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Dyslipidemia has been frequently observed among individuals infected with human immunodeficiency virus type 1 (HIV-1), and
factors related to HIV-1, the host, and antiretroviral therapy (ART) are involved in this phenomenon. This study reviews the
roles of genetic polymorphisms, HIV-1 infection, and highly active antiretroviral therapy (HAART) in lipid metabolism. Lipid
abnormalities can vary according to theHAART regimen, such as those with protease inhibitors (PIs). However, genetic factorsmay
also be involved in dyslipidemia because not all patients receiving the same HAART regimen and with comparable demographic,
virological, and immunological characteristics develop variations in the lipid profile. Polymorphisms in a large number of genes
are involved in the synthesis of structural proteins, and enzymes related to lipid metabolism account for variations in the lipid
profile of each individual. As some genetic polymorphisms may cause dyslipidemia, these allele variants should be investigated in
HIV-1-infected patients to identify individuals with an increased risk of developing dyslipidemia during treatment with HAART,
particularly during therapy with PIs.This knowledge may guide individualized treatment decisions and lead to the development of
new therapeutic targets for the treatment of dyslipidemia in these patients.

1. Introduction

Serum lipids have amultifactorial etiology that is determined
by a large number of environmental and genetic factors
[1]. Genetic and dietary factors influence serum cholesterol
concentration, but detailed mechanisms of their interactions
are not well known. An increase in dietary cholesterol intake
raises serum cholesterol concentrations in some but not all
subjects.

Human immunodeficiency virus type 1 (HIV-1) infected
patients develop dyslipidemia, resulting in a highly athero-
genic lipid profile with increased levels of total cholesterol,
low-density lipoprotein cholesterol (LDL-C), and triglyc-
erides (TG) and decreased levels of high-density lipoprotein
cholesterol (HDL-C) [2]. The pathogenesis of dyslipidemia
in HIV-1 infection is complex and involves factors related to
the virus, the host, and to the antiretroviral therapy (ART).
Moreover, HIV-1 infection and ART are associated with
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accelerated atherosclerosis and an increased number of cases
of myocardial infarction [3].

Highly active antiretroviral therapy (HAART) consists
of a combination of drugs that inhibit different stages of
viral replication, and it is divided mechanistically into six
classes [3] based on whether it targets the viral lifecycle
or viral enzymes: nucleoside reverse transcriptase inhibitors
(NRTIs), nonnucleoside reverse transcriptase inhibitors
(NNRTIs), protease inhibitors (PIs), fusion inhibitor (enfu-
virtide or T-20), entry inhibitor chemokine receptor 5
(CCR5) antagonist maraviroc, and HIV-1 integrase strand
transfer inhibitor [4, 5].

The introduction ofHAART in 1996 dramatically reduced
the mortality and morbidity in HIV-1-infected patients,
leading to prolonged and improved quality of life andmaking
HIV-1 infection a manageable chronic disease [6]. HAART
uses combination formulations containing at least three
antiretroviral drugs that are extremely effective in reducing
the plasma viral load of HIV-1 RNA to undetectable levels
[4, 7, 8].

However, it is increasingly clear that HIV-1-infected
patients exhibit an increased risk of developing noninfectious
consequences of HIV-1 infection over time. In the last few
years, lipodystrophy (characterized by body fat redistribu-
tion), insulin resistance, central adiposity, and dyslipidemia
have been reported in HIV-1-infected patients, and their
relationships with antiretroviral drugs and HIV-1 infection
are the subject of global debate and research [9]. Moreover,
HAART can induce severe metabolic complications, such as
insulin resistance, metabolic syndrome, lipodystrophy, and
cardiovascular diseases. The metabolic effects of HAART
and the risk of premature and accelerated atherosclerosis in
HIV-1-infected patients are well recognized. These clinical
conditions have significantly high prevalence in patients
infected with HIV-1 that are treated with these drugs [10].

The type and severity of lipid abnormalities vary accord-
ing to the HAART regimen used. However, genetic fac-
tors may be involved in dyslipidemia because not all
patients exposed to same HAART regimen and comparable
demographic, virological, and immunological characteristics
develop lipid profile variations [11–13].

Many polymorphic variants of the genes that regulate
lipid metabolism are present in humans, and more than 400
genes are candidate regulators of lipid exchange. Carriers
of abnormal alleles exhibit a high risk for obesity and its
associated complications, and therefore there is the inter-
est in the association between dyslipidemia, adiposity, and
other diseases with different genotypes. The genes involved
in the leptin-melanocortin system of regulation of energy
metabolism, protein carriers of lipids and cholesterol in the
blood, and enzyme-splitting lipids are of particular interest
[14].

Genetic variations of enzymes, receptors, and apolipopro-
teins (apo), which are essential to LDL-C metabolism, are
partially involved in the regulation of serum LDL-C and
total cholesterol [15]. Recently, the genetic components of
dyslipidemia have been intensively investigated. Variations in
a large number of genes involved in the synthesis of struc-
tural proteins and enzymes associated with lipid metabolism

account for variations in the lipid profile of each individual
[1].

Genetic variations that occur at a frequency of more
than 1% in a study population are called genetic polymor-
phisms. The genetic basis for these variations can be a single
nucleotide change in the DNA sequence, known as single
nucleotide polymorphisms (SNPs), insertions or deletions
(indels) of one or more base pairs [16], repeats of a large
number of nucleotides (variable number of tandem repeats
(VNTR) or minisatellite), and repeats of a small number of
nucleotides (short tandem repeat (STR) or microsatellite).
SNPs are the most common type of sequence variation in
the human genome. The 10 to 30 million SNPs in humans
represent 90% of all sequence variations [17].

