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Abstract: Short-term dietary restriction has been proposed as an intriguing pre-operative conditioning
strategy designed to attenuate the surgical stress response and improve outcomes. However, it is
unclear how this nutritional intervention influences the microbiome, which is known to modulate
the systemic condition. Healthy individuals were recruited to participate in a four-day, 70% protein-
restricted, 30% calorie-restricted diet, and stool samples were collected at baseline, after the restricted
diet, and after resuming normal food intake. Taxonomy and functional pathway analysis was
performed via shotgun metagenomic sequencing, prevalence filtering, and differential abundance
analysis. High prevalence species were altered by the dietary intervention but quickly returned
to baseline after restarting a regular diet. Composition and functional changes after the restricted
diet included the decreased relative abundance of commensal bacteria and a catabolic phenotype.
Notable species changes included Faecalibacterium prausnitzii and Roseburia intestinalis, which are
major butyrate producers within the colon and are characteristically decreased in many disease states.
The macronutrient components of the diet might have influenced these changes. We conclude that
short-term dietary restriction modulates the ecology of the gut microbiome, with this modulation
being characterized by a relative dysbiosis.

Keywords: dietary intervention; dietary restriction; caloric restriction; microbiome;
intestinal microbiome; pre-operative care

1. Introduction

Dietary restriction, defined as reduced caloric intake without malnutrition, has been
proposed as an intriguing pre-operative conditioning strategy to mitigate surgical stress and
improve outcomes [1–3]. Calorie restriction has been shown to counteract the biological
processes of aging via oxidative stress reduction and attenuation of the metabolic and
hormonal processes related to disease [4–7]. However, issues with long-term compliance
have limited the implementation of dietary intervention in humans [6,7]. Short-term dietary
restriction (stDR) has demonstrated similar benefits, paralleling physiologic patterns of
long-term interventions [8,9]. Notably, stDR attenuates insulin resistance, upregulates
antioxidant activity, and protects against ischemia-reperfusion injury [9–13]. To date,
preclinical surgical models have shown improved stress response patterns and favorable
surgical outcomes [14–18]. Furthermore, several pilot studies have shown feasibility and
safety in surgical cohorts [19–22].
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Despite encouraging results in clinical and preclinical studies, a clear understanding
of the systemic response that results from stDR is lacking. Insights into this question are
beginning to emerge. It has been demonstrated that nutrient-sensing pathways (e.g., mTOR,
AMPK, insulin/IFG-1, SIRT) are altered after caloric restriction, shifting cellular phenotypes
from growth and reproduction to survival and stress resistance [7,8]. Protein restriction,
specifically, appears to be the dominant driver of many cell-mediated adaptations [17,23–28].
However, differences in macronutrient composition and absorption have produced variable
response patterns [29]. The intestinal microbiome, a key regulator of nutrient bioavailability
and enteric health, is central to understanding this variability [30,31]. Intestinal physiology
affected by the gut microbiome composition further steers whole-body health status [32–35].
Therefore, dietary interventions targeted to specific compositional and functional patterns
within the gut offer the opportunity to control the systemic condition [36,37].

Nutritional restriction likely plays a critical role in the systemic response via the
adaptations of the gut microbiome. Animal models suggest that stDR upregulates several
commensal species that support favorable homeostatic conditions, such as the preservation
of the integrity of the gut membrane, regulatory T cell differentiation, and the production
of a favorable cytokine profile. In combination, an overall anti-inflammatory response
contributes to the long-term health benefits of a restrictive dietary intervention [6,38,39].
Unfortunately, the bulk of the human microbiome studies evaluating the impact of dietary
modulation has been limited to long-term obesity treatment interventions. Particularly,
the influence of short-term interventions (less than 1-week), which could be leveraged
as a therapeutic opportunity before surgery, has not been explored. As such, community
response patterns to stDR remain largely unknown. In the present study, we addressed this
knowledge gap by examining the intestinal microbiome’s temporal dynamics during stDR,
to better understand the functional mechanisms of the intervention and its implications as
a potential pre-operative intervention to improve outcomes.

2. Materials and Methods
2.1. Study Design

This study was designed to evaluate the dynamic changes in the human intestinal
microbiome that result from stDR. The selected diet was a 4-day calorie- and protein-
restricted regimen followed by a return to an individual’s typical diet post-intervention.
Preliminary findings have demonstrated the safety and feasibility of the diet [19,20]. The
study was approved by the Institutional Review Board at the University of Florida.

