PCI-mediated cytosolic delivery of siRNA using different vectors.

3. Photochemical Internalization (PCI) Mechanism

The PCI mechanism is a noninvasive technique that has developed over nearly two
decades for multiple purposes including the treatment of cancer [44,45]. This technique
is used to release macromolecules (peptides, proteins, and nucleic acids) confined in the
endo-lysosomal compartments into the cytoplasm with the help of photosensitizers (PS)
in light-dependent manner. Although, its similarity to photodynamic therapy (PDT) in
components, including PS, oxygen, and light, differs from PDT in the final impact on cells.
The PDT leads to cell death due to excessive production of reactive oxygen species (ROS),
mainly singlet oxygen (1O2), which has a diffusion range of ~10–20 nm and t 1

2 in µs [46–48].
While, PCI leads to disruption of endo-lysosomal membranes with no cytotoxic effect, as
the accumulation of the PS in the endo-lysosomal membrane leads to local production of
1O2; hence, the damage is limited to its production zone [49].

The PCI process was first described by Berg K. et al. in 1999 [50] using several PS,
including aluminum phtalocyanine disulfonate (AIPcS2a), in order to show their efficiency
for the cytosolic delivery of plasmid encoding green fluorescent protein (GFP) into human
colon cancer cells (HCT-116) and human melanoma cells (THX) after exposure to red
light. In this study, they established the concept of PCI as an ideal site-specific delivery
tool that could be combined with other therapeutic modalities [50]. Two years later, Berg
team showed the potential of PCI mechanism for in vivo applications using AlPcS2a for
the PCI delivery of gelonin in tumor-bearing mice [51]. In addition, AlPcS2a-based PCI
delivery of bleomycin in tumors has also been reported [52]. In 2009, the first-in-man
dose-escalating trial of PCI for bleomycin delivery in patients with different types of solid
malignancies has started (phase 1, NCT00993512, ClinicalTrials.gov). The trial ended with
the results demonstrating the safety of the photosensitizer used for PCI, which is Amphinex,
a disulfonate tetraphenyl chlorin (TPCS2a) illuminated by 652-nm laser light with an energy
of 60 J/cm2 [53].

Here, several siRNA vectors of different natures (lipid-based, polymer-based, peptide-
based, and nanoparticles), which release their cargo under PCI mechanism, will be dis-
cussed (Figure 2).
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3.1. Lipid Carriers for PCI-Mediated siRNA Delivery

The first evidence that PCI induces endo-lysosomal escape of siRNA was a paper
published in 2007 by Oliveira S. and co-workers [54]. In this work the proof of concept was
performed by using siRNA directed against epidermal growth factor receptor (EGFR), a
molecular target of several cancers, complexed with lipofectamineTM. Human epidermoid
carcinoma cells (A431) in culture were incubated with this complex (lipofectamine/siRNA)
and a photosensitizer, meso-tetraphenylporphyrin disulfonate (TPPS2a), necessary to desta-
bilize the endo-lysosomal membranes under photoactivation, leading to the PCI mechanism.
Light excitation (wavelength at 375–450 nm) demonstrated the efficiency for lysosomal
escape of the complex lipofectamine/anti-EGFR siRNA by increasing the knockdown of the
EGFR protein expression level. However, the cytotoxicity generated by lipofectamine and
its efficiency even without photoexcitation limit any in vivo use [55]. This characteristic
has led Boe S. and coworkers to perform PCI of siRNA, using safer lipid carriers [56]. In
their work, authors chose the cationic lipid jetSI-ENDO to complex siRNA against S100A4,
a protein responsible for invasive and metastatic phenotype in cancer. The TPPS2a has been
used as photosensitizer to destabilize the endosomal membranes and allow PCI. In this
work, the high silencing efficiency was demonstrated by a dramatic decrease in mRNA
and protein expression levels after light excitation. Even if this system is very powerful, it
remains relatively complex because, here too, the authors must manipulate several compo-
nents. Indeed, they must add a PS to their cationic support to deliver siRNA, which can be
delivered under light excitation. It is also the case in the work demonstrating the possible
use of low density lipoprotein (LDL) nanoparticle for siRNA delivery [57]. Here, siRNA
was conjugated to cholesterol and could then be encapsulated in LDL nanoparticles. The
efficiency of mRNA knockdown was around 38% and reached 78% when applying PCI
with AlPcS2a at 660 nm.

