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ABSTRACT
Enucleated mature human erythrocytes possess NFĸBs and their upstream kinases. There is 
a negative correlation between eryptosis (cell death of erythrocytes) and the amount of NFĸB 
subunits p50 and Rel A (p65). This finding is based on the fact that young erythrocytes have the 
highest levels of NFĸBs and the lowest eryptosis rate, while in old erythrocytes the opposite ratio 
prevails. Human erythrocytes (hRBCs) effectively control the homeostasis of the cell membrane 
permeable anti-inflammatory signal molecule hydrogen sulfide (H2S). They endogenously produce 
H2S via both non-enzymic (glutathione-dependent) and enzymic processes (mercaptopyruvate 
sulfur transferase-dependent). They uptake H2S from diverse tissues and very effectively degrade 
H2S via methemoglobin (Hb-Fe3+)-catalyzed oxidation. Interestingly, a reciprocal correlation exists 
between the intensity of inflammatory diseases and endogenous levels of H2S. H2S deficiency has 
been observed in patients with diabetes, psoriasis, obesity, and chronic kidney disease (CKD). 
Furthermore, endogenous H2S deficiency results in impaired renal erythropoietin (EPO) produc-
tion and EPO-dependent erythropoiesis. In general we can say: dynamic reciprocal interaction 
between tumor suppressor and oncoproteins, orchestrated and sequential activation of pro- 
inflammatory NFĸB heterodimers (RelA-p50) and the anti-inflammatory NFĸB-p50 homodimers 
for optimal inflammation response, appropriate generation, subsequent degradation of H2S etc., 
are prerequisites for a functioning cell and organism. Diseases arise when the fragile balance 
between different signaling pathways that keep each other in check is permanently disturbed. 
This work deals with the intact anti-inflammatory hRBCs and their role as guarantors to maintain 
the redox status in the physiological range, a basis for general health and well-being.
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Human erythrocytes (hRBCs) and their 
methemoglobin (metHb/HbFe3+) as biological 
hydrogen sulfide (H2S) carrier

Under physiological conditions, the auto- 
oxidation of about 1–3% of the total body hemo-
globin (ferrous Hb/HbFe2+) results in the genera-
tion of methemoglobin (metHb/HbFe3+). Different 
organs such as liver, kidney, and brain produce the 
signal molecule hydrogen sulfide (H2S). The cellu-
lar H2S biogenesis, that is, desulfuration of 
cysteine or homocysteine, is primarily accom-
plished by three enzymes: Cystathionine 
b-synthase (CBS), γ-cystathionase (CSE), and mer-
captopyruvate sulfur transferase (MST) [1–3]. 
hRBCs does possess MST, but not the other two 
H2S-producing enzymes [4]. While H2O flow 
through cell membrane is accelerated by aquapor-
ins [5], the transmembrane diffusion of

hydrophobic H2S requires no facilitator and its 
permeability coefficient is still 10.000 times higher 
than that of water [6]. Based on this property, H2 
S can exhibit broad toxicity effects or function as 
a signal molecule in a concentration-dependent 
manner. Besides the endogenously produced nitric 
oxide (NO) and carbon monoxide (CO), the cell 
membrane permeable H2S [7,8] plays an impor-
tant role as a gaseous signaling molecule in biolo-
gical and physiological processes. H2S regulates 
several biological and physiological processes, for 
instance: it shows anti-thrombotic effects [9], pro-
tects vascular tissues from atherogenic disease 
[10], enhances blood flow which protects against 
vascular ischemia [11] and inhibits glucose con-
sumption and uptake. For reviews, see [12,13].