The effect of a polymorphism depends on its interactions
with environmental factors that predispose patients to dys-
lipidemia, such as being overweight, physical inactivity, or
smoking [18–20].

There are several factors that can trigger the atherogenic
process, including dyslipidemia, smoking, hypertension, dia-
betes mellitus, physical inactivity, obesity, and a history of
premature atherosclerotic disease. However, dyslipidemia is
a major risk factor for developing coronary artery disease
(CAD) [21].

Among the genetic factors associated with CAD are
variations in the genetic loci responsible for the lipoprotein
structure and metabolism and the low-density lipoprotein
receptor (LDLR), which may contribute to the development
of CAD. Some of these genetic variations are associated with
increased serum levels of lipids, and therefore, they may be
associated with a high risk of CAD [15, 22, 23]. There is
a direct relationship between the onset of CAD and high
LDL-C because these particles contribute to atherosclerotic
plaques [24]. The opposite effect is observed when HDL-C
is high. This circulating lipoprotein has the protective effect
of reversing cholesterol transport and promotes a set of anti-
inflammatory, antioxidant, and anticoagulant actions that
inhibit atherosclerosis [25].

CAD is the main cause of mortality in many parts of the
industrialized world [26]. In Brazil, CAD is the major cause
of mortality and morbidity in women over the age of 40 or
50 years [27]. Hence, the early identification of subjects at
risk of developing CAD is an important public health issue.
Salazar et al. [28] showed that Brazilian women with CAD
had elevated total serum cholesterol, TG, and LDL-C concen-
trations. These results confirm the well-known association
between CAD and high lipid concentration. According to
Salazar et al. [23], common DNA polymorphisms in genes
associated with lipid metabolism are potentially important
genetic markers of variation in the plasma lipid profile and
thus susceptibility or resistance to CAD.

Myocardial infarction, angina pectoris, and ischemic
stroke resulting from atherosclerosis are the main causes of
morbidity and mortality in adults in developed and devel-
oping countries [21]. A study showed that 38% of men and
42% of women in Brazil exhibit elevated serum cholesterol
[29]. Lipid profile data and the study of polymorphisms in
genes encoding structural proteins and enzymes regulating
lipid metabolism reveal the prevalence of dyslipidemia in



BioMed Research International 3

a population, allowing targeted intervention for the control
and prevention of atherosclerotic diseases [1, 30].

The considerable improvement in the rates of morbidity
and mortality among HIV-1-infected patients due to HAART
has progressively transformed the infection into a chronic
disease [6, 7, 31, 32]. Given the increased life expectancy of
these patients, a systematic evaluation of their risk for early
cardiovascular events is important [10].

Considering the importance of determining the contribu-
tion of genetic polymorphisms to the multifactorial etiology
of dyslipidemia, this study reviews the genetic polymor-
phisms associated with changes in serum lipids and assesses
the role of these polymorphisms in lipid changes in patients
with HIV-1.

2. Dyslipidemia in HIV-1-Infected Patients

Dyslipidemia is frequently observed in HIV-1-infected
patients. Its pathogenesis is complex and includes factors
related to the virus, the host, and the ART. Antiretroviral
drugs are associated with a state of accelerated atherosclerosis
and an increase in the number of cases of myocardial
infarction [3]. Cardiovascular reactions are diverse, due
to several factors, such as the HIV-1 infection itself, auto-
immunity, immune response against other viral infections,
neoplasms, prolonged immunosuppression, malnutrition,
drug cardiotoxicity [33, 34], and hormonal changes [35].

2.1. The Role of HIV-1 Infection. HIV-1-associated dyslipi-
demia was recognized for years before the widespread use of
PI-based HAART [36, 37]. Viremia-associated dyslipidemia
is characterized by decreased plasma concentrations of total
cholesterol, LDL-C, and HDL-C and elevated plasma TG
[38–40]. Low HDL-C is correlated with immune activation
early in the course of HIV-1 infection [41], the repercussions
of which may extend beyond atherosclerosis because of the
numerous functions of HDL-C, including antioxidant and
anti-inflammatory activities [42–45]. HIV-1 is also associated
with an increase in acute phase HDL that lacks the normal
atheroprotective functions [46].

Cholesterol is critical for several steps in HIV-1 repli-
cation. HIV-1 decreases plasma HDL-C by impairing the
cholesterol-dependent efflux transporter ATP-binding cas-
sette protein A1 (ABCA1) in human macrophages, a con-
dition that is highly atherogenic [47]. Additionally, the
inflammation stimulates endothelial lipase and certain acute
phase proteins, such as serum amyloid A.The plasma level of
this enzyme in humans is inversely associated with HDL-C,
and the acute phase proteins accelerate the removal ofHDL-C
by macrophages [45].

The dyslipidemia in HIV-1-infected patients resembles
that observed in other chronic infections [48]. The chronic
inflammatory processes are characterized by the produc-
tion of proinflammatory cytokines, such as tumor necrosis
factor 𝛼 (TNF𝛼) and interferon 𝛼 (IFN𝛼), resulting in the
impaired clearance of TG-rich lipoproteins and insulin resis-
tance [49]. Moreover, the nutritional state of HIV-1-infected
patients, whomay undergoweight loss and protein depletion,

might contribute to reduced total plasma cholesterol,HDL-C,
and LDL-C levels [38, 50].

Figure 1 illustrates several effects of HIV-1 infection on
lipid metabolism and regulation.

