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Abstract: Air pollutants contribute to the development of diseases such as asthma, chronic obstructive
pulmonary disease (COPD), pulmonary cancer, cardiovascular problems, and some skin diseases. We
recently found that a major air pollutant, diesel particulate matter (DPM), induces apoptosis in human
keratinocytes by increasing a proapoptotic lipid mediator, ceramide. DPM activates nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (NOX), which stimulates sphingomyelinase,
leading to an increased conversion of sphingomyelin to ceramide. Interestingly, we characterized
that although NOX is a reactive oxygen species (ROS) generator, the activation of sphingomyelinases
by NOX is an ROS-independent mechanism. A Korean weed, prostrate spurge Euphorbia supina
Rafin (ESR), has been used for centuries as a folk medicine to treat bronchitis, hepatitis, hemorrhage,
and skin inflammation. Flavonoids, terpenes and tannins are enriched in ESR, and although ESR
has proven antioxidative activity, its biological activities are largely unknown. Here, we investi-
gate whether and how ESR protects keratinocytes against DPM-mediated apoptosis. We found
that ESR-extracts (ESR-Ex) protect keratinocytes from DPM-induced apoptosis by inhibiting NOX
activation in keratinocytes in response to DPM. We also demonstrated that ESR-Ex suppresses NOX
activation via a blockage of the aryl hydrocarbon receptor (AhR) activation-mediated transcription
of neutrophil cytosolic factor 1 (NCF1)/p47phox, a subunit of NOX. Our study reveals previously
uncharacterized biological activity of ESR-Ex; i.e., its inhibition of Ahr and NOX activation. Thus,
because the inhibition of NOX has already been developed to treat NOX-mediated diseases, including
various types of cardiovascular diseases and cancers, initiated by air pollutants and because AhR
activation contributes to the development of chronic inflammatory diseases, our study provides
further advantages for the medical use of ESR.

Keywords: apoptosis; ceramide; diesel particulate matters; Euphorbia supina Rafin; nicotinamide
adenine dinucleotide phosphate oxidase; sphingomyelinase

1. Introduction

Air pollutants are one of the main environmental factors in the development of
diseases such as asthma, chronic obstructive pulmonary disease (COPD), pulmonary cancer,
cardiovascular problems, some skin diseases (contact hypersensitivity and dermatitis), the
impairment of skin barrier function and the acceleration of premature skin aging. Diesel
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particulate matter (DPM) is produced from diesel engines, is comprised of polycyclic
aromatic hydrocarbons, benzene, formaldehyde, acetaldehyde, and 1,3-butadiene, and is a
major air pollutant.

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are plasma
membrane-bound enzymes that produce reactive oxygen species (ROS) [1]. NOX is acti-
vated in response to stimuli, such as cytokines, angiotensin, or ultraviolet irradiation [1].
Because NOXs have been found to contribute to the development of cardiovascular dis-
eases, NOX inhibitors have already been developed [2,3]. Pertinent to our study, DPM
stimulates ROS production through NOX activation [4,5].

Our prior study demonstrated that DPM induces apoptosis in human keratinocytes
(KC)(HaCat cells) via a pro-apoptotic lipid mediator, ceramide-dependent pathway. DPM
activates NOX followed by sphingomyelinase activation, resulting in increased ceramide
production via the hydrolysis of sphingomyelin, leading to ceramide-inducing apoptosis [6].
Interestingly, although NOX is a ROS generator, its activation of sphingomyelinases occurs
via an ROS-independent mechanism [6].

A weed, the Korean prostrate spurge Euphorbia supina Rafin (ESR), has been used as
a folk medicine to treat several types of diseases, including bronchitis, hepatitis, hemor-
rhage, and skin inflammation [7]. ESR extracts (ESR-Ex) contain flavonids, terpenes and
tannins [7] and exhibit anti-oxidative activities [7]. Several biological activities of ESR, such
as suppressing manganese-induced neurotoxicity [8] and melanogenesis [9] and inducing
apoptosis in U937 human leukemia cells [10] have already been characterized. Yet, its
biological activities are still largely unknown.

Here, we investigated whether and how ESR-Ex protects keratinocytes against DPM-
mediated apoptosis in cultured human KC, and we discovered that ESR-Ex inhibits NOX
activation via the blockage of Aryl hydrocarbon receptor (Ahr) activation-mediated in-
creases in the transcription of neutrophil cytosolic factor 1 (NCF1)/p47phox, a subunit
of NOX in KC in response to DPM exposure, resulting in suppressed DPM-mediated
ceramide-inducing apoptosis.

