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Hyperspectral imaging (HSI) is a non-invasive optical imaging modality that shows the 
potential to aid pathologists in breast cancer diagnoses cases. In this study, breast cancer 
tissues from different patients were imaged by a hyperspectral system to detect spectral 
differences between normal and breast cancer tissues. Tissue samples mounted on 
slides were identified from 10 different patients. Samples from each patient included 
both normal and ductal carcinoma tissue, both stained with hematoxylin and eosin 
stain and unstained. Slides were imaged using a snapshot HSI system, and the spec-
tral reflectance differences were evaluated. Analysis of the spectral reflectance values 
indicated that wavelengths near 550 nm showed the best differentiation between tissue 
types. This information was used to train image processing algorithms using supervised 
and unsupervised data. The K-means method was applied to the hyperspectral data 
cubes, and successfully detected spectral tissue differences with sensitivity of 85.45%, 
and specificity of 94.64% with true negative rate of 95.8%, and false positive rate of 
4.2%. These results were verified by ground-truth marking of the tissue samples by 
a pathologist. In the hyperspectral image analysis, the image processing algorithm, 
K-means, shows the greatest potential for building a semi-automated system that could 
identify and sort between normal and ductal carcinoma in situ tissues.

Keywords: hyperspectral, breast cancer, ductal carcinoma, spectral reflectance, hematoxylin and eosin, 
unstained, K-means

inTrODUcTiOn

Breast cancer is one of the highest causes of cancer deaths among American women (1–4). According 
to the U.S. Breast Cancer Organization, statistics show that about one in eight U.S. women will develop 
invasive breast cancer over their lifetime (1–3). In 2016, about 246,660 new cases of invasive breast 
cancer were diagnosed in women. The role of the pathologist is undeniably important for cancer 
diagnosis (4, 5). However, as the number of breast cancer cases increases, the burden of pathological 
cases becomes onerous. Thus, any new technology that can expedite breast cancer detection and 
diagnosis using biopsy slides, making the process easier and more efficient, is warranted.
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FigUre 1 | Hyperspectral cube (top). Pixel spectrum in the spectral 
dimension (bottom).
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Hyperspectral imaging (HSI) is a sophisticated non-invasive 
optical imaging modality that has the potential to accelerate 
medical imaging research and clinical practice. It is an optical 
imaging modality that collects and analyzes spectral information 
from across the electromagnetic spectrum, typically spanning the 
visible wavelengths between 450 and 700 nm, but also extending 
to the infrared (>700 nm) and UV (<450 nm). HSI has advantages 
over conventional imaging in that it provides the spectral reflec-
tion or absorption characteristics of the object being imaged in 
the form of spectral channels contained in an image data hyper-
cube (6–8). Preliminary research performed by the WVU Optical 
Imaging group at the WVU Cancer Institute has demonstrated 
that HSI and classification methods could distinguish between 
tumor and normal tissue in animal experiments with different 
tumor sizes without the use of contrast agents (9). The same 
researchers imaged pathological slides using a hyperspectral 
camera and reported the detection of head and neck metastasis 
ex vivo with promising sensitivity and specificity.

The purpose of this study was to evaluate the performance 
of a snapshot hyperspectral imager, the Arrow system from 
Rebellion Photonics, to determine if measurable differences 
in spectral properties exist between normal and various stages 
of cancerous breast tissues fixed on biopsy slides (10, 11). We 
hypothesized that a hyperspectral imager could spectrally deter-
mine the difference between normal and cancerous tissue on both 
stained and unstained slides. In tissues verified by a pathologist, 
we further predicted that image processing techniques could 
successfully differentiate between tissues in a semi-automated 
fashion (9, 12–14).