One hundred years ago, sophisticated experi-
ment on animals provided the first evidence of fast 
H2S detoxification via its metabolism. The practice
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of a fast administered single dose of 10 ml of 
a 77 mmol/l Na2S solution was always lethal, 
whereas dogs that received a five-fold dose over 
a period of 20 minutes survived and showed no 
obvious damage [14]. Mammalian tissues (e.g. 
heart, kidney, brain, and intestine) as well as 
human erythrocytes are able to produce H2 
S. Under physiological conditions, ~30% of the 
short-lived H2S exists in a non-dissociated form 
and ~70% in its hydrogen sulfide anion (H2S � 
HS−). It is important to note that: a) the comple-
tion of net acid efflux by the H2S/HS− follows the 
same principle as that of CO2/HCO3

− in the 
Jacobs–Stewart cycle (see Figure 1b) due to the 
lack of extracellular hydration and intracellular 
dehydration, the net acid efflux in Cl−/HS−/H2 
S cycle is faster than Cl−/HCO3

−/H2CO3 cycle, c) 
HS− is a very good substrate for the anion exchan-
ger 1 (AE1) and d) H2S possesses a very high 
permeability coefficient in human erythrocytes 
[15]. The atomic structure of CO allows it to solely 
bind Fe2+ with its two unpaired electrons [16]. 
Therefore, all of the spectral work with CO and 
heme proteins employs the native (reduced) forms. 
NO is able to bind both Fe2+ and Fe3+ in heme 
proteins. H2S binds rapidly to Fe3+ in heme pro-
teins, for example, methemoglobin (HbFe3+) 
[4,17]. Vitvitsky et al. showed that hRBCs produce 
H2S via MST and in addition to this effectively 
clear sulfide via MetHb-catalyzed oxidation of H2 
S to thiosulfate and polysulfides [4], see also Fig. 1 
and 2. Human erythrocytes are represented by 
~5 billion per ml of blood, and each intact hRBC 
contains over 270 million hemoglobin molecules

that are able to uptake H2S from diverse tissues 
and very effectively control its clearance. This 
ensures the maintenance of the physiological 
plasma and tissues concentration of free H2S in 
the range of 15 to 150 nM [18,19]. The very high 
lipid and water solubility of H2S allows quick 
passage through the alveolar membrane, which is 
the best condition for achieving an almost perfect 
equilibrium between blood and alveolar air. 
Human alveolar air measurements showed negli-
gible free H2S, indicating very low blood concen-
tration [18]. The fundamental findings of Furne 
et al. also revealed the conventional experimental 
errors involved in H2S research. Considering that 
a) we have seen the work of Furne et al. 2008 as 
well as King et al. 2014, b) an adult healthy human 
has ~30 trillion (3 × 1013) circulating RBCs with 
a life span of 120 days [20], c) ~1% of the circulat-
ing hRBCs (~200–300 billion cells) are cleared 
per day and replaced by erythropoiesis, and d) 
that ~3.7 million (3.7 x 106) cell-free, intact and 
respiratory competent mitochondria circulating 
per ml of blood plasma [21], those organelles 
apart from hRBCs contribute to the degradation of 
H2S, maintain human plasma concentration of H2 
S clearly below a µM range under physiological 
conditions.

Role of PKC-α and other Ca2+-dependent 
pathways in IĸB-α phosphorylation/ 
degradation and NFĸB activation

Ankyrin-containing proteins including IĸBs act as 
specific protein–protein interactors [22–24]. The

Figure 1. Role of human red blood cells (hRBCs) in uptake and degradation of H2S. For more details see the main text.

2092 M. GHASHGHAEINIA AND U. MROWIETZ



prevailing opinion is that cellular activation via 
numerous stimuli initiates IĸB-α phosphorylation, 
its subsequent dissociation from and abolition of 
its inhibitory effect on NFĸB; and these events 
precede the IĸB-α proteolytically degradation. 
However, this does not reflect the sequence of 
events. In fact, the IĸB-α phosphorylation and its 
subsequent degradation enables NFĸB release, 
which rapidly translocates into the nucleus [25] 
to drive the expression of genes, for eample, IL-8 
expression [26]. The dual function of the chemo-
kine IL-8 includes pathogen elimination by 
recruitment of neutrophils and being causative in 
several inflammatory diseases. Both IL-4 and 
human erythrocytes can curb IL-8 effects. IL-4 
functions as an endogenous inhibitor of IL-8 
expression [27] and hRBCs reduces the bioavail-
ability of IL-8 substantially by acting as a sink for 
IL-8 [28–30]. Steffan et al. were the first to show 
a direct link between the synergistic effects of 
PKC- and Ca2+-dependent phosphatase calci-
neurin on the regulation of IĸB-α phosphorylation 
and pointed to the necessity of the existence of an 
IĸB-α kinase (IKK) [25,31]. In the meantime, the 
existence of IKKs [32,33], but also of an IKK 
kinase, have been proven [34].