2.2. Subjects and Dietary Intervention

Healthy adult males and females were recruited to participate. Individuals with
advanced age (>70 years old) or any significant medical condition (e.g., cancer, diabetes,
inflammatory bowel disease, chronic kidney disease) were excluded to maximize the
homogeneity among the enrolled participants. All subjects provided informed consent
prior to participation. The intervention was a 4-day liquid-based diet, individualized
to achieve 30% calorie restriction and 70% protein restriction. A pre-intervention 15%
protein caloric intake of 15% was assumed. Each participant’s daily energy requirement
was calculated based on resting energy expenditure (REE) plus additional energy needs,
estimated using the Paffenbarger physical activity questionnaire [40,41]. The Mifflin St.
Jeor equation was used to calculate REE for each subject [42]:

REE = 9.99 × weight (kg) + 6.25 × height (cm) − 4.92 × age (yrs) + 166 × sex (male = 1, female = 0) − 161

Restricted calories-to-be-consumed were based on each subject’s total daily energy
requirement. During the 4-day dietary intervention, nutritional intake was limited to the
study diet, which was a powder shake (Scandishake® Mix, Nutricia Advanced Medical
Nutrition, Utrecht, The Netherlands) mixed with almond milk. Scandishake® Mix is a
weight gain supplement selected for its low protein content. Each serving of Scandishake®
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Mix contains 491 Kcal, which is composed of 4% protein, 42% carbohydrates, and 44%
fat [19]. Four shake flavors were available, and water intake was unrestricted. The diet
was consumed in an outpatient setting and compliance was monitored with a MealLogger
mobile application (www.meallogger.com, accessed on 8 November 2019). Following
4 days of dietary intervention, the participants resumed their baseline dietary habits
without restrictions.

2.3. Sample Collection, DNA Extraction, and Shotgun Metagenomic Sequencing

Stool samples were collected at three time points: before dietary intervention (“Base-
line”), on the last day of dietary restriction (“Day-4”), and three days after resuming an
unrestricted diet (“Day-7”). Samples produced on other days of the study period were
excluded from analysis. Subjects were provided fecal collection kits, which included a
plastic toilet insert, a 1 g-sized scooper, and a DNA/RNA shield fecal collection tube (Zymo
Research, Irvine, CA, USA). Samples were delivered to the study team within 24 h of
production and tubes were then stored at −20 ◦C until processing. After thawing, DNA
was isolated from each sample using the ZymoBiomics®-96 MagBead DNA Kit (Zymo
Research, Irvine, CA, USA) followed by shotgun metagenomic sequencing (Zymo Research,
Irvine, CA, USA). Whole-genome sequencing libraries were created with the Nextera®

DNA Flex Library Prep Kit (Illumina, San Diego, CA, USA) using internal dual-index 8bp
barcodes with Nextera® adapters. Quality control and quantification were performed with
TapeStation® (Agilent Technologies, Santa Clara, CA, USA), and the libraries were pooled
in equal abundance. Final pool was quantified with qPCR and sequenced with NovaSeq®

(Illumina, San Diego, CA, USA).
After sequencing, Trimmomatic was used to trim reads and remove adapters and

low-quality fractions [43]. A 6 bp window size and a cutoff score of 20 were used for
sliding window quality filtering. Reads smaller than 70 bp were removed. Metagenomic
compositional profiling and abundance analysis was then performed with Centrifuge to
provide taxonomic information for each sample based on genomic datasets [44]. Functional
profiling was performed using HUMAnN2, including the identification of gene families
from UniRef protein databases and metabolic pathway identification from the MetaCyc
database [45–47].

2.4. Taxonomic and Functional Pathway Analysis

Species-level α diversity analysis was first performed between the three conditions
with ANOVA testing. For unfiltered taxonomy results, measurements of β diversity were
quantified at various taxonomic levels (phylum, genus, species) using compositional
barplots, permutational multivariate analyses of variance (PERMANOVA) with Bray–
Curtis dissimilarity metrics, and abundance heat maps with hierarchical clustering based
on Euclidean distances with center-log-ration transformation when appropriate.

To focus the analysis on the prevalent abundant organisms, an established analysis
pipeline was utilized to remove noisy spurious data representing species of low preva-
lence [33,48]. Prevalence filtering was performed using PIME, which uses robust machine
learning algorithms at incremental filtering cutoffs to identify an ideal prevalence threshold
based on error detection [49]. For filtered, highly prevalent species, exploratory analysis
was performed using principal component analysis and measures of conditional variance
and β diversity were repeated. Differential abundance analysis was performed using
ALDEx2, which has demonstrated its superiority in minimizing variations in collection and
processing [50,51]. Sample analysis included multiple instances of Monte Carlo sampling
from a Dirichlet distribution, followed by center-log-ratio transformation and Kruskal–
Wallis significance testing with false discovery rate (FDR) correction. Pairwise comparisons
were then performed based on Welch t-testing with correction and effect size calculations
to assess differences between conditions.