MaTerials anD MeThODs

instrumentation
The hyperspectral camera was connected to an upright micro-
scope (Nikon Optiphot-2) with at 12V-100W LL halogen lamp 
illumination source to capture images from biopsy slides. All 
images were captured using a CF Achromatic P40x objective. The 
arrow snapshot HSI camera is capable of two imaging configura-
tions with two different sets of spectral bands. The configuration 
that was used in this study is 443 × 313 pixel resolution in the 
spatial domain, with 31 bands in spectral domain. The spectral 
range of this system is within the visible light spectrum between 
461 and 641 nm. The field of view of the hyperspectral camera 
attached to the microscope with a 40× objective in its best resolu-
tion is 100 µm × 80 µm, allowing the capture of many images 
from a single tissue sample, which averaged 8.0 × 10−5 cm2 for 
this study.

An illustration showing the hyperspectral cube and graph of 
pixel spectrum are shown in Figure 1. The hypercube is essentially 
a three-dimensional dataset, which means even a single pixel con-
tains a feature vector with over 10 dimensions within the entire 
spectrum of reflectance information (15, 16). The technology of 
the hyperspectral imager requires using optical sensors, which are 
adjusted to collect spectral information in several narrow bands 
or channels. Typically, these channels range between 2 and 10 nm 
wide. HSI sensors produce image data in dozens or hundreds of 

narrow spectral bands (17–21). HSI technology, when properly 
exploited, can be used in optical imaging applications such as 
optical medical imaging in clinical and research applications 
such as the work described here focused on breast cancer tissue 
detection (22, 23).

The information collected from the imaging system was 
analyzed to obtain a continuous spectrum for each image pixel 
or cell as shown in Figure  2. Areas targeted by the imaging 
system may have different biological, and chemical compositions 
that can be detected by the sensor due to differences in light 
reflection or absorption. The image spectra can be compared 
with reflectance spectra collected in the field or in a laboratory 
to recognize and map surface materials such as particular types 
of vegetation or diagnostic minerals associated with ore deposits 
(20). Hyperspectral images contain a rich collection of data, which 
requires an understanding of the optical properties of different 
materials, how they are being measured, and how they relate to 
the measurements made by the hyperspectral sensor (20).

There are several methods used to create hyperspectral 
imagery. When comparing between different methods, such as 
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FigUre 2 | Regular image of the breast tissue, hyperspectral image, and the spectrum of the marked pixel.

FigUre 3 | Building the spectral data cube in both line scan and snapshot systems.
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hyperspectral line scan and hyperspectral snapshot imaging, 
it is important to consider both imaging techniques, as well as 
advantages and disadvantages of both systems (24, 25). In the case 
of line scan, each image collects one wavelength after the other, 
and the field of view of the imaging system is fixed to build the 
hypercube (26, 27). However, in the case of the snapshot method, 
both spatial and spectral information of the target are captured 
with one exposure (28).

The snapshot method (used in this study) is an imaging 
technique that does not require scanning at all. As shown in 
Figure 3, the snapshot camera has the capability to produce a 
complete spectral data cube in a single integration by directly 
imaging the target zones onto the spectral, and spatial detec-
tors simultaneously (28–30). In the line scan method, time 
and stability are required, and it is necessary to wait until all 
wavelength images have been recorded, which takes between 
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FigUre 4 | Images of stained and unstained samples. The marked 
[hyperspectral imaging (HSI)] are representing the chosen wavelength 
channel (550 nm) for detection.
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several seconds to minutes of measurement time, in addition 
to a few seconds wait time between scans, depending on the 
imaged target and the imager capability from illumination and 
integration conditions (31).

hsi image Processing and Data analysis
Image processing consists of a mathematical algorithm that, 
when applied, derives information from an image that can be 
used in automated image analysis systems. K-means is a learning 
algorithm used to solve unsupervised data classification problems 
(15, 32). Unsupervised clustering is used to describe processes 
where a classifier is assigned a dataset without preexisting labels 
(33, 34). For hyperspectral data, the classifier can be used to find 
spectral classes in a multiband image without assigned values 
from the data provider. The clustering treats unsupervised data 
by providing access to the tools to learn the classification from 
the data itself to create clusters that group the data based on the 
desired classification (34).

The idea is to define k centers, one for each cluster. Ideally, the 
best choice is to place them as far away from each other as possi-
ble, to increase the detection accuracy, and to reduce the number 
of error events (35). The next step is to take each point belonging 
to a given data set and associate it to the nearest center. In this 
case, each class will have one centroid, and the result becomes 
more stable with increased iterations, which means they reach a 
consensus. Also, the more data the classifier is given, the better 
the centroid accuracy will be (35, 36).