2.2. The Role of ART. HAART reduces the frequency of
opportunistic infections and the number of AIDS-related
deaths [6]. However, despite the improvements in quality of
life and increased life expectancy gained with the contin-
uous use of HAART, metabolic disorders characterized by
hyperglycemia, dyslipidemia, and changes in the distribution
of body fat (lipodystrophy) have been observed in HIV-1
seropositive patients [51].

The pathogenesis of HAART-related dyslipidemia is mul-
tifactorial and involves various drug-induced effects, chronic
inflammatory status, hormonal influences, genetic predispo-
sition, and HIV-1 infection itself [52].

The dyslipidemia associated with HAART is charac-
terized by decreased plasma HDL-C and increased total
cholesterol, TG, and LDL-C, which together constitute a
highly atherogenic lipid profile [53].

HAART-related dyslipidemia appearsmainlywith the use
of PIs. PIs may increase the hepatic synthesis of TG, VLDL-
C, and to a lesser extent, cholesterol. Additionally, these
drugs impair the hydrolysis of TG-rich lipoproteins by lipase,
reduce free fatty acid trapping, and interfere with normal
postprandial free fatty acid metabolism [54].

The treatment of HIV-1-infected patients is related to
lipodystrophy, and dyslipidemia primarily affects those who
use PIs. According to Carr et al. [55] and Chi et al. [56], over
60% of patients who are treated with PIs develop metabolic
changes, such as hyperlipidemia, endothelial dysfunction,
hyperglycemia, and central obesity. Persistent dyslipidemia
in HIV-1-infected patients appears to be associated with
increased cardiovascular risk, with a relative rate of myocar-
dial infarction of 1.2 per year of PI exposure [57, 58].

One proposed mechanism of PI-induced dyslipidemia is
based on the structural similarity between the catalytic region
of HIV-1 protease and the LDL-receptor-related protein
(LRP). This receptor is a member of the LDLR superfamily
and participates in lipid metabolism. LRP normally binds to
lipoprotein lipase (LPL) on the capillary endothelium, which
hydrolyzes fatty acids from TG to promote free fatty acid
storage in adipocytes. PIs bind to LRP due to this structural
similarity and interfere with LRP-LPL complex formation; as
a result, they reduce the adipose storage capacity and increase
plasma TG-rich lipoproteins [59].

PI-induced dyslipidemia is also based upon the structural
similarity with the amino acid sequence of the C-terminal
region of cytoplasmic retinoic acid-binding protein type 1
(CRABP-1). During normal lipid metabolism, CRABP-1 con-
verts retinoic acid to cis-9-retinoic acid, which binds the
retinoid X receptor-peroxisome proliferator-activated recep-
tor 𝛾 (RXR-PPAR𝛾) heterodimer found in adipocyte nuclei,
inhibiting adipocyte apoptosis and stimulating adipocyte
proliferation and differentiation. PIs likely bind to CRABP-1,
increasing apoptosis and diminishing the proliferation of
peripheral adipocytes [59, 60].
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Figure 1: At tissues, human immunodeficiency virus type 1 (HIV-1) infects macrophages using the CD4 as receptor and the CCR5 as
coreceptor and induces the local immune response. At peripheral circulation, HIV-1 infects Th1 CD4+ cells, particularly by the coreceptor
CXCR4 that persists latently infected or becomes a productively infected cell. The viral proteins induce an proinflammatory response in
peripheral circulation and in the tissues and decrease plasma high-density lipoprotein cholesterol (HDL-C) by impairing the cholesterol-
dependent efflux transporter ATP-binding cassette protein A1 (ABCA1) in human macrophages, a condition that is highly atherogenic.
Additionally, the viral proteins and the proinflammatory cytokines interleukin 1 (IL-1), interleukin 6 (IL-6), tumor necrosis factor 𝛼 (TN-F𝛼),
and interferon 𝛼 (IFN-𝛼) stimulate endothelial lipase and certain acute phase proteins, such as serum amyloid A.The viral proteins also exert
effects on the adipocytes resulting mitochondrial dysfunction, reactive oxygen species (ROS) production, and insulin resistance and decrease
adiponectin. The chronic inflammatory processes increase the production of these proinflammatory cytokines, resulting in the impaired
clearance of triglyceride-rich lipoproteins (TG-RLP) and insulin resistance. All these mechanisms increase the risk of cardiovascular diseases
in the HIV-1-infected individuals.

PIs also suppress the proteasome-mediated degradation
of sterol regulatory element binding proteins (nSREBPs) in
the liver and adipocytes. These transcription factors stim-
ulate fatty acid and TG synthesis in the liver and adipose
tissue and control several steps of cholesterol synthesis.
The hepatic accumulation of nSREBPs increases TG and
cholesterol biosynthesis, whereas accumulation in adipose
tissue causes insulin resistance and reduced leptin expression
and lipodystrophy [61].

In vitro, PIs and NRTIs increase the expression and secre-
tion of proinflammatory cytokines, such as TNF-𝛼, inter-
leukin 6 (IL-6), and interleukin 1𝛽 (IL-1𝛽), that are involved
in altered adipocyte functions and decreased adiponectin.
These alterations are also observed in fat and serum from
HIV-1-patients with lipodystrophy that are treated with these
drugs [62]. Upon entry into the cell, NRTIs are metabolized
to the active triphosphorylated form and can be utilized as

substrates by the mitochondrial DNA polymerase 𝛾. Sub-
sequently, they may inhibit mitochondrial DNA (mtDNA)
replication and/or increase the number of mutations in
mtDNA. This can lead to mtDNA depletion, the disruption
of oxidative phosphorylation, decreases in ATP production,
increases in reactive oxygen species, and, ultimately, inappro-
priate mitochondrial and cellular toxicity.