The evaluation of MetaCyc functional pathways similarly included principal compo-
nent analysis, hierarchical clustering, and prevalence filtering. Normalized reads were

www.meallogger.com
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compared between the three conditions using ANOVA testing controlled for FDR. All
analyses were performed using R statistical software 4.1.1 and the MicrobiomeAnalyst
web-based platform [52]. Network analysis was created using Cytoscape 3.9.1, and a heat
tree was created with Metacoder [53,54]. p < 0.05 was considered significant.

3. Results
3.1. Subject Characteristics and Specimen Collection

Ten healthy individuals were recruited to participate in the study: five males and five
females. The average age was 28.2 (±9.2) years old, with an average BMI of 24.7 (±4.2). In
total, 60% of participants were white and 20% used tobacco products. Table 1 shows the
height, weight, demographic characteristics, and daily energy requirements for each subject
as well as any medication or baseline oral supplement use. Figure 1 depicts the study
timeline, including the dietary intervention, timing of sample collections, and number of
samples at each time point. Six of the study participants collected stool samples at all three
time points. Four individuals did not have a bowel movement on Day-4 of the dietary
intervention but were able to provide a baseline sample and a sample after resuming a
normal diet for three days.

Table 1. Participant characteristics.

Participant Gender Race/
Ethnicity Age Height (cm) Weight (kg) BMI Tobacco

Use
Medications/
Supplements

Daily Energy
Requirement

(kcal)

1 F Asian 22 160 60 23.4 No Oral
contraceptive 1940

2 M White 30 188 102 28.9 No - 3267

3 M White 26 191 98 26.9 No Magnesium,
krill oil 2983

4 M Pacific
Islander 51 188 88 24.9 Yes - 3078

5 F White 21 185 70 20.5 No - 3177
6 M White 28 188 79 22.4 No - 2884

7 F Hispanic 23 168 91 32.2 No Oral
contraceptive 2116

8 F Asian 33 152 50 21.6 No - 1738

9 F White 19 175 58 18.9 No Oral
contraceptive 2221

10 M White 29 178 86 27.1 Yes - 3118
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Figure 1. Study Timeline. Ten participants followed a four-day, calorie and protein restriction diet
followed by three days of a normal, unrestricted diet. Stool samples were collected at Baseline, on
Day-4, and on Day-7. A total of 10 stool samples were available at Baseline and on Day-7. A total of
6 Stool samples were able to be provided on Day-4.

3.2. Compositional Analysis

After quality filtering, a total of 91,410,253 reads were sequenced from 26 samples, with
an average of 3,515,779 reads (±95,183.4) per sample. Compositional profiling identified
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681 unique bacterial species from 234 genera and 14 phyla. Figure 2 shows the total number
of species per sample, classified by condition. Day-4 samples had an average of 218.3
(±16.7) species identified, which was not found to differ from the Baseline (211.7 ± 34.3)
or Day-7 (205.2 ± 27.1) conditions (p = 0.669). Similarly, there were no differences in
other measures of alpha diversity (Shannon index p = 0.239, Simpson index p = 0.194).
PERMANOVA analysis of the unfiltered reads revealed no significant variation at three
taxa levels (species p = 0.170 species, genus p = 0.139, phylum p = 0.101). A phylum-level
compositional bar plot for each sample is shown in Supplementary Figure S1. Hierarchical
clustering revealed grouping by patient, rather than condition, as the dominant factor
(Supplementary Figure S2).

Nutrients 2022, 14, x FOR PEER REVIEW 5 of 19 
 

 

number of species per sample, classified by condition. Day-4 samples had an average of 
218.3 (±16.7) species identified, which was not found to differ from the Baseline (211.7 ± 
34.3) or Day-7 (205.2 ± 27.1) conditions (p = 0.669). Similarly, there were no differences in 
other measures of alpha diversity (Shannon index p = 0.239, Simpson index p = 0.194). 
PERMANOVA analysis of the unfiltered reads revealed no significant variation at three 
taxa levels (species p = 0.170 species, genus p = 0.139, phylum p = 0.101). A phylum-level 
compositional bar plot for each sample is shown in Supplementary Figure S1. Hierarchical 
clustering revealed grouping by patient, rather than condition, as the dominant factor 
(Supplementary Figure S2). 

 
Figure 2. Alpha Diversity. Average number of observed species was not found to be different be-
tween conditions. 