In the three discussed examples, cells were preincubated with the PS followed by the
addition of the lipoplexes, although they showed a high transfection capacity (70–90%),
an all-in-one carrier is necessary for ease of handing. Additionally, in term of toxicity, the
model of LDL nanoparticles is safer than the nonmetabolized lipofectamineTM or JetSITM

and could be introduced in in vivo system. Finally, using red light irradiation is favorable
in terms of phototoxicity and penetration depth.



Cancers 2022, 14, 3597 8 of 17

3.2. Peptide Carriers for PCI-Mediated siRNA Delivery

The cell-penetrating peptides (CPPs) are high potent tools to enable (macro)molecules
delivery in mammalian cells [58,59]. Endoh T. et al. elaborated a molecular construction
consisting of a complexation of TatU1A (fusion of TAT peptide with U1A RNA binding
domain) with a fluorophore (Alexa Fluor 546) and a siRNA associated to U1A RNA
binding domain (U1AsiRNA) [60]. This macromolecule was well-internalized via the
endo-lysosomal pathway of the mammalian cells used in this study, the Chinese Hamster
Ovary (CHO) cells. Among the various strategies known to destabilize the endo-lysosomal
membranes for a lysosomal escape, mainly drugs, the photostimulation of the fluorophores
was already described as an efficient, precise and controlled mechanism [61,62]. Here,
the high efficiency of the cytosolic delivery of the siRNA carried by a CPP complex was
demonstrated by the photo-stimulation with Alexa Fluor 546 (60 s, 540 nm, 100 Watt
halogen lamp) allowing PCI and obtaining an effect of GFP gene silencing indicated by
approximately 70% decrease in relative fluorescence intensity [60].

In the race for biosafety, biocompatibility and biodegradability of drug delivery sys-
tems and gene transporters, the polyamino acids family has demonstrated very interesting
properties as well as high efficiency, whether modified to acquire or not proton sponge
capacity for lysosomal escape [63]. Jorgensen J.A.L et al. showed for the first time the
capacity of the unmodified poly-L-arginine, poly-L-histidine or poly-L-lysine to carry and
deliver siRNA under PCI mechanism activated by blue light in the presence of TPPS2a as
photosensitizer [63].

A number of CPPs-photosensitizers conjugates has been designed and used for
PCI [64]. Conjugation of CPPs to TPP provides high quantum yield compared to that
conjugated to Alexa546 or Alexa633 [65,66]. Unfortunately, translating this strategy from
bench to bedside is limited due to the low bioavailability of CPPs and restricted biodistri-
bution. In addition, the cell internalization of CPPs lacks the specificity and is sometimes
restricted [67,68]. Peptides of arginine are precious tool for siRNA delivery by PCI as they
lack the proton sponge property. In addition, they are internalized into cells more easily
than peptides of lysine or histidine [69].

3.3. Polymer Carriers for PCI-Mediated siRNA Delivery

Several polymers of natural or synthetic origin are used as vectors for siRNA delivery.
The use of biodegradable polymers is highly appreciated as the accumulation of unmetab-
olized polymers leads to toxicity. Some of these polymeric carriers have endosomolytic
capacity, which may lead to off-target gene silencing [70]. The PCI opens the door for
precise site-specific effect and offers the possibility to use a large variety of biodegradable
polymer with no endosomolytic capacity and here we will discuss some examples.