2. Results
2.1. Component of ESR Extracts

An LC-MS/MS analysis identified that ESR extracts (70% ethanol) (ESR-Ex) contain
several flavonoids and tannins, such as quercetin, kaempferol, isorhamnetin, gallic acid
and their derivatives (Table 1).

Table 1. Identification of flavonoids and tannins in Euphorbia supina Raf Extracts (ESR-Ex) (LC-
MS Analysis).

Compound [M-H]− Mass Fragmentation

Quercetin 301 301, 273, 179, 153
Quercetin 3-hexoside 463 463, 301, 300,283, 271, 255, 179, 151

Quercetin-3-O-(2G-α-L-rhamnosyl)-rutinoside 755 755, 300, 283, 271, 255, 179, 151
Kaempferol 287 287, 258, 165, 153, 121

Kaempferol 3-hexoside 447 447, 285, 255
Kaempferol-3-O-rutinoside 593 593, 285, 255, 227, 151

Isorhamnetin 316 316, 301, 272, 256, 164, 151
Isorhamnetin-3-O-neohesperidoside 623 623, 459, 314, 299, 285, 271, 257

Gallic acid 169 169, 125, 97
Gallic acid glucoside 331 169, 125

2.2. ESR-Ex Suppresses DPM-Induced Decreases in Cell Viability and NOX Activation

We first assessed that influence of ESR on cell viability and then investigated whether
ESR-Ex suppresses decreases in cell viability in KC exposed to DPM. Up to 100 g/mL
ESR alone does not affect cell viability, while 200 µg/mL modestly decreases cell viability
(Figure 1). Consistent with our prior study [6], DPM reduced cell viability in KC (not
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shown), while ESR-Ex significantly suppressed decreased cell viability in KC treated
with DPM in a dose-dependent fashion (Figure 1). We used 100 µg/mL of ESR in the
following studies.

Figure 1. ESR-Ex suppresses decreases in cell viability in KC treated with DPM. KCs were incu-
bated with indicated concentration of ESR-Ex or vehicle for 30 min, and then further cultured with
100 µg/mL of DPM for 24 h. Cell viability was measured by water-soluble tetrazolium salt cell
quantification method. All values are mean ± SD (n = 3). Statistically significant differences of
ESR + DPM (open square), *** p < 0.001 or * p < 0.05 vs. vehicle control without DPM. See details in
Materials and Methods Section.

We next examined the effect of ESR-Ex on NOX activation by DPM. Consistent with
our prior study [6], DPM activated NOX in KC, while its activation was significantly
suppressed by ESR-Ex, as well as a specific pharmacological inhibitor of NOX, apocynin
(Apo) (Figure 2A). However, as expected, an established antioxidant N-acetyl cysteine
(NAC) did not inhibit NOX activation (Figure 2A).

We next measured cellular ROS levels by a DCFDA agent. ROS production was
significantly increased in KC incubated with DPM, while the elevation of cellular ROS
was significantly suppressed by the coincubation of DPM with ESR-Ex, Apo or NAC
(Figure 2B). We further confirmed ROS production by assaying malondialdehyde and
4-hydroxynoneal production. Malondialdehyde and 4-hydroxynoneal generation were
found to be significantly decreased in KC co-incubation with DPM and ESR-Ex, Apo or
NAC (Figure 2C,D). These results suggest that ESR-Ex has the ability to: (1) suppress
decreases in cell viability; (2) inhibit NOX activation; (3) suppress ROS production in KC
following DPM treatment.



Pharmaceuticals 2022, 15, 431 4 of 13

Figure 2. ESR-Ex suppresses both NOX activation and increases in ROS production in KC treated
with DPM. KC were incubated with or without ESR-Ex (100 µg/mL), NAC (1 mM), Apo (100 µM)
or vehicle for 30 min, and then further cultured with 100 µg/mL of DPM for 24 h. Measuring
the ratio of NADP+ to NADPH with LC-ESI-MS/MS (API 3200 QTRAP mass, AB/SCIEX) by
multiple reaction monitoring mode (MRM) (A). Intercellular ROS production was determined by
fluorospectrophotometer (B). Malondialdehyde (MDA) (C) and 4-hydroxynonenal (4-HNE) (D) were
determined by LC-ESI-MS/MS after dansyl hydrazine derivatization. All values are mean ± SD
(n = 3). *** p < 0.001 or ** p < 0.01 vs. indicated group. See details in Materials and Methods Section.