Filtering noisy, spurious species of low prevalence unmasked significant composi-
tional changes associated with restricted dietary intervention. Using a machine learning 
algorithm, PIME identified 70% prevalence as the ideal cutoff, with an out-of-bin error 
rate of 0% (Supplementary Table S1). A total of 136 of the 681 species remained at this 
high prevalence threshold, which corresponded to 74,291,605 of the total 91,410,253 reads 
(81.3%). Figure 3 shows a principal component analysis of filtered taxa, which demon-
strated notable separation as a function of time. Four days of dietary restriction caused 
distinct species variation among common organisms before returning to baseline, as sug-
gested by adjacent clustering of the Baseline and Day-7 conditions. PERMANOVA con-
firmed differences between conditions (p < 0.001). Figure 4 shows a network analysis of 
the 136 species with high prevalence. Each species is represented as a node, and conditions 
are represented as node colors, with various color mixing depending on the relative abun-
dance of a species between conditions. Edges pertain to significant correlations between 
species (p < 0.05). Day-4 again revealed unique clustering, although most of the species 
unique to that condition had relatively low abundance. Peripheral species in the figure 
demonstrated an overlap between the Baseline and Day-7 conditions. Supplementary Fig-
ure S3 shows condition differences at all analyzed taxonomy levels. 

Figure 2. Alpha Diversity. Average number of observed species was not found to be different
between conditions.

Filtering noisy, spurious species of low prevalence unmasked significant composi-
tional changes associated with restricted dietary intervention. Using a machine learning
algorithm, PIME identified 70% prevalence as the ideal cutoff, with an out-of-bin error rate
of 0% (Supplementary Table S1). A total of 136 of the 681 species remained at this high
prevalence threshold, which corresponded to 74,291,605 of the total 91,410,253 reads (81.3%).
Figure 3 shows a principal component analysis of filtered taxa, which demonstrated notable
separation as a function of time. Four days of dietary restriction caused distinct species
variation among common organisms before returning to baseline, as suggested by adjacent
clustering of the Baseline and Day-7 conditions. PERMANOVA confirmed differences
between conditions (p < 0.001). Figure 4 shows a network analysis of the 136 species with
high prevalence. Each species is represented as a node, and conditions are represented as
node colors, with various color mixing depending on the relative abundance of a species be-
tween conditions. Edges pertain to significant correlations between species (p < 0.05). Day-4
again revealed unique clustering, although most of the species unique to that condition
had relatively low abundance. Peripheral species in the figure demonstrated an overlap
between the Baseline and Day-7 conditions. Supplementary Figure S3 shows condition
differences at all analyzed taxonomy levels.
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ALDEx2 was then used to perform species-level differential abundance analysis to
determine which species were driving compositional changes after dietary intervention.
Seventy-seven species were found to be significantly different between the three condi-
tions (FDR p < 0.05). Figure 5 shows an abundance heat map of significant species with
unsupervised clustering. The most prominent species at Baseline demonstrated a marked
decrease in abundance after restricted dietary intervention (Day-4). After resuming an un-
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restricted diet, there was a notable return to the pre-intervention state, with the majority of
bacterial species present at Baseline seen in abundance on Day-7. Despite this generalized
recovery of the flora, several unique microbial signatures that emerged on Day 4 persisted
into Day-7.
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Day-7. Several species were unique to the Day-4 condition.