The use of TPPS2a with saccharide-based polymers for siRNA release by PCI under blue
light irradiation has been reported in several studies. In a study carried out by Boe S.L. and
coworkers [71] they showed the possibility to use the cationic, β-cyclodextrin-containing poly-
mer based on six methylene units (β-6CDP) to mediate siRNA delivery against human S100A4
gene using PCI mechanism. Additionally, the study includes a comparison of the performance
of β-6CDP with other carriers such as lipofectamineTM 2000, JetSITM and branched polyethylen-
imine (B-PEI) and an optimization study of the illumination dose in order to achieve the
maximum endosomal escape without affecting the cell viability. The results showed that under
PCI conditions (420 nm, 7 mW/cm2, 280 J/cm2) around 90% of gene silencing was achieved in
osteosarcoma cell line (OHS) with minimum cell death and the maximum gene silencing was
obvious 5 h after irradiation. Moreover, with respect to other carriers, β-6CDP showed higher
specificity but not higher gene silencing efficacy [71]. The silencing of the S100A4 gene was also
studied by Jorgensen J.A.L et al. using TPPS2a and linear or self-branched chitosan [72]. In this
study, the authors showed that pH and media used for complex formation affect transfection
efficiency, independent on PCI, with higher silencing activity achieved at pH 7.4 and using
sterile water as media. In addition, increased nitrogen/phosphate (N/P) ratio was associated
with an increase in the transfection activity by PCI. The efficiency of dextran nanogels for
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siRNA delivery by PCI using TPPS2a under blue light irradiation (375–450 nm) was reported
by Raemdonck K. and co-workers (Ghent Research Group on Nanomedicines, Laboratory of
general Biochemistry and Physical Pharmacy, Faculty of pharmaceutical Science,9000 Ghent,
Belgium). They showed that the biodegradability of cationic dextran nanogels is essential to
obtain gene silencing effect, however, under PCI both degradable and nondegradable nanogels
induce a silencing effect [73]. One year later, they showed that applying the PCI after two or
six days post-transfection significantly prolongs the gene silencing effect to 8 days and 15 days,
respectively in fast dividing liver cancer cells (Huh-7), an effect that could be stronger in cells
with slow division rate. In contrast, this effect was not observed in cells treated with the lipid
carrier, lipofectamineTM RNAiMAX (Carlsbad, CA, USA) [48].

Another biodegradable polymers for siRNA delivery, poly(2-hydroxypropyl) methacry-
lamide 1-methyl-2-piperidine methanol) (pHPMA-MPPM) and O-methyl-free N,N,N-
trimethylated chitosan (TMC), have been studied by Varkouhi A.K. et al. [74]. The
biodegradability of pHPMA-MPPM and TMC turns back to the presence of the biodegrad-
able linker, stable at endo-lysosmal pH and degradable at pH = 7 and the hydrolysis of
glycosidic bond, respectively. The study showed an increase in gene silencing efficiency in
human lung cancer cells (H1299) from 30–40% without PCI up to 70–80% in presence of
PCI using TPPS2a and blue light irradiation (375–450 nm, 13 mW/cm2).

The use of nonbiodegradable polymers with endosomolytic capacity in combination
with PCI has been reported by Boe S. et al. [75]. They tested TPPS2a in combination with the
synthetic polycationic polymer PEI for PCI-induced S100A4 gene silencing in osteosarcoma
cell line. However, PEI can induce gene silencing without PCI, the authors wanted to
optimize the condition for site-specific gene silencing by PCI. Therefore, different PEI
structures, linear (L) or branched (B), with different molecular weights (0.8–25 kDa) were
investigated at several positively charged polymer amine (N)/negatively charged nucleic
acid phosphate (P) groups (N/P) ratio and blue light (420 nm) illumination doses. The
results showed that B-PEI of 25 kDa MW has an efficient gene silencing activity when
combined with PCI at N/P ratio ranges between 4:1 and 5:1. Berg. K. et al. also tested
PEI for siRNA delivery in combination with TPCS2a in human melanoma cell A375 stably
expressing GFP, results showed that the increase in the photochemical dose caused an
increase in the gene silencing effect [76].

It is worth mentioning that although the common use of the PEI due to its endoso-
molytic capacity and high transfection capability, its non-degradability and subsequent
toxicity are still of concern. In attempts to solve this problem, several scientists reported
the synthesis of PEI with degradable bonds [77,78] In addition, modification of PEI to
be controlled, specific and on-demand siRNA release system is the focus of interest of
many researcher. The decrease in the number of amines in PEI mitigate ion influx and the
proton-sponge effect and subsequently the off-target effect. This can be achieved by either
coating the PEI with another polymer such as hyaluronic acid [79] or by sulfonation as
reported by Puri A. et al. [80]. In their study, they showed the photoactivation release of
dicer substrate siRNA (DsiRNA, longer RNA duplexes with 25–30 bp) using sulfonated
PEI covalently linked to a far-red PDT molecule, pyropheophorbide-α, (Sulfo-Pyro-PEI).
This polymer after complexation with DsiRNA was not able to induce gene silencing in
breast cancer cells (MDA-MB-231). However, upon PCI mechanism using 661 nm laser the
polyplex restored its silencing efficiency. On the other hand, the non-sulfonated photoreac-
tive polymer (Pyro-PEI) showed gene silencing efficiency in the absence of PCI with no
increase in gene silencing in the presence of PCI [80].