2.3. ESR-Ex Suppresses Changes in Ceramide Profiles and Cell Toxicity in KC Exposed to DPM

Since our prior study shows that an increases in a pro-apoptotic lipid mediator, ce-
ramide, increases apoptosis in KC following exposure to DPM [6], we next investigated
the effect of ESR-Ex on ceramide levels in KC treated with DPM. Total ceramide levels
were significantly increased in KC treated with DPM, while increases in ceramide were
significantly diminished in KC co-incubation of DPM with ESR-Ex or Apo, but not NAC
(Figure 3A). Further analysis of ceramide molecular species revealed ceramide containing
shorter amide-linked fatty acid (C16) (short chain ceramide) species, which has a proapop-
totic feature among ceramide species [11], were significantly increased and conversely,
ceramides containing longer amide-linked fatty acid (C24:1 and 24:0) (long chain ceramide)
were significantly decreased in KC following DPM treatment (Figure 3B). ESR-Ex and Apo,
but not NAC, suppressed increases in short chain ceramide and decreases in long-chain
ceramide production in KC treated with DPM.

Excess ceramide is pro-apoptotic, while the metabolic conversion of ceramide to
sphingosine-1-phosphate (S1P) (via ceramide hydrolysis by ceramidase followed by phos-
phorylation by sphingosine kinase) rescues cells from apoptosis [12]. We found that DPM
decreases S1P levels in KC following DPM treatment, resulting in an increased ratio of
ceramide to S1P (Figure 3C,D). ESR-Ex and Apo, but not NAC, modestly reversed these
decreases in S1P. Along with the suppression of increases in ceramide production, ESR-Ex
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and Apo, but not NAC, attenuated an increased ratio of ceramide to S1P in KC exposed
to DPM. We further demonstrated that both ESR-Ex and Apo, but not NAC, significantly
reduced cell toxicity (assessed by lactic dehydrogenase release from cells) in KC treated
with DPM (Figure 4).

These results suggest that ESR-Ex and Apo suppress an increase in proapoptotic short
chain ceramide production and maintain a metabolic rescue mechanism (ceramide-to-S1P),
thereby reducing cell toxicity in KC following DPM. Moreover, although NAC inhibits
ROS production (Figure 2C,D), NAC does not suppress increases in bulk- and short chain
ceramide or decreases in long chain ceramide production in KC treated with DPM. Thus,
changes in ceramide synthesis should be a result of the activation of NOX, but not ROS
generated by NOX.

Figure 3. ESR-Ex suppresses increases in total ceramide production and alteration of ceramide
molecular profiles and normalizes the ratio of ceramide to S1P in KC exposed to DPM. KC were
incubated with or without ESR-Ex (100 µg/mL), NAC (1 mM), Apo (100 µM) or vehicle for 30 min,
and then further cultured with 100 µg/mL of DPM for 24 h. Total ceramide (A), ceramide species
of different amide-linked fatty acid (B), sphingosine-1-phosphate (C), Ceramide/S1P ratio (D) were
measured by LC-ESI-MS/MS. All values are mean ± SD (n = 3). *** p < 0.001, ** p < 0.01, or * p < 0.05
vs. indicated group. See details in Materials and Methods Section.
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Figure 4. ESR-Ex decreases cell toxicity in KC treated with DPM. KC were incubated with or without
ESR-Ex (100 µg/mL), NAC (1 mM), Apo (100 µM) or vehicle for 30 min, and then further cultured
with 100 µg/mL of DPM for 24 h. Cell toxicity was assessed by lactic dehydrogenase releasing assay.
All values are mean ± SD (n = 3). *** p < 0.001 vs. indicated group. See details in Materials and
Methods Section.