HAART-related dyslipidemiamay involve genetic predis-
position, as not all patients taking HAART develop compa-
rable metabolic disturbances [48]. In a study of 745 HIV-
infected participants, Rotger et al. [30] demonstrated that
42 SNPs of genome-wide contribute to the development of
dyslipidemia independent of other genetic variables,HAART,
underlying conditions, sex, age, ethnicity, and HIV dis-
ease parameters. The genetic background alone explained
up to 7.6% of lipid variation in HIV-infected patients
(7.6% non-HDL cholesterol, 6.2% HDL-C, and 6.8% TG),
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and HAART alone explained up to 6.2% of lipid variation
(3.9% non-HDL cholesterol, 1.5% HDL-C, and 6.2% TG).
An individual with the most dyslipidemic antiretroviral and
genetic background risk factors exhibits three- to fivefold
increased risk of sustained dyslipidemia compared with an
individual with the fewest dyslipidemic therapy and genetic
background risk factors.

Figures 2 and 3 illustrate the main mechanisms involved
in dyslipidemia associated with the PI and NRTI ART
regimens, respectively.

3. Genetic Polymorphisms
Associated with Dyslipidemia

Polymorphisms in genes associated with dyslipidemia in
patients with HIV-1 infection, either treated with ART or
untreated, are reviewed.

3.1. Polymorphisms in the LDLR Gene. The LDLR plays a
major role in the removal of LDL-C particles from the blood,
which, in turn, regulates cholesterol homeostasis. The LDLR
modulates plasma levels of LDL-C by regulating LDL-C
particle uptake by the liver. It also delivers cholesterol to the
adrenal gland and gonads for steroid hormone synthesis and
to the liver for bile acid synthesis [63].

Many mutations in the LDLR gene have been identified
in patients with familial hypercholesterolemia (FH) [64–66].
Individuals with these mutations exhibit plasma cholesterol
concentrations that are elevated twofold or more above nor-
mal concentrations and have an increased risk of developing
atherosclerosis and CAD [63]. Considering the crucial role
of LDLR in cholesterol homeostasis, SNPs in the LDLR gene
may also contribute to the variation in plasma cholesterol
levels in the general population [23].

Located on chromosome 19p13.2, the LDLR gene com-
prises 18 exons and 17 introns and encodes a protein of 839
amino acids [67]. More than 1,288 different variants in the
LDLR gene have been reported in FH patients as follows:
55% exonic substitutions, 22% exonic small rearrangements
(<100 bp), 11% large rearrangements (>100 bp), 2% promoter
variants, 10% intronic variants, and 1 variant in the 3󸀠
untranslated sequence [68].

The polymorphic nature of the LDLR gene has been
demonstrated by its restriction fragment length polymor-
phisms (RFLPs) [35, 69]. The AvaII (T20001C, rs5925),
HincII (C16730T, rs688) [23], and PvuII (C>T, intron 15)
polymorphisms in LDLR are associated with differences in
serum lipid concentrations in Brazilian subjects with high
risk for CAD [15].

Salazar et al. [23] investigated the effects of LDLR gene
polymorphisms at theAvaII site in exon 13 (T20001C, rs5925)
and theHincII site in exon 12 (C16730T, rs688) on circulating
lipids of 170 unrelated white individuals presenting a lipid
profile with high risk for coronary heart disease (HRG) and
130 controls. CHD subjects showed a higher frequency of the
AvaII (A+) and HincII (H+) alleles compared with controls,
and the frequency of the A+A+ (AvaII) and H+H+ (HincII)
genotypes was greater in the HRG group than in the control

group (32 versus 16% and 32 versus 18%, resp.). Moreover,
in the HRG group, the A+A+ and H+H+ genotypes were
associated with high concentrations of total serum choles-
terol and LDL-C (𝑃 = 0.0001). Interestingly, neither theAvaII
(rs5925) nor HincII (rs688) polymorphism was observed
to affect serum lipid profiles in control individuals [23].
The strong association between A+A+ (AvaII) and H+H+
(HincII) genotypes with high total cholesterol and circulating
LDL-C levels shows that LDLR genetic polymorphisms affect
cholesterol levels in individuals with a high risk of CAD.
Additionally, common polymorphisms in the LDLR gene are
associated with inter-individual differences in plasma LDL-C
levels in normal and hypercholesterolemic subjects [70–73].

The PvuII intron 15 polymorphism is linked to other
variations in LDLR that structurally alter the receptor activity
or alter its function in a regulatory manner [73]. A PvuII
intron 15 polymorphism of the LDLR gene is associated
with differences in LDL-C concentration in normal and
hypercholesterolemic individuals from different countries
[74, 75]. Salazar et al. [15] demonstrated the influence of
PvuII intron 15 polymorphisms of LDLR on serum lipid
profiles in individuals with low or high risk for CAD (HRG).
The authors analyzed 128 white subjects with lipid profiles
suggesting HRG and 100 white normolipidemic individuals
(controls). The P1P1 genotype frequency for the PvuII intron
15 polymorphism (homozygous for the absence of a restric-
tion site) was greater in HRG-affected individuals than in
control subjects (57%versus 38%, 𝑃 < 0.05). Moreover, this
genotype was strongly associated with high total cholesterol,
TG, LDL-C, and VLDL-C and low HDL-C in HRG patients.
Similarly, the control individuals with the P1P1 genotype
presented higher concentrations of total cholesterol and LDL-
C compared to those with other genotypes (P1P2 and P2P2)
[15].