To further quantify directional changes between conditions, three pairwise compar-
isons were then performed: Baseline v. Day-4, Day-4 v. Day-7, and Baseline v. Day-7.
Figure 6A shows a principal component analysis of Baseline and Day-4 species present at
the 70% prevalence threshold (n = 133). Distinct differences between the two conditions
are obvious. ALDEx2 differential abundance analysis identified 63 species with signif-
icant variation after dietary intervention (p < 0.05). Supplementary Table S2 lists these
63 species along with their higher taxa levels and effect sizes. Species with an effect size
greater than 1 are shown in Figure 6B, which indicates variations between group greater
than within group dispersion. Negative effect size values favor the baseline condition,
while positive values favor the Day-4 condition. Dietary restriction caused a decreased
relative abundance of several commensal bacteria, including Faecalibacterium prausnitzii
(FDR p = 0.004, effect size = −1.58), Roseburia intestinalis (FDR p = 0.010, effect size = −1.40),
Anaerostipes hadrus (FDR p = 0.003, effect size = −1.57), Anaerobutyricum hallii (FDR p = 0.025,
effect size = −1.24), Blautia wexlerae (FDR p = 0.016, effect size = −1.12), Ruminococcus bi-
circulans (FDR p = 0.002, effect size = −2.03), and Dysosmobacter welbionis (FDR p = 0.013,
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effect size = −1.07). Also, the following Bacteroides species universally decreased after the di-
etary intervention: Bacteroides stercoris (FDR p < 0.001, effect size = −4.92),
Bacteroides dorei (FDR p < 0.001, effect size = −2.81), Bacteroides fragilis
(FDR p = 0.002, effect size = −2.12), Bacteroides ovatus (FDR p = 0.028, effect size = −1.2), and
Bacteroides vulgatus (FDR p = 0.017, effect size = −1.02). Well studied species that increased
on Day-4 included Ruminococcus torques (FDR p < 0.001, effect size = 5.13), Coprococcus
comes (FDR p < 0.001, effect size = 4.28), Escherichia coli (FDR p = 0.030, effect size = 1.81),
Mycobacterium tuberculosis (FDR p = 0.043, effect size = 1.46), and Alistipes finegoldii (FDR
p = 0.026, effect size = 2.23).
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Supplementary Figure S4 and Supplementary Table S3 show similar analyses of
the species present on Day-4 and Day-7. Sixty-four species significantly varied between
the two conditions (p < 0.05). Interestingly, most species reverted to their original com-
position after resuming an unrestricted diet. For example, Faecalibacterium prausnitzii
(FDR p = 0.001, effect size = 2.21), Anaerostipes hadrus (FDR p = 0.001, effect size = 1.68),
Anaerobutyricum hallii (FDR p = 0.020, effect size = 1.12), Blautia wexlerae (FDR p = 0.0004,
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effect size = 1.53), and Dysosmobacter welbionis (FDR p = 0.011, effect size = 1.17) had recip-
rocal changes in effect sizes compared to Baseline v. Day-4. Similarly, Bacteroides species
uniformly increased on Day-7. Species that were increased on Day-4 were also down-
regulated by Day-7, including Ruminococcus torques (FDR p < 0.001, effect size = −5.13),
Escherichia coli (FDR p = 0.029, effect size = −1.88), and Alistipes finegoldii (FDR p = 0.032,
effect size = −2.36). Supplementary Figure S5 and Supplementary Table S4 depict Baseline
v Day-7 analyses to further support the similarity between the two conditions. Principal
component analysis revealed group overlap, and 24 species differed between Baseline and
Day-7 (p < 0.05), which is much fewer than the two previous comparisons. Romboutsia
timonensis (FDR p < 0.001, effect size −3.92), Eubacterium eligens (FDR p = 0.004, effect size
−1.91), Streptococcus parasanguinis (FDR p = 0.005, effect size −1.91), Prevotella copri (FDR
p = 0.004, effect size 1.61), and Holdemania filiformis (FDR p = 0.002, effect size 2.06) are a few
notable bacteria that were different between baseline and Day-7.

3.3. Functional Pathway Analysis

Functional pathway analysis identified 345 unique MetaCyc pathways. Using PIME,
a prevalence cutoff of 85% was identified, which included 177 pathways. Similar to the
findings of compositional analysis, conditional variation was present after prevalence
filtering, including adjacent positioning of Baseline and Day-7 conditions (Figure 7). A total
of 45 of the 177 pathways had significant differences between the three conditions (FDR
p < 0.05). All 45 were identified as either biosynthesis, degradation, or precursor metabolite
pathways based on MetaCyc ontology classification.
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Similar to the findings of taxonomy analysis, dietary restriction created unique clustering on Day-4,
while Baseline and Day-7 conditions showed overlap clustering, representing group similarities.

Figure 8 shows the hierarchical clustering of the three pathway types. Conditions and
pathway subcategories both group together. The subcategories describe the biological func-
tion of the individual pathways, which is based on the metabolites produced or consumed
by the pathway of interest. Many biosynthesis pathways decreased after dietary restriction,
including fatty acid and lipid biosynthesis, nucleoside and nucleotide biosynthesis, and
carbohydrate biosynthesis (Figure 8A). Most of these metabolic pathways increased back to
near-Baseline levels after resuming an unrestricted diet. Degradation pathways are shown
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in Figure 8B, which, alternatively, were mostly upregulated on Day-4, particularly the
amino acid, fatty acid, and nucleoside/nucleotide degradation pathways. Most of these
active degradation pathways persisted on Day-7. Finally, fermentation pathways were
downregulated after stDR (Figure 8C).
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4. Discussion