2.4. ESR-Ex Suppresses DPM-Mediated Activation of Sphingomyelinases

We demonstrated that sphingomyelinase is activated by NOX activation and results
in increased ceramide production by sphingomyelin hydrolysis [6]. We next assessed the
effects of ESR-Ex on sphingomyelinase activation in KC exposed to DPM. DPM activated
both acidic and neutral sphingomyelinases in KC, while both ESR-Ex and Apo signifi-
cantly suppressed the activation of neutral sphingomyelinases in KC treated with DPM
(Figure 5A,B). ESR-Ex also suppresses increases in acidic sphingomyelinase activity in
cells exposed to DPM (Figure 5A). However, NAC did not suppress either sphingomyeli-
nase activation. These results suggest that ESR-Ex blocks the activation of sphingomyeli-
nases. Moreover, although NAC inhibits ROS production in KC following DPM exposure
(Figure 2C,D), sphingomyelinase activation is not inhibited by NAC, confirming our prior
findings; i.e., sphingomyelinase is activated by NOX, but not by ROS generated by NOX [6].

Figure 5. ESR-Ex suppresses DPM activation of sphingomyelinases. KC were incubated with
or without ESR-Ex (100 µg/mL), NAC (1 mM), Apo (100 µM) or vehicle for 30 min, and then
further cultured with 100 µg/mL of DPM for 24 h. Activities of acidic sphingomyelinase (A) and
neutral sphingomyelinase (B) were measured by LC-ESI-MS/MS. All values are mean ± SD (n = 3).
*** p < 0.001, ** p < 0.01, or * p < 0.05 vs. indicated group. See details in Materials and Methods Section.
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2.5. ESR-Ex Suppresses NOX Activation via Blockage of AhR-Induced p47phox Production

DPM contains chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo(a)pyrene
that activate AhR [13,14], leading to NOX activation via increases in the transcription of the
NADPH oxidase subunit, neutrophil cytosolic factor 1 (NCF1)/p47phox [15,16]. Because
some polyphenols contained in ESR-Ex, including kaempferol and quercetin, inhibit AhR
activation [17,18] (Table 1), we hypothesize that ESR-Ex suppresses p47phox production
via the inhibition of AhR activation.

We first investigated the activation of AhR in KC exposed to DPM (assessed by
AhR phosphorylation). We confirmed AhR activation in our cultured system using an
established AhR ligand, FICZ [19] (Figure 6). We then demonstrated the activation of Ahr
in KC following DPM exposure, while DPM-mediated AhR activation was suppressed in
cells by coincubation with ESR.

Figure 6. ESR-Ex suppresses phosphorylation of AhR in KC exposed to DPM. KC were incubated
with or without FITZ (AhR ligand), ESR-Ex (100 µg/mL) or vehicle for 30 min, and then further
cultured with 100 µg/mL of DPM for 24 h. Ratio of phosphorylated AhR to Ahr was measured by
AHR Cell-Based Phosphorylation ELISA. All values are mean ± SD (n = 3). *** p < 0.001 or ** p < 0.01
vs. indicated group. See details in Materials and Methods Section.

We next investigated levels of p47phox protein of which production is transcriptionally
regulated by AhR [19]. Western blot analysis showed that DPM increases p47phox protein
levels in KCs and that ESR-Ex suppressed these increases of p47phox in cells (Figure 6).
Because Apo inhibits NOX activation by binding to subunit proteins of NOX, it did not
affect p47phox production. Thus Apo did not suppress p47phox protein production
(Figure 7). These results suggest that ESR-Ex inhibits NOX activation via a blockage of
DMP-induced AhR activation-mediated p47phox protein synthesis.

Figure 7. ESR-Ex suppresses increases in p47phox in KC exposed to DPM. KC were incubated with
or without ESR-Ex (100 µg/mL), Apo (100 µM) or vehicle for 30 min, and then further cultured with
100 µg/mL of DPM for 24 h. p47phox and β-actin were analyzed by Western blot. Fold changes
compared with the vehicle without DPM are shown in parentheses. See details in Materials and
Methods Section.
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2.6. ESR-Ex Suppresses DPM-Induced Apoptosis

Finally, we found that ESR-Ex suppresses DPM-induced apoptosis. ESR-Ex diminished
DPM-induced increases in the pro-apoptotic regulator, BAX and an inducer of apopto-
sis, caspase 3, and conversely decreased anti-apoptotic regulator Bcl-2 expression in KC
(Figure 7). These results suggest that ESR-Ex protects KC against DPM-induced apoptosis.

3. Discussion

We investigated the ability of ESR-Ex to protect KC from DPM (a major air pollutant)-
induced apoptosis. We also characterized that ESR-Ex inhibits NOX activation by DPM,
thereby blocking ceramide-induced apoptosis via the suppression of NOX-dependent
sphingomyelinase activation (Figure 8).