In a study of Brazilian Caucasian women with CAD,
Salazar et al. [28] showed that the A+A+ and P1P1 homozy-
gous genotypes (AvaII and PvuII polymorphisms in the
LDLR gene, resp.) were significantly higher in women with
CAD than in the control group (44% versus 16%, 𝑃 <
0.001 and 64% versus 39%, 𝑃 < 0.05, resp.). Similarly, the
frequency of the A+ and P1 alleles observed among women
with CAD was higher than in controls (62% versus 44%,
𝑃 < 0.05 and 78% versus 65%, 𝑃 < 0.05, resp.). For the
HincII polymorphism in LDLR, no significant difference in
genotype distribution or in relative allele frequencies was
observed between patients and controls.

Salazar et al. [76] also evaluated the AvaII (exon 13),
HincII (exon 12), and PvuII intron 15 polymorphisms in 50
unrelated Brazilian individuals clinically diagnosed as FH
heterozygotes and in 130 normolipidemic controls. The FH
subjects showed higher frequencies of A+A+ (AvaII), H+H+
(HincII), and P1P1 (PvuII) homozygous genotypes compared
with the control group (𝑃 < 0.05). In addition, FH subjects
presented higher frequencies of A+ (58%), H+ (61%), and
P1 (78%) alleles compared with normolipidemic individuals
(45%, 45%, and 64%, resp.). The strong association observed
between these alleles and FH suggests that AvaII,HincII, and
PvuII polymorphisms could be useful for monitoring FH
inheritance in Brazilian families.
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(HDL-C) and increased total cholesterol, triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), which together constitute a
highly atherogenic lipid profile. Several mechanisms are proposed such that: (1) the PI-induced dyslipidemia is based upon the structural
similarity with the amino acid sequence of the C-terminal region of cytoplasmic retinoic acid-binding protein type 1 (CRABP-1). The PI
likely binds to CRABP-1, increasing apoptosis and diminishing the proliferation of peripheral adipocytes; (2) PI suppresses the proteasome-
mediated degradation of sterol regulatory element binding proteins (nSREBP) in the liver and adipocytes.These transcription factors stimulate
fatty acid and TG synthesis in the liver and adipose tissue and control several steps of cholesterol synthesis. The hepatic accumulation of
nSREBP increases TGand cholesterol biosynthesis, whereas accumulation in adipose tissue causes insulin resistance reduced leptin expression
and lipodystrophy; (3 and 4) PI-induced dyslipidemia is also based on the structural similarity between the catalytic region of HIV-1 protease
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3.2. Apo EGene Polymorphism. Theapo E protein is incorpo-
rated in the structure of HDLs-C, very low-density lipopro-
teins cholesterol (VLDLs-C), chylomicrons, and lipolytic
degradation products (i.e., the remnants of chylomicrons
and intermediate density lipoprotein cholesterol (IDL-C)).
This plasma protein binds to cellular receptors. Furthermore,
it is important for the transport of cholesterol and other
lipids from peripheral tissues to the liver, where they are
metabolized [77, 78].

Apo E is also important for the catabolism of TG-rich
lipoproteins and reverse cholesterol transport in various
tissues [79], which involves its binding to LDLR and the apo E
hepatic receptor, the activation of enzymes including hepatic
lipase, and hepatic production of VLDL-C [80, 81]. The
LDLR in the liver can clear both LDL- and apo E-containing

lipoproteins, but the LRP-mediated clearance of remnants is
absolutely dependent on apo E [82]. Moreover, apo E influ-
ences enteral cholesterol absorption, immunoregulation, and
neurobiological events such as neuronal repair, remodeling,
and protection [83, 84].

Apo E is synthesized primarily in the liver (>90%) and
also in the gut, brain, lungs, kidneys, and macrophages, and
it is secreted as a glycosylated protein [83]. In addition to
its important effects on lipid metabolism, vascular disease,
and cholesterol modulation, apo E also regulates the growth
of smooth muscle cells in the arterial wall, which impacts
the progression or regression of atherosclerotic lesions
[85].

The apo E gene is located on the long arm of chromosome
19 and encodes a protein of 299 amino acids [79]. According
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that are involved in altered adipocyte function, insulin resistance, and adiponectin expression; (2) Upon entry into the cell, NRTIs are
metabolized to the active triphosphorylated form and can be used as substrates by the mitochondrial DNA polymerase 𝛾. Subsequently,
they may inhibit mitochondrial DNA (mtDNA) replication and/or increase the number of mutations in mtDNA. This effect can lead to
mtDNA depletion, the disruption of oxidative phosphorylation, decrease in ATP production, increase in reactive oxygen species (ROS), and,
ultimately, inappropriate mitochondrial and cellular toxicity.

to Andrade and Hutz [1], the apo E gene exerts a strong
influence on the serum levels of LDL-C.

The apo E gene has a common polymorphism, HhaI
(T112C, rs429358 and C158T, rs7412), which is located in
exon 4 and generates three alleles, 𝜀2, 𝜀3, and 𝜀4; these alleles
determine the six genotypes (𝜀2/𝜀2, 𝜀2/𝜀3, 𝜀2/𝜀4, 𝜀3/𝜀3, 𝜀3/𝜀4,
and 𝜀4/𝜀4) [79, 83]. The allele frequencies differ significantly
between ethnic groups [86, 87], but 𝜀3 is the most common
allele in several populations [88].

According to Schwanke et al. [83], the apo E polymor-
phisms modify the protein structure and function. Apo
E isoforms interact differently with lipoprotein receptors,
altering their metabolism and consequently the plasma level
of the circulating lipids [89].