The polymer-based carrier could consist of a photoactivatable polymer such as conju-
gated polyelectrolytes, which also exhibit high fluorescence and photostability properties
and low toxicity [81]. Their use for siRNA cytoplasmic delivery by PCI using white light
(400–800 nm, 3 mW/cm2) was reported by Li S. et al. [82]. In this research, they used
cationic poly(p-phenylene vinylene) (PPV) derivative to encapsulate siRNA, which showed
high gene silencing ability in HeLa cells genetically modified to express luciferase gene
(Hela-Luc) compared to PEI 25 kD and the silencing ability increased with light irradiation.
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Interestingly, a recent work has demonstrated the efficacy of a light-controlled gene
delivery system in absence of ROS production, which is a significant advantage in tumour
hypoxia [83]. Indeed, polymeric nanoparticles with a photoactivatable prodrug-backboned
have been developed. The prodrug is platinium-azide complexe (Pt(IV)) which is pho-
toactivatable, releases under light irradiation, the cytotoxic drug Pt(II) and also azidyl
radicals (N3˙). The main benefit is the dual therapy due to the cytotoxic effect of Pt(II)
and the endo-lysosomal escape of loaded siRNA directed against c-fos (si(c-fos)) induced
by N3˙ via PCI mechanism. This strategy has demonstrated high efficacy in vitro and
in vivo in tumour-bearing mice and has open the door to oxygen independent ways for
photoactivatable mechanisms such as PCI [83].

Here we displayed several examples highlighting the importance of biodegradability
and subsequently toxicity of siRNA polymer-based carriers. Biodegradability as well as
other factors such as pH, media and N/P ratio, independent on PCI, have an impact on the
polyplex transfection ability. Prolonging the gene silencing effect using dextran nanogel is
possible by applying PCI days after transfections, an effect that was not achieved using
lipid carrier as lipofectamine. The endosomolytic capacity of several cationic polymers can
be limited by decreasing the number of amines, surface coating or sulfonation of polymer
and by this way the polymers can act as site-specific delivery system using PCI. The use of
photoactivable polymers or prodrugs for siRNA delivery by PCI is an advantage rather than
the administration of PS. Finally, the PCI can destabilize the endo-lysosomal membrane
with either ROS or N3˙ production.

3.4. Nanoparticles for PCI-Mediated siRNA Delivery

The ability of nanoparticles (NPs) to efficiently deliver siRNA is of crucial importance.
Several techniques of embedding can improve siRNA cytosolic delivery such as cationic
polymers or CPPs. However, to control and selectively increase the level of siRNA delivery
into the target region, photoactivation could be of particular interest. Light activation for
PCI is a good strategy but the depth of penetration must be high enough to photoactivate
deeper tissues. To increase the penetration depth, the use of upconversion nanoparticles
(UCNPs) and near infrared (NIR) zone excitation may offer a solution [84]. NIR has an excel-
lent penetration properties in soft tissues compared to visible light and particularly UV [85].
Moreover, the higher the wavelength, the lower the energy delivered and, therefore, the
lower the induced photo-damages. A strong decrease in feature risks is connected with NIR
zone excitation. It turns out that UCNPs are a special class of optical nanomaterials doped
with lanthanide ions, they have the ability to convert the low-energy photons (NIR) into
high-energy photons (visible and ultraviolet emission) [86]. Further, the matrix of UCNPs
is usually co-doped with NaYF4 with sensitizer ions (e.g., YB3+) and activator ions (e.g.,
Er3+), which should have a closely matched intermediate-excited state and an adequate
separating distance to achieve high upconversion efficiency [86,87]. The UCNPs are excited
at 980 nm, a wavelength at which the tissues have low scattering coefficient, but water
absorbs around 20 times more excitation light than at 800 nm. Therefore, scientist designed
UCNPs with an excitation wavelength of around 800 nm [88,89].