Figure 8. ESR-Ex suppresses increases in BAX, Caspase 3, and conversely decreases in BCL-2 proteins
levels in KC exposed to DPM. KC were incubated with or without ESR-Ex (100 µg/mL), Apo (100 µM)
or vehicle for 30 min, and then further cultured with 100 µg/mL of DPM for 24 h. BAX, BLC-2,
Caspase 3 and β-actin were analyzed by Western blot. Fold changes compared with the vehicle
without DPM are shown in parentheses. See details in Materials and Methods Section.

How does ESR-Ex inhibit DPM-mediated NOX activation? As described above in the
Results section (2.5. ESR-Ex suppresses NOX activation via blockage of AhR-induced p47phox
production), chemicals contained in DPM increase the transcription of p47phox via AhR
activation [13–16]. Kaempferol and quercetin, contained in ESR-Ex (Table 1), inhibit AhR
activation [17,18]. Hence, we suggest that ESR-Ex inhibits the DPM-induced activation of
NOX by suppressing p47phox (a subunit of NOX) production.

Sphingomyelinase is activated in response to stimuli, such as inflammatory cytokines
and ROS [20,21]. NOX is an ROS generator. However, our prior and current studies suggest
that DPM increases sphingomyelinase activity in KC via a NOX-dependent, but not by
ROS, which is generated by a NOX-independent pathway. So how does NOX activate
sphingomyelinase? Acidic sphingomyelinase can be recruited from cytosol to plasma in
response to stimuli [3]. Both acidic sphingomyelinase recruited to plasma membranes
by DPM exposure and plasma membrane-residential neutral sphingomyelinase may be
activated via interaction with NOX on a plasma membrane. However, the mechanism of
NOX-dependent activation of both neutral and acidic sphingomyelinases remains unclear.

(1) DPM activates AhR followed by increased transactivation of p47phox (a subunit of
NOX required for NOX activation); (2) Increases in p47 activate NOX; (3) NOX activates
sphingomyelinase by a ROS-independent (unidentified) mechanism, leading to increases
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in ceramide production by sphingomyelin hydrolysis; and (4) Increased ceramide induces
apoptosis in KC.

ESR-Ex has been used as a folk medicine for centuries, and its anti-oxidative activities
are well known. Here, we have shown previously unrealized biological activities of ESR-Ex;
i.e., as an AhR inhibitor and a NOX inhibitor. Our study could lead to new clinical indica-
tions for ESR-Ex; i.e., its use in prevention of DPM-mediated diseases, including asthma,
chronic obstructive pulmonary disease (COPD), pulmonary cancer, and cardiovascular
diseases initiated by environmental air pollutants and cigarette smoke. Since air pollutants
are involved in accelerating premature skin aging [22,23]. ESR-Ex also could be useful as
a skin care agent. NOX inhibitors already are used to treat cardiovascular diseases [2,3].
Additionally, AhR is involved in the development of some chronic inflammatory diseases,
such as inflammatory bowel diseases (IBD) and cancer development [24,25], so ESR-Ex
may also help to treat AhR-mediated and NOX-mediated (via AhR activation) diseases.

In conclusion, ESR-Ex protects KC from DPM-induced apoptosis by inhibiting AhR
activation-mediated NOX activation, followed by a blockage of increases in an apoptotic
lipid mediator (ceramide production) by activating sphingomyelinase and sphingomyelin
hydrolysis (Figure 9).

Figure 9. Proposed mechanism of ESR-Ex intervention in DPM-mediated ceramide-induced apoptosis.

4. Materials and Methods
4.1. Materials

Diesel particulate extract used in the present study is Standard Reference Material 1975
(SRM 1975), purchased from the National Institute of Standards and Technology (NIST)
(Gaithersburg, MD, USA). Nicotinamide, NADPH, NADP, and 2, 7-dichlorofluorescin
diacetate were obtained from Sigma-Aldrich (St. Louis, MO, USA). Apo, N-acetylcystine.
C17-S1P, S1P (d18:1), sphingosine, ceramides (fatty acid lengths C8, C12, C16, C18, C22, C24,
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and C24:1), C17-ceramide (d17:1/C18:0), and C12-sphingomyeline sphingosine, ceramides
(fatty acid lengths C12, C16, C18, C22, C24, and C24:1) were obtained from Avanti Polar
Lipids (Alabaster, AL, USA). Organic solvents for sphingolipid extraction or LC-MS/MS
analysis were purchased from Merck (Darmstadt, Germany).