According to Davignon et al. [90], in industrialized
societies, individuals carrying the 𝜀4 allele exhibit high serum
levels of total cholesterol and LDL-C, while individuals
carrying the 𝜀3 allele exhibit intermediate levels, and those
carrying the 𝜀2 allele present the lowest levels. Hallman et al.

[86] reported that associations between the 𝜀4 allele and
increased total and LDL-C levels and between the 𝜀2 allele
and low levels of these lipids have been documented in many
studies, independently of ethnic group.

The association between apo E polymorphisms and CAD
has been studied with regard to cardiology, as apo E affects
lipoprotein metabolism and cholesterol transport [80, 81, 91].
The apo E 𝜀4 allele is consistently associatedwith an increased
risk of CAD, although its impact seems to vary according to
other factors, such as gender, ethnic origin, and lifestyle [90,
92, 93].

Salazar et al. [28] demonstrated that the HhaI polymor-
phism in the apo E gene is strongly associated with CAD.
Brazilian women with CAD present a higher frequency of
the 𝜀3/𝜀4 genotype compared with controls (40% versus 14%,
𝑃 < 0.001). In addition, women with CAD present a higher
frequency of the 𝜀4 allele comparedwith controls (23% versus
11%,𝑃 < 0.05), suggesting that this allele promotes premature
CAD. However, in a study of 184 Afro-Brazilian individuals,
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the HhaI polymorphism in apo E was not associated with
hypertension or variations in serum lipid concentrations
[94].

3.3. Apo B Gene Polymorphisms. Apo B is the major protein
in human LDL-C and VLDL-C, and it is synthesized in the
liver and intestine. This protein is essential for the assembly,
secretion, and metabolism of lipoprotein particles and for
the removal of LDL-C from the circulation by LDLR on cell
surfaces [63, 95].

Structural and genetic alterations in apo B are associated
with defective binding to LDLR and lead to hypercholes-
terolemia, an important risk factor for atherosclerosis and
premature CAD [96–98].

The apo B gene is located on chromosome 2p23-p24,
and several mutations and SNPs are associated with either
variations in plasma lipid concentrations [79] or with CAD
and myocardial infarction [99–101]. The SNPs in apo B
include the XbaI at exon 26 (C7673T, rs693), EcoRI at exon
29 (G12669A, rs1042031), MspI at exon 26 (rs676210), an
indel at exon 1 within the signal peptide (rs17240441), and a
hypervariable region at the 3󸀠 end (3󸀠HVR) [102, 103].

Polymorphisms in the apo B gene, as evaluated by
RFLP using the restriction enzymes XbaI (rs693), EcoRI
(rs1042031), andMspI (rs67210), are also associated with vari-
ability in serum cholesterol levels and coronary atherosclero-
sis [22, 104–106].

The indel, MspI (rs676210), XbaI (rs693), and 3󸀠HVR
polymorphisms may be associated with variations in lipid
levels, CAD, and myocardial infarction [104, 107–111], but
these findings are controversial [112, 113].

The XbaI polymorphism in exon 26 of the apo B gene
is associated with increased total cholesterol, altered post-
prandial lipoprotein metabolism, and increased CAD [114–
117]. The EcoRI polymorphism in exon 29 is associated with
variations in total cholesterol and TG levels, obesity, and
CAD [22, 110, 118, 119]. Furthermore, the signal peptide indel
polymorphism is associated with increased serum TG, total
cholesterol, and LDL-C [120, 121].

Salazar et al. [28] reported that women with CAD present
a higher frequency of theX-X genotype for theXbaI polymor-
phism compared with controls (42% versus 12%,𝑃 < 0.0001).
The frequency of the X allele is also higher in women with
CAD compared with controls (0.66 versus 0.39, 𝑃 < 0.0001).
The XbaI polymorphism is associated with increased total
cholesterol, LDL-C, andCAD in Brazilian Caucasian women.

In a study of the genotypes at three polymorphic sites
of ApoB (the indelat the signal peptide, XbaI at exon 26,
and EcoRI at exon 29), Machado et al. [122] reported the
simultaneous presence of the rare X+ and Del alleles (X+Del
haplotype) in males with CHD was associated with signifi-
cantly high serum levels of total cholesterol (𝑃 < 0.01), TG
(𝑃 < 0.05), and LDL-cholesterol (𝑃 < 0.05) and with a high
total cholesterol/HDL-C ratio (𝑃 < 0.05).These data indicate
that a single haplotype,X+Del,within the apo B gene impacts
lipid metabolism and may contribute to CHD susceptibility
in Brazilian males.

Cavalli et al. [123] investigated four apo B gene polymor-
phisms, MspI, (rs676210), XbaI (C7673T, rs693), the indel,

and 3󸀠HVR, in 177 white hypercholesterolemic Brazilian
subjects and 100 control individuals. The genotype distribu-
tion and allele frequency of the MspI, XbaI, and indelpoly-
morphisms were similar between hypercholesterolemic and
control individuals, and the frequency of the alleles with ≤43
repeats in the 3󸀠HVRwas higher in the hypercholesterolemic
group than in the control group (16.4 versus 8.5%, 𝑃 < 0.05).
Moreover, these alleles were associated with higher serum
total cholesterol hypercholesterolemic individuals (𝑃 < 0.05).
On the other hand, hypercholesterolemic individuals carry-
ing at least one allele with ≤43 repeats presented higher total
serum cholesterol compared with the individuals carrying
both alleles with >43 repeats. In addition, an association
between the indel and 3󸀠HVR polymorphisms was observed.
The alleles with ≤43 repeats and the Del allele were more
frequent in the hypercholesterolemic individuals (𝑃 < 0.05).
Taken together, these findings show that the apo B 3󸀠HVR
polymorphism may be an important genetic marker to
evaluate the risk of atherosclerotic disease.