Role of redox-sensitive canonical NFĸB 
pathway in human erythrocytes (hRBCs). 
NFĸBs in nucleated cells; the complexity of 
glutathione (GSH), NFĸB, PKC, Ca2+ and nitric 
oxide synthase (NOS) interactions

Human erythrocytes (hRBCs) possess the main 
members of the canonical NFĸB pathway [35– 
37]. Virtually all publications on erythrocytes´ 
NFĸBs available to date originate from our labora-
tory, which demonstrate a reciprocal relationship 
between age and abundance of NFĸBs in hRBCs; 
the NFĸB protein abundance is highest in young 
and lowest in aged erythrocytes. There is a positive 
correlation between cell volume, and a negative 
correlation between eryptosis (cell death of ery-
throcytes) and the amount of NFĸB subunits p50 
and p65. This finding is based on the fact that 
young erythrocytes have the highest cell volume 
and the lowest eryptosis rate, while in old erythro-
cytes the opposite ratio prevails [36].

Retrobulbarly collected whole blood, the subse-
quent isolation of erythrocytes from the homozy-
gous NFĸB-p50 deficient and congenic wild-type 
C57BL/6 and their subsequent incubation in 
Ringer solution enabled to demonstrate a direct 
correlation between NFĸB-p50 deficiency and 
increased eryptosis [38]. Additional biological/ 
physiological effects were: a) significant increase 
of white blood cell (WBCs) count and b) consider-
able weight loss in NFĸB-p50 deficient mice. The 
former indicates systemic inflammation in 
NFĸB-p50 deficient mice and the latter observa-
tion offers a possibility to treat obesity with NFĸB 
inhibitors provided their bioavailability is suffi-
cient [39,40]. It is known that NFĸB-p50 homo-
dimers are refractory to inflammation while NFĸB 
heterodimers (e.g. RelA-p50 subunits) have an 
inflammatory function [41]. This is why impaired 
p50–p50 activation is associated with dysregulated 
inflammation and chronic inflammatory diseases.

The generation of a reduced form of glutathione 
(GSH), an intracellular antioxidant, is the result of 
two concerted ATP-consuming reactions conducted 
by 1) γ-glutamylcysteine synthetase (γ-GCS) and 2) 
GSH synthetase (GS) [42,43]. (Reaction 1): 
L-glutamate + L-cysteine + ATP → γ-L-glutamyl- 
L-cysteine + ADP + Pi (Reaction 2): γ-glutamyl 
-L-cysteine + L-glycine + ATP → GSH + ADP + Pi

The first reaction is, however, feedback inhibited by 
GSH [44], see also Figure 2. In nucleated cells, GSH 
and NO, respectively, are able to inhibit IKK-b activity 
by reversible S-glutathionylation or S-nitrosylation, 
which ultimately impairs NFĸB activation [45,46]. 
Protein kinase C-alpha (PKC-α) phosphorylates 
NFĸB-p65 subunits [47] and this is associated with 
NFĸB-dependent induction of γ-GCS and intracellu-
lar GSH de novo biosynthesis [48]. Interestingly, addi-
tion of exogenous NO donor DETA/NO results in 
NO-mediated release of “free” intracellular zinc, zinc- 
dependent increase of γ-GCS expression and GSH 
synthesis [49]. This could be a new IKK-NFĸB--
independent, NO-dependent pro-survival pathway 
connecting redox potential of a cell with intracellular 
“free” zinc concentration. Human erythrocytes 
(hRBCs) possess functional endothelial nitric oxide 
synthase (eNOS) (L-Arginine + O2 + eNOS → 
L-Citrulline + NO) [50,51] and much more important 
is the fact that pro-survival NO and pro-eryptotic Ca2 

+ keep each other in check [52]. Under physiological
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conditions one portion of the abundant serum albu-
min binds to NO, forming a relatively long-lived 
albumin-NO-adduct (~7 µM S-nitrosothiol) and 
thus functioning as a sink for NO, while free NO 
with a plasma concentration of ~3 nM serves predo-
minantly to maintain the vascular tone [53], see also 
Figure 2. For more details about the biological roles of 
NO we refer to the following reviews [54,55].