Brief (<1 week) dietary restriction has been proposed as a novel pre-operative condi-
tioning strategy, designed to attenuate the surgical stress response and improve postopera-
tive outcomes. Clinical trials investigating its safety, feasibility, and preliminary outcomes
have already been performed in humans based on reassuring preclinical data. However,
the systemic influence of dietary intervention is not fully understood; particularly, it is
unknown how short-term protein and calorie restriction influences resident microbiota. In
this study, we demonstrated that stDR causes distinct, rapid, and reversible alterations in
the composition of the intestinal microbiome that correspond to changes in its functional
phenotype. Interestingly, a relative dysbiosis was noted after dietary intervention. These
microbial transformations have implications related to the systemic condition, especially as
a pre-operative intervention.
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Initial evaluation of the unfiltered taxa revealed no differences in measures of α and
β diversity between the three conditions. Additionally, hierarchical clustering analysis
revealed grouping by participant rather than the intervention, indicating that each indi-
vidual’s microbiota mostly remained uniquely characterized throughout the study. This
was not unexpected and was seen in the work of Salonen et al., who showed that inter-
individual variance predominates compositional analysis after dietary interventions, with
three different diets explaining only about 10% of the total variance in their study [55].
Additionally, Wu et al. showed that individuals have underlying microbial signatures
that correlate with long-term dietary habits but are maintained despite acute changes in
food intake [56]. In fact, 70% of species identified from obese patients undergoing fat or
carbohydrate restriction were unique to each individual, which matches our taxonomy
prevalence filtering cutoff [57]. After prevalence filtering, we were able to eliminate these
individual ecology patterns and identify distinct community variations secondary to the
dietary intervention.

We found protein and calorie restriction to cause a decrease in several short chain
fatty acid (SCFA)-producing commensal bacteria. Faecalibacterium prausnitzii and Roseburia
intestinalis are particularly notable species that were influenced by the diet. Both species are
consistently reported as the primary butyrate producers of the intestine [58,59]. Butyrate
is the most bioactive SCFA, functioning as the primary energy source for colonocytes
and thereby promoting colonic health and barrier integrity. In addition, butyrate has
been shown to have anti-inflammatory properties, including NF-kB pathway suppression
and regulatory T cell differentiation [32,33,60]. SCFAs are produced via the bacterial
fermentation of dietary fibers and resistant starch, so fiber supplementation is thought to
be protective by providing substrates to support resident flora and increasing products
which stabilize enteric homeostasis [61]. For their beneficial metabolic profile, many of
these commensal organisms are probiotic candidates [62]. Therefore, a decreased relative
abundance of these species disrupts their health benefits, suggesting a disadvantageous
effect of the diet.

Butyrate-producing commensal species are known to have a decreased relative abun-
dance in many disease states. Colonic diseases, such as inflammatory bowel disease,
irritable bowel syndrome, and colorectal cancer, have been shown to be related to microbial
dysbiosis [63]. Interestingly, systemic metabolic diseases, such as obesity, diabetes, as well
as cardiovascular disease, have similar imbalance characteristics, linking the microbiome
to both local and systemic health [64,65]. For example, Blautia wexlerae were depleted in
obese patients, with it having been related to intestinal inflammation [66,67]. Addition-
ally, Dysosmobacter welbionis negatively correlated with BMI, fasting glucose, and glycated
hemoglobin, and oral treatment has been shown to counteract insulin resistance and in-
flammation [68]. Faecalibacterium prausnitzii or Roseburia intestinalis has been found to be
decreased in all of the aforementioned medical conditions [58,59,63,69].

Several Bacteroides species were also decreased after dietary restriction. Bacteroides
stercoris, Bacteroides dorei, Bacteroides fragilis, Bacteroides ovatus, and Bacteroides vulgatus are
all considered members of the Bacteroides fragilis group for their phylogenic relationships
and similar functional profiles [70]. Bacteroides species are commonly isolated anaerobes
from gastrointestinal, abdominal, and perianal infections due to their virulence profile
and antibiotic resistance patterns. However, despite their commonly described infection
patterns, they are actually commensal bacteria without pathogenic characteristics in a
healthy environment [70]. Bacteroides is the most abundant genus in the intestine, and
supplementation can strengthen the gut barrier and protect against LPS translocation [71].
Bacteroides, however, have variable responses to several disease states. Bacteroides vulgatus
and Bacterdoies dorei have been associated with inflammatory bowel disease, irritable bowel
disease, celiac disease, and other autoimmune conditions [70,72]. However, the same
species have been found to be decreased in patients with obesity, type 2 diabetes, and
atherosclerotic disease, suggesting protective effects [71,73,74]. Also, Bacteroides ovatus is
being investigated as a possible probiotic for its anti-inflammatory potential [75].
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Despite the downregulation of many commensal bacteria after stDR, the Day-4 con-
dition maintained its species-level α diversity. Network analysis revealed that many of
the species upregulated after dietary intervention had low relative abundance but were
unique with respect to the Day-4 condition, which explains why the total number of species
was unchanged even though baseline communities decreased. Ruminococcus torques, which
has been shown to have mucin degrading properties and is associated with decreased
gut barrier integrity, had the greatest increase in relative abundance after stDR [76,77].
Fecal isolations of individuals with Crohns disease and irritable bowel syndrome have
shown increases in Ruminococcus torques [78,79]. In addition, several Alistipes species which
have been linked to cardiovascular disease and colon cancer increased after stDR [80].
However, mice treated with Alistipes finegoldii were found to have attenuated colitis, so the
significance of the results is unclear [81]. Finally, an increased abundance of Escherichia coli
favors microbial imbalance after stDR due to its well-described pathogenicity [82].