Equations 1 and 2 describe the basic process of choosing clus-
ters in the K-means algorithm. First, this algorithm minimizes 
the objective function, J(V), is calculated using [Ref. (36)]:
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where “||xi − vj||” is the Euclidean distance between xi and vj. “ci” 
is the number of data points in ith cluster, and “c” is the number 
of cluster centers.

The process starts by randomly selecting “c” cluster centers, 
then calculating the distance between each data point and cluster 
centers. After that, a data point is assigned to the cluster center 
whose distance from the cluster center is the minimum of all the 
cluster centers.

The new cluster center, vi, is recalculated using the minimum-
distance classifier equation [Ref. (35)]:
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Then, the distance between each data point and newly obtained 
cluster centers is recalculated. Finally, if no data point was reas-
signed, the calculation loop is stopped. Otherwise, it is repeated 
until no changes in the centroid values occur (35).

cellular imaging
This section provides a description of the snapshot HSI of 
human breast cancer tissue [obtained under WVU IRB protocol 
#1509816662 (Non-Human Subject Research)]. The samples are 

grouped as follows: (1) hematoxylin and eosin (H&E) stained 
normal and ductal carcinoma in  situ (DCIS) samples and (2) 
unstained samples of normal and DCIS tissues. In the first imag-
ing experiment, the HSI system was applied on 10 samples from 
patients that have tested positive for invasive ductal carcinoma 
breast cancer. Each patient has two H&E tissue samples marked 
by a pathologist. The second imaging experiment includes set 
of breast tissue samples taken from the same 10 patients, but 
without staining to observe the spectral signature of both normal 
and cancer tissues in an unstained state. The thickness of each 
sample was 5 μm. Example images from biopsy slides shown in 
Figure 4 for a single subject displaying both normal and DCIS 
tissue DCIS. Each slide was imaged by the hyperspectral imager. 
Figure 4 shows the H&E stained and unstained samples of the 
normal ducts, and DCIS of the patient with a monochromatic 
hyperspectral image at the chosen wavelength channel. A visible 
image of H&E-stained as well as -unstained normal duct, and 
DCIS tissue are shown for the example subject, as well as the 
regions that were selected for HSI for select wavelengths ranging 
from 460 to 650 nm.
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FigUre 5 | Hyperspectral imaging, training, and semi-auto detection workflow.
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resUlTs anD DiscUssiOn

The large amount of data contained in the three-dimensional 
hyperspectral data cube was evaluated in multiple steps as shown 
in Figure 5. All images were manually marked by a pathologist for 
providing ground-truth description of the tissue samples showing 
evidence of cancer. Training the auto detection algorithm and 
evaluating the accuracy on tissue samples that are not included 
in the training set is an important step. All marked areas on the 
samples possessed a high density of tumor tissue within the des-
ignated region, as identified by the pathologist. Image processing 
techniques were applied to look at the regions of interest identified 
by the pathologist and, ultimately, determine the spectral reflec-
tance of tissues in these regions over the visible light wavelength 
spectrum. The image processing and HSI toolboxes contained 
in both MATLAB and Waikato Environment for Knowledge 
Analysis (WEKA) were used in image processing. WEKA is a 
collection of machine learning algorithms for data mining tasks 
that were developed at University of Waikato, New Zealand. In 
this work, the algorithms are used to learn the about the nature of 
the hyperspectral data to understand the spectral reflectance value 
and how it can be used to differentiate between different regions 
in the tissue samples. We analyzed the manually picked regions 
of the hyperspectral images, then plotted the spectral reflectance 
spectrum to compare between the tissues. A semi-automated 
algorithm was applied to both the supervised, and unsupervised 
(i.e., labeled, and unlabeled) hyperspectral data sets.

spectral reflectance Determination of 
Manually Marked cancer Tissue
Because ductal carcinoma normally starts spreading from the 
duct, four square regions were randomly picked around each 

normal duct and in high density areas of the ductal carcinoma 
samples known to contain tumorous tissue. The results of hyper-
spectral images from each patient will consist of a comparison 
of spectral reflectance measurements from each area, and the 
average with error and SD computed for 10 measurements from 
each of 4 separate regions per ample type. Spectral reflectance 
plots of the 4 marked areas of the stained tissue samples of 1 out 
of 10 patients are shown in Figure 6.