In the work described by Jayakumar M.K.G. et al. in 2014, UCNPs were developed
for gene silencing thanks to PCI induced by NIR excitation [84]. The UCNPs were coated
with a layer of mesoporous silica that allows the loading of TPPS2a and photomorpholino.
Concretely, the nanoparticles endocytosed via the endo-lysosomal pathway end up in the
lysosomal compartment, the light excitation of photoactivable nanoparticles induces a
localized production of ROS that rattles the membrane of this organelle and allows the
lysosomal escape of siRNA to the cytoplasm. Thus, upon nanoparticles excitation at 980 nm,
the UCNPs emit UV and visible lights. The visible light emitted excites the TPPS2a (λex=
420 nm) permitting the endo-lysosomal escape. However, the UV emitted causes release
of the antisense morpholino allowing gene silencing. The study demonstrated the high
efficacy of their system and the in vitro and in vivo biocompatibility on melanoma mouse
model [84].
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Later, in 2019, Zhang Z. et al. studied the effectiveness of more encouraging UCNPs
for therapy [90]. They developed orthogonal UCNPs that emit different wavelengths (red
or UV/blue) when excited at 980 nm and 808 nm, but not both, allowing programmed
photoactivation. These UCNPs were coated with thin layer of mesoporous silica allowing
surface modification with azobenzene-based caps and loading of siRNA and PS (zinc
phtalocyanine, ZnPc). This system is called “superballs”, because it can perform as PCI,
PDT, and siRNA delivery system. The chosen siRNA was directed against superoxide
dismutase-1 (SOD1) that is responsible for free radical degradation, so blocking this gene
expression conducts to an increase in free radical level in cell and, thus, an increase in PDT
efficiency. The excitation of UCNPs at 980 nm allows photoactivation of ZnPc for PCI or
PDT depending on the time of irradiation. However, the excitation of the UCNPs at 808 nm
allows the photoactivation of azobenzene for siRNA release from the nanoparticles. These
programmed photoactivations have been tested and have shown high therapeutic efficacy
in 2D and 3D cultures models of cervical and oral cancer cells, as well as in vivo in mice
bearing oral cancer tumors [90].

In our group, we focused on the use of periodic mesoporous organosilica (PMO)
nanoparticles consisting mainly of PS such as phtalocyanines or porphyrins enabling high
PDT efficiency and also siRNA cytosolic delivery via PCI mechanism. It is important to
note that phtalocyanines and porphyrins in their free forms are a little or non-excitable
by a femtosecond laser allowing two-photon excitation. In contrast, once organized in
a structure allowing the stacking of these PS in J-aggregates, they acquire an elevated
two-photon cross section permitting an excitation in NIR area by using a femtosecond
Ti:sapphire laser [91,92].

The first example concerns the design of porphyrin-based PMO nanoparticles excitable
in the NIR region for PDT and PCI for siRNA delivery [93]. These nanovectors exhibited
large pores of 10 to 80 nm facilitating the loading of siRNA inside the cavities. In addition,
the skeleton of the nanoparticles consists of porphyrins stacked in J-type aggregates, which
makes it possible to acquire a two-photon cross-section and a possibility to photoactivate
these nanoparticles in the NIR area. This is what was described in this work, in which
a femtosecond laser was used for PDT and for PCI of siRNA. Data obtained in vitro on
human cancer cells and in vivo on zebrafish embryos bearing human tumors highlighted
the anticancer potential of such nanovectors for two-photon PDT and two-photon PCI for
siRNA delivery [93].

In the same way, the second example concerns the development of phtalocyanine-
based PMO nanoparticles, as phtalocyanines possesses better absorption than porphyrin
especially in NIR region [94]. Indeed, here too, the framework of the nanoparticles is made
up of ZnPc organized in J-type aggregates making possible the photoexcitation in NIR
area using a femtoseconds pulsed laser. Experiments performed on human breast cancer
(MCF-7) cells demonstrated that these nanovectors were highly effective in performing
PDT at 810 nm (excitation wavelength) for less than a 5-s excitation time. In parallel, this
photoexcitation was also very effective in releasing siRNA from nanoparticles via PCI
allowing lysosomal escape of siRNA to the cytoplasm [94].