4.2. ESR-Ex Preparation

ESR was provided by the National Institute of Biological Resources (Incheon, Korea).
The dry stem and leaf of ESR-Ex (200 g) were extracted with 70% ethanol reflux for 90 min
at 70 ◦C three times. The extracts were filtered with Whatman NO.3 filter paper (Maids
one, England) and concentrated by a vacuum evaporator (Rotavapor R-200; Buchi, Flawil,
Switzerland). Subsequently, the concentrated extract was freeze-dried (Hanil Co. Ltd.,
Gimpo, South Korea) to obtain a dry powder sample (ESR-Ex) with a yield of about
18% (36 g).

4.3. Identification of Phenolic Acid and Flavonoids in ESR-Ex

The extracts were separated using a ExionLC™ Series UHPLC system (Shimazu,
Tokyo, Japan). Furthermore, chromatographic separation was performed on a Waters
ACQUITY UPLC HSS T3 C18 column (2.1 × 50 mm, 1.8 µm) and a thermos tatted at 40 ◦C
was used and then pre-equilibrated in solvent A (0.1% formic acid in water). Extracts were
eluted with increasing percentages of solvent B (acetonitrile with 0.1% formic acid) at a flow
rate of 0.5 mL/min. The elution gradient steps were as follows: 0–1 min, 0% B; 1–4 min,
gradient to 70% B; 4–6 min, 100% B; 6–6.2 min, gradient to 0% B; 6.2–10 min, 0% B. The
injection volume was 5 µL and the effluent was connected to an ESI-triple quadrupole-
linear ion trap (QTRAP)-Mass spectrometry (Applied Biosystems 5500 QTRAP, Applied
Biosystems, Foster City, CA, USA).

Mass detection was performed in an API5500 QTRAP equipped with an electrospray
ionization (ESI) source and a triple quadrupole-ion trap spectrometer controlled by the
Analyst 1.7.1 software. The negative ionization mode was applied, and the optimized
instrument settings were as follows: curtain gas (CUR): 30.0 psi; collision gas (CAD):
medium; ion spray (IS) voltage: −4500 V; source temperature: 500 ◦C; GS1: 60 psi and GS2:
50 psi; The mass detector was programmed to perform two consecutive modes: enhanced
mass scan (EMS) and multiple reaction monitoring–information-dependent acquisition–
triggering enhanced product ion (MRM-IDA-EPI) mode analysis. EMS was employed to
obtain full scan spectra, so as to provide an overview of all the ions in the sample. The
settings used were: declustering potential (DP) −120 V, entrance potential (EP) −9.5 V,
collision energy (CE) −30 V. Spectra were recorded in negative ion mode between m/z 200
and 1000. Phenolic acids and flavonoids in ESR-Ex extracts were identified by comparing
the retention times and mass spectra with the reference standards.

4.4. Cell Culture

Immortalized, non-transformed (HaCaT) human keratinocytes (KC), derived from
human epidermis (a gift from N. Fusenig, Heidelberg, Germany), were grown, as described
previously [26,27]. Briefly, HaCaT KC were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% fetal calf serum (FCS) and 1% penicillin/streptomycin
(P/S). Similar to our prior studies [26,27], culture medium was switched to serum-free,
antibiotics-free KC growth medium (154 CF, Thermo Fisher Scientific, Waltham, MA, USA)
containing 0.07 mM calcium chloride and growth supplements (Thermo Fisher Scientific)
1 day prior to DPM treatment.

4.5. Cell Viability and Cytotoxicity

Cell viability was measured by the water-soluble tetrazolium salt (WST) method using
the cell counting kit-8 (CCK-8) assay kit (Dojindo, Kumamoto, Japan) in accordance with
the manufacturer’s instruction. Cytotoxicity was assayed using in vitro Toxicology assay
kit, lactic dehydrogenase based (Sigma-Aldrich).
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4.6. NADPH Oxidases

Activity of NADPH oxidase cell membrane fractions was measured by the lucigenin
chemiluminescence assay kit using N, N′-Dimethyl-9,9′-bicridium dinitrate and 1 µM
NADPH (Sigma-Aldrich), in accordance with the manufacturer’s instruction.