Pathway analysis was suggestive of a catabolic state after dietary restriction. Macronu-
trient biosynthesis pathways were mostly reduced on Day-4, although the nicotinamide
adenine dinucleotide (NAD) salvage pathways and gluconeogenesis were notable ex-
ceptions, with both having previously been found to be elevated in calorie-restricted
conditions [83,84]. NAD salvage is required for Sir2 histone deacetylase activity, which can
extend the lifespan via DNA silencing during caloric restriction [83,84]. Also, under calorie-
restricted conditions, a shift from fermentation to respiration occurs due to the increased
efficiency of ATP production, with an excess of ATP being associated with gluconeogene-
sis [84]. Decreases in two fermentation pathways after stDR support this adaptive change
in energy production. Matching the overall reduction in biosynthesis, several degradation
pathways were increased on Day-4. Amino acids, fatty acids, and nucleosides/nucleotides
are required for energy utilization during limited intake. Obese patients undergoing very
low-calorie restriction (800 kcal per day) for 8 weeks also showed a functional phenotype
shift, with their catabolic processes being increased in favor of energy utilization from
available nutrients [85]. Pathway analysis from inflammatory bowel disease patients has
also shown downregulated metabolic processes, particularly amino acid and short chain
fatty acid production, suggesting that disease states and nutrient-limited conditions may
have overlapping functional impairments and limited systemic bioavailability [86].

Interestingly, the stDR stimulated these adaptations rapidly, in as few as four days.
Also, the microbiome quickly reversed back to its baseline condition within 3 days of
resuming a regular, unrestricted diet. This return to baseline occurred regardless of each
individual’s baseline diet composition. In a similar fashion, pathway analysis revealed
an overlap before and after dietary intervention, although several degradation pathways
were elevated on Day-7. Therefore, resuming a nutrient-dense diet allows for biosynthetic
processes to resume while breakdown processes continue to function, with a slower return
to baseline. Considering dietary restriction as a pre-operative conditioning strategy, it is
essential to know that rapid, reproducible changes are possible in a short period of time in
order to maintain patient compliance. Similar to our results, David et al. also showed that
β diversity metrics could be altered after four days of an animal-based diet and return to
baseline within five days of stopping the diet [87]. Also, Wu et al. found that composition
changes are seen even as early as the first day of dietary intervention [56].

Overall, species-level variation and pathway analysis revealed a state of dysbiosis
and stress within the gastrointestinal system after stDR. These community alterations
contrast with previously reported microbial adaptations after calorie restriction. Most
studies investigating the influences of dietary restriction on the microbiome were murine
models utilizing 25–70% restriction with a longer duration, ranging from several weeks to
lifelong interventions [88–92]. Rinninella et al. summarize the metabolic implications of the
dietary interventions and individual species implicated in these adaptations [38]. The over-
all benefits are due to improved mucosal barrier integrity, decreased fat mass, improved
glucose homeostasis and lipid profiles, and attenuated inflammatory pathways. Wang et al.
demonstrated that mice with antibiotic-depleted microbiota were resistant to metabolic
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changes as a result of caloric restriction, which causally links intestinal community changes
to systemic adaptations [56]. Lactobacillus, Bifidobacteria, and Bacteroides species are most
commonly increased after restriction diets. Lactobacillus is a known probiotic and has been
shown to treat obesity by decreasing free fatty acid absorption [93,94]. Furthermore, mice
with caloric restriction supplemented with Lactobacillus had increased antioxidant activ-
ity [95]. Lactobacillus inhibits pathogen adhesions and maintains gut barrier integrity [88].
Bifidobacteria follow the same ecological patterns and has similar beneficial influences [96].
However, after stDR, we did not find abundance changes for any Lactobacillus or Bifidobac-
teria species, and Bacteroides species decreased in abundance rather than increased. Due
to noticeable community differences, conclusions from these preclinical trials cannot be
extrapolated to our dietary intervention.

The influence of caloric restriction on the human microbiome has primarily been
investigated in obesity treatment studies. Interventions usually involve very low-calorie
restriction (e.g., 800 Kcal/day) with a duration of at least several weeks [85,97,98]. Von
Schwartzenberg et al. recently reported that this extreme caloric restriction disrupted
the resident microbiota and promoted pathogenic colonization [85]. These conclusions
could provide insight into our Day-4 species variation; it is possible that alpha diversity
was maintained after stDR due to the loss of colonization resistance and upregulation of
non-commensal bacteria. However, most of the microbiome characteristics in these obesity
studies do not match our findings, which is understandable due to the differences in dietary
intervention and patient population.