The last example relates to a breakthrough in the development of a new class of PMO
nanoparticles, which is periodic mesoporous ionosilica nanoparticles (PMINPs) for PDT
and PCI of siRNA. In fact, this work described the synthesis of highly porous ionosilica
nanorods with J-type aggregates of porphyrins embedded in the framework of the material
during the sol-gel procedure. In this case, the porphyrins were excitable in the visible
region by using a continuous laser. The best efficiency was obtained by using a green
light excitation (545 nm) that induced a good luminescence of the nanovectors inside
cultured cancer cells in and a very high anticancer activity with 95% of cell death obtained
after 15 min of irradiation. Importantly, the PCI effect performed with siRNA directed
against luciferase (constitutively expressed in MDA-MB-231 luciferase used in this study)
demonstrated a high transfection level, leading to 83% gene silencing after only 5 min of
green light stimulation [95].
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These works highlight the importance of adapting the power, the time of irradiation and
therefore the energy delivered to obtain the desired effect inducing either cell death (PDT
mechanism) or PCI (lysosome membrane destabilization and in consequence lysosomal escape).

A summary of different siRNA carriers able to liberate their cargo by PCI is provided
in Table 2.

Table 2. Summary of different siRNA carriers able to liberate their cargo by PCI in in vitro models.

Type of Carrier Cell Line PS λex
(nm) Carrier

Knockdown
(%) siRNA Ref

(−) PCI (+) PCI

Lipid

A431 TPPS2a 375–450 Lipofectamine 10
40

70
80 EGFR [54]

OHS TPPS2a 420 JetSI-ENDO 20 90 S100A4 [56]

HepG2 AlPCS2a 660 LDL nanoparticles 38 78 ApoB [57]

Peptides

CHO AlexaFluor 546 540 TatU1A 0 ~70 dEGFP [60]

OHS TPPS2a 420
PLL
PLH
PLA

~10
~10
~15

~80
~45
~90

S100A4 [63]

SK-MEL-28 TPPS2a 420 PLA 0 ~85 MEK1
MEK2 [63]

Poymers

OHS TPPS2a 420 β-6CDP 10 ~90 S100A4 [71]

OHS TPPS2a 420 Chitosan ~50 ~40 S100A4 [72]

HuH-7 Luc TPPS2a 375–450 Dextran nanogel ~30 ~80 Luciferase [73]

HuH-7-EGFP TPPS2a 375–450 Dextran nanogel
(25µg/mL)

~60
(day6)

(PCI t2)
~80

(day6)
EGFP [48]

H1299 TPPS2a 375–450
pHPMA-MPPM

or
TMC

30–40 70–80 Luciferase [74]

OHS TPPS2a 420 PEI ~10 ~90 S100A4 [75]

A375-GFP TPCS2a 652 PEI n/a n/a EGFP [76]

MDA-MB-231/GFP pyropheophorbide-
α

661 Sulfonated PEI n/a n/a GFP [80]

Hela-Luc PPV 400–800 PPV ~80 ~85 Luciferase [82]

A2780
A2780DDP Pt(IV) 430 Pt(IV) ~32

~26
~52
~63 c-fos [83]

Nanoparticles

B16F0 TPPS2a 980 UCNPs
Coated with MSN n/a +30 STAT3

Morpholino [84]

Hela
Cal27 ZnPc 980 UCNPs ~70

~60
~90
~80 SOD1 [90]

MCF-7-LUC Porphyrin 800 PMO 0 ~50 Luciferase [93]

MCF-7-LUC ZnPc 810 PMO 0 64 Luciferase [94]

MDA-MB-231 Porphyrin 545 PMINPs 17 83 Luciferase [95]