Activity of NADPH oxidases was measured by the ratio of NADP+ to NADPH using
LC-ESI-MS/MS (API 3200 QTRAP mass, AB/SCIEX, Framingham, MA, USA) by multiple
reaction monitoring (MRM) mode, as described previously [6]

4.7. Detection of Cellular ROS

To detect the production of cellular reactive oxygen species (ROS), including superox-
ide (O2

−) and hydrogen peroxide (H2O2), the oxidant-sensing probe 2,7-
dichlorodihydrofluorescein diacetate (DCFH-DA) (abcam, Cambridge, MA, USA) was
used, as described previously [28]. Briefly, ROS production was analyzed using a fluores-
cence microscopy (Eclipse Ti-U; Nikon Corporation, Tokyo, Japan) and fluorospectropho-
tometer (Molecular devices M2e, Molecular Devices, Sunnyvale, CA, USA) with 485 nm of
excitation and 520 nm of emission filters and was expressed as fluorescence intensity (a.u.).

4.8. Measurement of Ceramide, and Sphingosine-1-Phosphate (S1P)

Cells were treated with or without NOX inhibitor (Apocynin [APO], 100 µM) or
ROS generation (N-Acetylcysteine [NAC], 1 mM) for 30 min and then further incubated
with DPM for 24 h, followed by extraction of lipids as we reported previously [26,27].
Ceramide, and S1P were quantitated using LC-ESI-MS/MS (API 3200 QTRAP mass), as
we described previously [26,27]. The ceramide MS/MS transitions (m/z) were 510→264
for C14-ceramide, 538→264 for C16-ceramide, 552→264 for C17-ceramide, 566→264 for
C18-ceramide, 594→264 for C20-ceramide, 648→264 for C24:1-ceramide, 650→264 for
C24-ceramide, 676→264 for C26:1-ceramide, and 678→264 for C26-ceramide, respectively.
The S1P MS/MS transitions (m/z) were 366→250 for C17 S1P as an internal standard
and 380→264 for C18 sphingosine 1-phosphate, respectively. Data were acquired using
Analyst 1.5.1 software (Applied Biosystems). Sphingolipid levels are expressed as pmol
per mg protein.

4.9. Sphingomyelinase Assay

Activities of acidic or neutral sphingomyelinase were measured as described previ-
ously [6]. Briefly, cells suspended in assay buffers (acidic sphingomyelinase: 250 mM
sodium-acetate, 0.2% Triton X-100, pH 4.5, and neutral sphingomyelinase: 20 mM HEPES,
0.2% Triton X-100, pH 7.4) were incubated with 5 nmol of C12-sphingomyeline for 20 min at
37 ◦C. The reaction was stopped by the addition of CHCl3: CH3OH (2:1, v/v). The organic
phases were dried and were resolved in MeOH, and then analyzed by LC-MS/MS. The
activities of both sphingomyelinase are expressed as pmol (C12-ceramide) per mg protein
per min.

4.10. Western Blot Analysis

Protein levels of BAX, BCL-2, caspase 3 and β-actin were assessed using Western blot
analysis, as described previously [26,27]. Briefly, cell lysates, prepared in radioimmuno-
precipitation assay buffer, were resolved by electrophoresis on 4–12% Bis-Tris protein gel
(Invitrogen). Resultant bands were blotted onto polyvinylidene difluoride membranes,
probed with anti-BAX, anti- BCL-2, anti-caspase 3(Santa Cruz Biotechnology, Dallas, TX,
USA), and anti-human β-actin (Sigma-Aldrich, St. Louis, MO, USA), and detected using
enhanced chemiluminescence (Thermo Fisher Scientific). Band intensity was measured
with a LAS-3000 (Fujifilm, Tokyo, Japan).
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4.11. AhR Phosphorylation Assay

AhR activation was assessed by AhR phosphorylation using Phospho-AHR Cell-Based
Phosphorylation ELISA (LSBio, Seattle, WA, USA) in accordance with the manufacturer’s
instructions. A pharmacological ligand of AhR FICZ was purchased from Sigma-Aldrich.

4.12. Statistical Analyses

Results were expressed as the means ± standard deviation (SD). Statistical analyses
were performed using the GraphPad Prism 8.0.1 software (GraphPad Software, San Diego,
CA, USA). Significance between groups was determined by a one-way analysis of variance
(ANOVA) coupled with Dunnett’s multiple comparison test. The p values were set at either
*** <0.001, ** <0.01, or * <0.05.
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