3.4. Apo AI-CIII-AV Gene Cluster Polymorphisms. Apo A-
I, apo C-III, and apo A-V are mainly synthesized in the
liver [124, 125]. Apo A-I is the major protein found in HDL
cholesterol and is a cofactor for lecithin cholesterol acyltrans-
ferase (LCAT), the enzyme required for reverse cholesterol
transport metabolism [126, 127]. TheMspI polymorphism in
the promoter region of apo AI is associated with differences
in the plasma levels of apo AI and HDL-C [128].

ApoC-III is the major apolipoprotein of hepatic VLDL-
C and; due to the role in the transport and metabolism of
cholesterol, it is a candidate for determining genetic associa-
tions with serum lipid or lipoprotein levels and dyslipidemia.
In vitro studies show that apo C-III is a noncompetitive
inhibitor of LPL activity, which suggests that it plays an
important role in TG-rich lipoprotein catabolism [129].There
are several polymorphisms in the apo C-III gene, [130].
Genetic variations in the 3󸀠 untranslated region of apo C-
III (SstI polymorphism, rs10892152) are more frequent in
hypertriglyceridemic individuals [108, 131].

Apo A-V is observed at lower concentrations than other
apolipoproteins; however, studies have shown that it par-
ticipates in TG metabolism. Apo A-V deficiency is associ-
ated with severe hypertriglyceridemia in humans because
this apolipoprotein reduces plasma TG by reducing hepatic
VLDL-TG production and by enhancing the lipolytic con-
version of TG-rich lipoproteins [125, 132].Threemutations in
the Apo A-V gene have been described, at positions 148, 139,
and 97 (Q148X, Q138X, and Q97X, resp.). These mutations
produce three different glutamine nonsense mutations that
result in Apo A-V deficiencies.

3.5. PCSK9 Gene Polymorphisms. Another protein related
to dyslipidemia is proprotein convertase subtilisin/kexin
type 9 (PCSK9). The PCSK9 gene is located on chromo-
some 1p32, has 12 exons, and encodes a 692 amino acid
protein. There are several mutations in PCSK9, including
c.G1120T (p.Asp374Tyr), c.T381A (p.Ser127Arg), c.T646A
(p.Phe216Leu), c.A654T (p.Arg218Ser), R46L (rs11591147),
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and rs11206510. Mutations in PCSK9 cause autosomal dom-
inant hypercholesterolemia (ADH) [133].The overexpression
of PCSK9 in HepG2 cells accelerates the degradation of
cell-surface LDLR through a nonproteasomal mechanism
in a postendoplasmic reticulum compartment and leads to
increased total cholesterol and LDL-C [134, 135].

3.6. Cholesteryl Ester Transfer Protein Gene Polymorphisms.
Cholesteryl ester transfer protein (CETP) is an enzyme
with a key role in HDL-C metabolism. CETP promotes the
exchange of TG and cholesterol between lipoproteins, and it
transfers cholesteryl esters fromHDL-C to other lipoproteins
for subsequent absorption of cholesterol by hepatocytes.
Cholesteryl esters are transferred to LDL-Cs and VLDL-Cs
in exchange for TG [136–138]. By increasing the amount of
cholesteryl esters in LDL-Cs and VLDL-Cs, CETP increases
the atherogenicity of these lipoproteins. High plasma CETP
concentration is associated with reduced HDL-C, a strong
and independent risk factor for atherosclerosis [139, 140].

TheCETP gene is located on chromosome 16 and contains
16 exons [141, 142]. The protein is expressed primarily in the
liver, spleen, and adipose tissue, but low levels have been
detected in the small intestine, adrenal glands, heart, kidney,
and skeletal muscle [143]. CETP-deficient patients exhibit
elevated plasma HDL-C levels and low plasma LDL-C levels
[144].

The relationship between plasma CETP, HDL-C, and
atherosclerosis is complex, and CETP gene polymorphisms
have been studied to better define this relationship [145].
Polymorphisms at the CETP gene locus are associated with
the progression of coronary atherosclerosis independently of
plasma lipase activity and HDL-C concentration.

The TaqIB (rs708272) polymorphism affects lipid transfer
activity and HDL-C. TaqIB (rs708272) is one of the best stud-
ied polymorphisms inCETP; it consists of a silent guanine-to-
adenine nucleotide substitution in intron 1.The less common
allele, B2, is associated with decreased CETP activity, and in
normolipemic individuals, this allele is associated with an
increase in HDL-C due to decreased CETP activity [18, 146–
148].

3.7. Lipoprotein Lipase Gene Polymorphisms. Lipoprotein
lipase (LPL) is linked to the vascular endothelium and plays
a crucial role in plasma lipoprotein processing. LPL catalyzes
TG hydrolysis, which is the limiting step in the removal of
TG-rich lipoproteins such as chylomicrons, VLDL-C, and
LDL-C from the circulation [149]. LPL acts as a ligand for
LDLR-related protein and for the uptake of VLDL-C and
LDL-C [150].

The LPL gene is located on chromosome 8 (8p22), and it is
composed of 10 exons [151, 152]. The known polymorphisms
result in three functional variants: D9N (G28A, rs1801177),
S291N (A1127G, rs268), and S447X or MnlI (rs328) and two
SNPs located on introns: HindIII at intron 8 (T381G, rs320)
and PvuII at intron 6 (rs285). Generally, these variants are
associated with increased TG, but the S447Xmutation, which
truncates the last two amino acids of the polypeptide chain,
decreases TG [153–155].