PS: photosensitizer; PCI: photochemical internalization; A431: human epidermoid carcinoma cell line; TPPS2a:
meso-tetraphenylporphyrine disulfonate; EGFR: epidermal growth factor receptor; OHS: osteosarcoma cell line;
S100A4: S100 calcium binding protein A4; HepG2: hepatocellular carcinoma cell line; AlPCS2a: aluminum
phtalocyanine disulfonate, LDL: low density lipoprotein; ApoB: apolipoprotein B; CHO: Chinese hamster ovary
cell line; TatU1A: Tat peptide binding to U1 small nuclear ribonucleoprotein A; dEGFP: destabilized enhanced
green fluorescent protein; PLL: poly-L-lysine; PLH: poly-L-histidine; PLA: poly-L-arginine; SK-MEL-28: melanoma
cell line; MEK-1: mitogen-activated protein kinase kinase 1; MEK-2: mitogen-activated protein kinase kinase 2;
β-6CDP: β-cyclodextrin-containing polymer based on 6 methylene units; Huh-7 Luc: human hepatoma stably
expressing both firefly and renilla luciferase; HuH-7-EGFP: human hepatoma stably expressing enhanced green
fluorescent protein; EGFP: enhanced green fluorescent protein; H1299: human lung cancer cell line; pHPMA-
MPPM: poly((2-hydroxypropyl) methacrylamide 1-methyl-2-piperidine methanol)); TMC: O-methyl-free N,N,N-
trimethylated chitosan; PEI: Polyethyleneimine; A375-GFP: human melanoma cell A375 stably expressing green
fluorescent protein; TPCS2a: disulfonate tetraphenyl chlorin; MDA-MB-231/GFP: human breast cancer cell
stably expressing green fluorescent protein; GFP: green fluorescent protein; Hela-Luc: cervical cancer cell line
stably expressing luciferase; PPV: poly(p-phenylene vinylene); A2780: ovarian cancer cell line; A2780DDP: A2780
platinum-resistance variant; Pt(IV): platinum (IV)-azide prodrugs; c-fos: proto-oncogene; B16F0: melanoma cell
line; UCNPs: upconversion nanoparticles; MSN: mesoporous silica nanoparticles; STAT3: signal transducer and
activator of transcription 3; Hela: cervical cancer cell line; Cal27: head and neck cancer cell line; ZnPc: zinc
phtalocyanine; SOD1: superoxide dismutase-1; MCF-7-LUC: Human breast cancer cell line stably expressing
luciferase; PMO: periodic mesoporous organosilica nanoparticles; MDA-MB-231: human breast cancer cell line;
PMINPs: periodic mesoporous ionosilica nanoparticles.
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4. Conclusions

Since 2007 and the first paper describing PCI mechanism for siRNA delivery, which
was delivered by biomolecules, the research work has multiplied with various vectors.
Most often, the siRNA vector used is lipofectamine and a TPP coupled or not to disulfonate
to confer the photoactivatable property on the nanosystem. However, lipofectamine (and
its analogs) is highly toxic and definitely cannot be used in vivo. There is a real biological
need to develop more biocompatible tools for siRNA transport and release. In this way,
other vectors were studied to deliver siRNA, such as jetSI-ENDO, LDL nanoparticles, CPPs,
polyamino acids, etc. Even though all of these vectors have demonstrated a robust efficiency
for siRNA delivery, they still require the additional presence of a photosensitizer, most
often TPPS2a excitable at wavelengths between 375 nm and 450 nm and more sporadically
AlPcS2a, AlexaFluor 546, and TPCS2a with excitation wavelengths at 660, 540, and 652 nm,
respectively. Their presence is essential to generate the amount of ROS necessary for
endo-lysosomal membrane destabilization leading to photo-induced lysosomal escape.
However, to avoid the use of an oxygen-dependent photosensitizer, some researchers
have resorted to platinium–azide complex as prodrug, which can release N3˙ under light
excitation. This radical is able to induce PCI mechanism and siRNA delivery in oxygen
deprivation environment. Nevertheless, it remains a complex system with 3 partners:
vector, photoactivable molecule and siRNA. In addition, in all cases the excitation source
comes from visible light.

To simplify the mechanism and avoid too many compounds for biological use, some
teams have focused on vector composed partially or totally of photoactivatable compounds.
This is the case for example of PMO nanoparticles based on phtalocyanines or porphyrins
and some of them are exclusively composed of PS. These nanoparticles are very powerful
multifunctional nanotools capable of encapsulating inside the pores: conjugate drugs, nucleic
acids and even UCNPs. They are excitable by pulsed laser for biphotonic activation because
porphyrins or phtalocyanines are stacked in J-type aggregates and constitute the walls of the
PMO nanoparticles, leading to a bathochromic shift toward higher wavelengths, to a two-photon
cross section and, thus, to a NIR excitability with a femtosecond laser (Figure 3).
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These all-in-one nanoparticles are very efficient for imaging, PDT, and PCI under two-
photon excitation. The ultimate goal would be to be able to combine these three biomedical
applications by simply varying the excitation time and the laser power to image a tumor
area, eradicate cancer cells by PDT, and/or correct the deregulation of gene expression
previously identified as the source of the onset of cancer. It appears that these nanotools
could be the future of nanomedicine, but they are very “young”, since they were firstly
described for their biological effect under two-photon laser excitation in 2016. Now, their
biocompatibility, bioavailability, and biodegradability must be precisely determined in
animal models to be sure about their great biomedical potential.
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