Human erythrocytes (hRBCs), free and 
unbound Calcium (Ca2+), Ca2+ dependent 
Protein kinase C-alpha (PKC-α) and NFĸB 
activation. The Bermuda Triangle Ca2+-PKC-α- 
NFĸB and its association with respiratory 
diseases

Intact hRBCs among mammalian cells have the 
lowest free, unbound intracellular concentration 
of calcium ions [Ca2+]i under physiological condi-
tions ranging between 20 and 30 nM [56]. In 
contrast to organelles-free mature hRBCs, other 
mammalian cells possess multiple organelles with 
a wide variety of free, unbound calcium distribu-
tions, for example, [Ca2+]cyt ~50–100 nM, [Ca2+]mt 
~100 nM, [Ca2+]nucleus ~100 nM, [Ca2+]ER ~100– 
700 nM, for review see [57]. [Ca2+]i directly 
impairs the transmembrane equilibrium distribu-
tion of the phospholipids, that is, their inward 
translocation from the outer to the inner leaflet 
of erythrocytes’ plasma membrane. For instance, 
[Ca2+]i of ~50 and ≥200 nM affect the inward 
translocation of phosphatidylethanolamine and

acidic phosphatidylserine (PS), respectively [58], 
a process directly related to Ca2+-dependent inhi-
bition of aminophospholipid translocase (or flip-
pase) activity. A sustained cytosolic calcium 
elevation [Ca2+]i concomitantly promotes the 
activity of the phospholipid scramblase which 
then unspecifically initiates bidirectional PS trans-
location on both sides of the plasma membrane. In 
contrast to internalized PS, PS externalization or 
depletion is associated with a cell-type indepen-
dent weakening of the plasma membrane Ca2+- 
ATPase (PMCA)-mediated Ca2+-efflux [59,60]. 
The following reviews illustrate Ca2+ transporting 
systems, for example, PMCA and the Ca2+- 
activated K+ channel, known as Gardos channel 
[61–63]: In view of the antagonistic roles of NO 
and Ca2+ [52] and association of early eryptosis 
with the removal/translocation of PS from the 
inner to the outer leaflet of the bilayer plasma 
membrane, it is not surprising that intact hRBCs 
maintain their [Ca2+]i as low as possible and as 
much as necessary (see Figure 3).

It is undisputed that changes in [Ca2+]i are 
associated with changes in cell functions [64]. 
[Ca2+]i mediates both cell survival and apoptosis 
depending on its oscillation and excessive eleva-
tion, respectively [57,65,66]. The most prominent 
member of the protein kinase C (PKC) family is 
the Ca2+-, acidic phospholipids (e.g. PS-) and dia-
cylglycerol (DAG)-dependent conventional PKC- 
alpha (cPKC-α) [67–71]. According to structure 
and cofactor regulation, the PKC family is divided

Figure 2. Illustration of ions distributions and the pro-survival role of nuclear factor kappaB (NFĸB), nitric oxide (NO) and reduced 
form of glutathione (GSH) in human red blood cells (hRBCs). For more details see the main text.
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into three classes: cPKCs (α, βI, βII, and γ), novel, 
that is, nPKCs (d, e, η, and θ), and atypical, that is, 
aPKCs (ζ and iota (i)). The first class being Ca2+, 
PS, and DAG-dependent; the second being Ca2+- 
independent but PS- and DAG-dependent, and the 
third class being Ca2+- and DAG-independent but 
acidic phospholipids and ceramides dependent. 
hRBCs possess four cytosolic isoforms of PKCs: 
alpha, zeta, mu, and iota, of which only PKC-α 
with membrane translocation capability [72,73], 
that is, induction of eryptosis [74,75]. Using che-
lerythrine as a specific PKC-α inhibitor, we were 
able to show a direct correlation between the cos-
tunolide-induced GSH-depletion and PKC-α acti-
vation in hRBCs [76], a phenomenon also 
observed in nucleated mammalian cells. Thus, it 
is not astonishing that the capacity of hRBCs to 
synthesize ~2 mM of the pro-survival [GSH]i 
[77,78] exceeds the rate GSH turnover by 150- 
fold [79] to avoid a PKC-α mediated induction of 
erythrocytes death (eryptosis). Furthermore, H2 
S can be endogenously produced in the presence 
of GSH [80,81]. GSH is a linchpin of cellular 
defense protecting both prokaryotic [82] and 
eukaryotic cells [83,84] including hRBCs from bio-
tic and abiotic stresses. In nucleated mammalian 
cells, PKC-α activation drives the pro-survival 
machinery [85–87], and its inhibition commonly 
triggers apoptosis in these cells [88,89]. In addition 
to this, respiratory diseases of viral [90] and bac-
terial [91] origin are associated with PKC-α activa-
tion. It is to note that intact hRBCs are actively