The nutritional composition of our study diet likely explains most of the species-level
variation that we found after stDR. Possible detrimental elements of the Scandishake®

Mix diet include its high fat and carbohydrate content and lack of fiber. Excessive fat and
carbohydrates lead to metabolic syndromes with intestinal communities similar to those
found in the Day-4 microbiome, such as low abundances of Faecalibacterium prausnitzii,
Roseburia intestinalis, and Bacteroides species [73,74]. Zhang et al. found that lifelong caloric
restriction in mice produced different microbial signatures depending on the fat content
of the diet, and high proportions of fat failed to promote a longevity benefit [99]. This
was attributed to higher endotoxin production and increased gut permeability, resulting in
systemic inflammation and disease. Detrimental effects can also be seen on a short timescale.
Carmody et al. demonstrated that a high fat and high carbohydrate diet rapidly induced
dysbiosis, taking 3.5 days to reach a steady state [100]. That timeline matches the four
days of dietary restriction in this study. In the context of a protein-restricted diet, Wali et al.
demonstrated that even the type of carbohydrate content influences systemic response
patterns [101]. High carbohydrate diets that are dense in resistant starches produce the
healthiest metabolic outcomes, likely due to the promotion of SCFA-producing bacteria.
Conversely, simple sugars, the primary carbohydrates in the Scandishake® Mix, were
associated with worse health outcomes. Solon-biet et al. recently demonstrated that the
ratio of macronutrients dictated metabolic health and longevity more than restriction,
emphasizing the health benefits of a low protein ratio in an ad libitum diet [102,103]. In
humans, a moderate carbohydrate, moderate protein diet had favorable measures of
metabolic health compared to a high carbohydrate, low protein diet [104]. Therefore,
calorie restriction and protein restriction may not have additive health benefits and could
be detrimental when combined in excess. This would explain the intestinal dysbiosis
created by our study diet.

Preclinical and clinical restriction studies are highly variable in their design, utiliz-
ing different durations, degrees of restriction, and nutrient compositions, which makes
leveraging their results difficult when constructing a pre-operative dietary intervention.
Calorie-only restriction has been tested preoperatively with mixed results. Grundmann et al.
utilized a 7-day, 40% calorie-restricted diet before cardiac surgery, which was protective
against acute kidney injury [22]. However, 3 days of 30% caloric restriction did not improve
kidney function outcomes in living donor kidneys [21]. Jongbloed et al. first designed
the Scandishake® Mix diet that we used in this study and tested its feasibility in healthy
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kidney donor and bariatric surgery patients [20]. A total of 20 of the 28 patients (71%)
completed the diet, reporting only mild discomforts of hunger and nausea. Preliminary
results revealed decreases in the serum levels of branched chain amino acids, which can
have health benefits [105]. Therefore, the diet may have a systemic immunomodulatory
role despite our findings of a microbial imbalance. Kip et al. subsequently tested the liquid
diet on eight vascular surgery patients, with 100% compliance [19]. Pre-operative improve-
ments in insulin sensitivity were noted, with no differences in surgical outcomes compared
to the control group. There were no differences in circulating cytokines or adipokines,
although it was a limited sample size. The metabolic and immunologic response patterns
of the Scandishake® Mix diet are otherwise unknown. Further investigation is needed to
determine the systemic influences of the intestinal microbiome after stDR, especially since
these factors may influence surgical outcomes.

While healthy subjects were ideal candidates for this preliminary investigation, this
cohort was also a study limitation. Age and comorbidities are known to influence the
microbiome, so it is possible that the disruptive effects of stDR are blunted or augmented
in communities that have a baseline state of dysbiosis. Unfortunately, our results cannot be
extrapolated to other populations. Also, surgical interventions were not performed in this
study after dietary restriction, so the effects of operative stress on the altered microbiome
remain unknown. Other limitations were the small sample size and lack of a non-calorie-
restricted control group consuming the Scandishake® Mix diet.

5. Conclusions

In conclusion, individual community characteristics of the gut microbiome were
preserved after short-term protein and calorie restriction, although distinct changes were
noted for species with high prevalence. Surprisingly, intestinal dysbiosis occured after
a short-term, high fat, high carbohydrate, low-protein diet, characterized by decreased
commensal bacteria and a phenotype shift towards catabolism. These changes occurred
rapidly and reversed equally as fast. It is unclear how these community characteristics
influence the systemic condition and modulate the surgical stress response. Nevertheless,
the results of the present study demonstrate that the microbiome is influenced by a short-
term pre-operative diet, which sets the stage for future interventional studies.
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