The HindIII (T381G, rs320) and PvuII (rs285) poly-
morphisms, located on introns 8 and 6 of the LPL gene,
respectively, are associatedwith angiographicCAD.However,
Anderson et al. [156] demonstrated that HindIII(+) allele is
moderately associated with CAD, and the PvuII(−) allele is
only modestly associated with CAD.

4. Genetic Polymorphisms Associated with
Dyslipidemia in HIV-1 Infected Patients

There have been few studies of the effects of the LDLR gene on
plasma cholesterol inHIV-1-infected patients. Tran et al. [157]
showed that HIV-1 patients receiving PIs such as nelfinavir
have decreased LDLR and LRP mRNA and protein levels,
resulting in the reduced functional activity of these two recep-
tors, which are involved in cholesterolmetabolism.Moreover,
individuals receiving nelfinavir have reduced levels of active
SREBP in the nucleus.

Plasma LDL-C levels may be influenced through the
regulation of hepatic LDLR expression. The expression of
LDLR is under metabolic and hormonal control. Insulin,
dehydroepiandrosterone (DHEA), and growth hormone
(GH) may stimulate LDLR expression and reduce plasma
LDL cholesterol levels [158–160]. Petit et al. [35] evalu-
ated the LDLR expression in HIV-patients with or without
lipodystrophy. These authors found that HIV-lipodystrophy
was associated with low expression of LDLR and that this
decreased LDLR expression was independent of DHEA or
insulin secretion.

A study of 60HIV-1-infected patients receiving PI therapy
showed an association between apo C-III polymorphisms
and a genetic predisposition to develop high TG and low
HDL-C levels [161]; these authors suggested that apo C-III
polymorphism genotyping could identify patients who are
at risk for both hypertriglyceridemia and lipoatrophy [162].
Foulkes et al. [163] showed that there are associations between
ethnic differences, apo C-III variants, and the development of
hypertriglyceridemia in HIV-1- infected patients treated with
PIs.These authors also demonstrated that Hispanics carrying
the variant alleles at apo C-III exhibited smaller TG increases
after receiving PIs compared with those carrying the wild-
type genotype. According to Aragonès et al. [164], the apo
C-III rs10892152 polymorphism predisposes HIV-1-infected
patients, especially those treated with PIs, to an unfavorable
lipid profile. Apo A-V polymorphisms also enhance PI-
associated hyperlipidemia [52], and variations in this gene are
risk factors for extreme hypertriglyceridemia [165].

Tarr et al. [166] evaluated the influence of apoC-III, apo E,
and TNF polymorphisms on the risk of ART-associated
lipid disorders. No association between TNF and lipoatrophy
was observed, whereas apo C-III and apo E contributed to
an unfavorable lipid profile in ART-treated HIV-1 infected
patients. In another study, 20 SNPs of 13 genes involved in
lipid transport and metabolism were evaluated in 438 HIV-
infected individuals receiving ART, and the results showed
that SNPs in the ABCA1, apo A-V, and apo C-III genes
contributed to hypertriglyceridemia, whereas SNPs in the
apo A-V and CETP genes contributed to low HDL-C [11].
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In a recent report by Egaña-Gorroño et al. [13], 192 SNPs in
87 genes from the lipid metabolism pathway were assessed in
727 HIV-1-infected patients starting ART. The results of this
study showed that one SNP in the apo B gene (rs10495712)
was associated with high LDL-C levels.

5. Conclusion

Dyslipidemia leads to atherosclerosis and CAD; thus, under-
standing the etiology of changes in the lipid profile is
extremely important. Dyslipidemia is a complex and mul-
tifactorial condition caused by polymorphisms in genes
involved in lipid metabolism and regulation and by environ-
mental factors such as smoking, sedentary lifestyle, stress,
and diet. The main genes studied in relation to dyslipidemia
are those that encode proteins, receptors, and enzymes related
to lipid metabolism and regulation. Polymorphisms in the
LDLR, apoE, apoB, apoA-I, apoC-III, apoA-V,PCSK9,CETP,
and LPL genes are associated with changes in lipid profile.

Moreover, HIV-1-infected patients often have lipid dis-
orders. The pathogenesis of these disorders is complex and
multifactorial, involving viral and host factors and ART. By
itself, HIV-1 causes lipid disorders, and it acts synergisti-
cally with ART to generate dyslipidemia, insulin resistance,
and lipodystrophy syndrome, especially in patients who are
treated with PIs.

The genetic causes of dyslipidemia in HIV-1-infected
patients have been investigated because not all patients who
use HAART exhibit metabolic disorders. Some polymor-
phisms in these patients are associated with lipid profile
changes. Moreover, the genetic contribution to dyslipidemia
alone explains up to 7.6% of the variation in HIV-1-infected
patients, and HAART explains up to 6.2% of the variation.
The combination of genotype and ART increases the risk
of sustained dyslipidemia in HIV-1-infected individuals by
up to 5-fold, with increased plasma concentrations of total
cholesterol, LDL-C, and TG and decreased plasma HDL-C.

The genetic contribution to dyslipidemia is similar to or
greater than the contribution of HAART. Thus, clinicians
should consider genetics and the effects of ART when select-
ing an antiretroviral regimen forHIV-1 patients. Because gene
polymorphisms cause dyslipidemia, they should be investi-
gated in HIV-1-infected patients to identify individuals with
an increased risk of developing dyslipidemia when treated
with ART, especially those containing PIs. This knowledge
could guide individualized treatment decisions and lead to
new therapeutic targets for the treatment of dyslipidemia.
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