involved in bacterial [92] and viral clearance from 
circulation [93–98], for reviews see [99,100]. The 
message is clear: specific PKC-α inhibitors, for 
exmaple, the bioactive molecule chelerythrine 
[101–104], as a natural product of plant origin 
can dose-dependently cause a pro-apoptotic effect 
in nucleated cells, thus creating a hostile environ-
ment for intracellular parasites including viruses 
and simultaneously can create a pro-survival effect 
in enucleated hRBCs [76]. Therefore, hRBCs in 
combination with PKC-α inhibitors (e.g., cheler-
ythrine) should be a promising approach to treat 
COVID-19 [105]. PKC-α as the upstream kinase of 
the NFĸB signaling pathway as well as NFĸB itself, 
represent a link between nucleated and enucleated 
mammalian cells, which can be designated as: 
“NFĸB, from non-genomic to genomic research”.

Inflammation vs. anti-inflammation. 
NFĸB-p65, glycolysis, inflammatory diseases 
vs. hRBCs, H2S, insulin

Obesity- and psoriasis-associated chronic low- 
grade inflammation and NFĸB activation are two 
sides of the same coin that perpetuate each other. 
It is known that NFĸB is a positive physiological 
regulator of glycolysis [106], for review see [107]. 
The following review clearly illustrates the rela-
tionship between the anti-inflammatory effects of 
insulin and the pro-inflammatory effects of glu-
cose with NFĸB as a common target [108]. 
Interestingly, glucose uptake is negatively

Figure 3. Qualitative illustration of four major plasma membrane phospholipids as well as intraerythrocytic distribution of potassium 
(K+) and calcium (Ca2+) ions in intact and eryptotic human erythrocyte.
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correlated with in adipose tissue up-regulation of 
H2S system. As already mentioned, a negative cor-
relation exists between the intensity of inflamma-
tory diseases and endogenous H2S levels. Psoriasis 
is directly associated with low serum H2S levels 
[109], for review, see [110]. Diminished adipose 
tissue H2S has been observed in obesity. H2 
S inhibits the expression of highly pro- 
inflammatory IL-8 in human keratinocytes and 
shows potential for psoriasis treatment [111]. In 
addition, hRBCs function as a sink for IL-8, thus 
minimizing the deleterious effects of 
NFĸB-mediated IL-8 expression. Recently, 
Mezouari et al. demonstrated that H2S enhances 
the secretion of the glucoregulatory hormone glu-
cagon-like peptide 1 and improves glucose clear-
ance in mice [112], for review see [113]. In 
addition to these, endogenous H2S deficiency in 
patients with chronic kidney disease (CKD) is 
associated with impaired renal erythropoietin 
(EPO) production and EPO-dependent erythro-
poiesis [114]. Taken together, the role of anti- 
inflammatory hRBCs to regulate H2S homeostasis 
and to maintain its physiological concentration in 
the blood as well as to function as a sink for 
a many inflammatory cytokines and chemokines, 
is essential for maintaining cellular health as the 
basis for general health and well-being.