Unsupervised Data for K-Means algorithm 
on human—Female h&e-stained Breast 
Tissue
The method used to process and analyze images were contained 
in the HSI toolboxes of MATLAB and WEKA, as described 
previously. The K-means algorithm was applied to unsuper-
vised (i.e., unlabeled) data. The user chooses the number of 
classes, which is 2 for this study (cancer, and non-cancer), and 
then the algorithm picks the best centroid for each class. The 
class centroids changes each time the algorithm runs until the 
program stops, i.e., when the numbers of each class do not 
change, and each centroid is considered the best pick. The table 
in Figure 6 shows the results of applying K-means separately 
on each set of data from 9 out of 10 patients for training, 
iterating to find the two best values of centroids, and finally, 
using the known labels of cancer and non-cancer to measure 
the accuracy of each run. The last step is to run the K-means 
trained algorithm on the 10th patient for testing the cancer 
detection scheme to determine if the classifier can identify and 
detect both classes, and then compare the detected results with 
the ground-truth pathologist diagnosis in order to support the 
algorithm accuracy.
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K-means algorithm was applied to the hyperspectral data 
cubes, and we successfully detected spectral tissue differences 
with sensitivity of 85.45%, and specificity of 94.64% with a 

true-negative rate (TNR) of 95.8%, and a false-positive rate (FPR) 
of 4.2%. The result of training the K-means algorithm on the data 
that were extracted from the first 9 patients, then the trained algo-
rithm was applied on the untrained data that were extracted from 
the 10th patient. The algorithm successfully detected normal and 
cancer tissue as shown in Figure 7. In this figure, the blue boxes 
indicate the areas containing cancer marked by the pathologist, 
and the red and blue shaded regions are the regions with cancer 
identified by the hyperspectral detection algorithm.

cOnclUsiOn

The goal of this study is to evaluate the performance of a snapshot 
hyperspectral imager to see if measurable differences in spectral 
properties can be observed between normal and various stages of 
cancerous breast tissues fixed on biopsy slides, specifically in the 
case of ductal carcinoma. This interdisciplinary work may also 
build a bridge between pathology and hyperspectral optical diag-
nostic imaging to reduce time and workload on the pathologist, 
with a secondary benefit of leading to more accurate diagnoses.

Hyperspectral imaging technology was used to image stained 
and unstained tissue samples of normal and DCIS tissue from 
breast cancer patients. A region of interest in each tissue sample 

FigUre 6 | Average response showing spectral reflectance of the cancer and normal tissues (a). The error bars quantify uncertainty in the graph based on an 
average of 10 measurements taken from each of the four marked region of interest for both normal and cancer tissue (B). A clear separation between both tissues 
was displayed at 550 nm. The table shows the results of applying K-means separately on each set of data from 9 to 10 subjects for training.

FigUre 7 | The blue boxes indicates the areas marked by the pathologist, 
the shaded areas shows the detection of the K-means algorithm detecting 
cancer tissues (red), and normal tissues (blue) on the spectral channel 
550 nm.
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review by a pathologist. In most cases, the results showed the 
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choose as starting reference for testing the spectral reflectance 
of new samples. In the hyperspectral image analysis, the image 
processing algorithm, K-means, showed the greatest potential 
of building a semi-automated system that can identify and sort 
between the samples with a high degree of difference in spectral 
reflectance. This technique may also be used to distinguish 
between cancer cells at various stages of progression, as well 
as to develop a more advanced algorithm to allow a user to 
distinguish tumor margins from normal and cancerous tissue. 

Using a HSI system with the development of trained algorithms 
for detection shows great potential in automating cancer diag-
nostics in the future.
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