H2S-mediated regulation of biochemical 
pathways in human erythrocytes (hRBCs)

For adequate supply of the organism with mole-
cular oxygen, hRBCs divert 20% of the uptaken 
glucose to Rapoport and Luebering glycolytic 
shunt [115], for review see [107]. In this process 
erythrocyte 2,3-bisphosphoglycerate (2,3-BPG) 
plays a central role. It negatively regulates hemo-
globin oxygen (O2) binding affinity, facilitates O2 
release from oxyhemoglobin [116] improving tis-
sue oxygenation. H2S regulates 2,3-BPG produc-
tion and it exists a reciprocal correlation between 
H2S concentration and 2,3-BPG production. H2 
S level increases during normoxic and decreases 
during hypoxic conditions [117]. This ensures 
maximum O2 uptake in the lungs and maximum 
O2 release in the peripheral tissues. It is to note 
that the reduced form of glutathione (GSH), gly-
colytic, and pentose phosphate pathways positively

regulate H2S production in hRBCs [80]. hRBCs 
possess an active and functional endothelial nitric 
oxide synthase (eNOS) and are a major source of 
NO (hRBC-eNOS → NO production), contribut-
ing to the circulating NO pool [50,118]. The ability 
of hRBCs to take up endothelium-derived NO, 
thereby limiting NO available for vasodilation: 
Fe2+-HbO2 (oxy-Hb) + NO → Fe3+-Hb (metHb) + 
NO3

−, does not invalidate our statement just 
described. The localization of homodimeric hRBC- 
eNOS at the cytoplasm leaflet preferentially 
increase local metHb concentration which in turn 
acts like a shield to protect NO molecules – pro-
duced by hRBC-eNOS – from scavanging by oxy-
hemoglobin (oxy-Hb). This allows NO molecules 
not only to leave the erythrocytes but also to 
interact with their targets located in the immediate 
vicinity of hRBC-eNOS. Another important aspect 
is that metHb molecules generated in this process 
can now be used to clear sulfide via MetHb- 
catalyzed oxidation of H2S to thiosulfate and poly-
sulfides. It is to note that high concentration of 
NO impairs dimer stability of eNOS as well as its 
activity and this loss of dimer (eNOS monomer-
ization) can be reversed by thioredoxin/thioreduc-
tase system [119]. These sophisticated and 
coordinated processes curtail exuberant NO pro-
duction in vivo. The following work illustrates in 
a very compact form the physical and chemical 
properties of NO and its physiological roles 
[120]. NO inhibits erythrocyte cell death (erypto-
sis) [52] and reduction of NO bioavailability has 
been observed in several diseases, for example, in 
sickle cell anemia [121]. Recently, we observed 
systemic inflammation and enhanced rate of eryp-
tosis in NFĸB-p50 (p50) deficient mice [38]. It is 
known that NFĸB-p50 homodimers are refractory 
to inflammation while NFĸB heterodimers (e.g. 
NFĸB-p65-p50 subunits) have an inflammatory 
function [41]. NFĸB-p65 (p65) activity is regulated 
by several reversible post-translational modifica-
tion mechanisms. p65 is activated by phosphoryla-
tion [122] or acetylation [123] and inhibited by 
deacetylation [123,124]. To date, there is no single 
publication that has investigated the influence of 
H2S on NFĸBs in hRBCs. We tend to believe that 
H2S with its anti-inflammatory properties exerts 
an inhibitory effect on p65 and positively regulates 
p50. We will clarify this experimentally in the near
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future. In nucleated cells, publications on the 
influence of H2S on NFĸBs are contradictory. 
According to several publications, H2S-mediated 
p65 sulfhydration can lead to its activation and 
inhibition. These inconsistencies are rather due 
to a lack of standardized methods for determining 
H2S concentration.

Conclusion and perspectives

Human erythrocytes (hRBCs) are a mobile organ 
that traverse our entire organism. They are involved 
in innumerable biological and physiological pro-
cesses, are directly involved in virus and bacterial 
elimination from circulation, maintain the concen-
trations of many signaling molecules and anti- 
oxidants in physiological range, possess transcrip-
tion factors such as NFĸBs and their upstream 
kinases and act as a sink for many inflammatory 
cytokines and chemokines, thus minimizing their 
deleterious effects. Therefore, treatment of many 
pathological diseases without considering hRBCs, 
is myopic and not an adequate remedy.
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