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Fibromyalgia (FM) presents as chronic systemic pain, which might be ascribed to central

sensitization, in which pain information processing is amplified in the central nervous

system. Since patients with FM display elevated gamma oscillations in the painmatrix and

parvalbumin (PV)-positive neurons play a critical role in induction of gamma oscillations,

we hypothesized that changes in PV-positive neurons are involved in hyperalgesia

in fibromyalgia. In the present study, to investigate a role of PV-positive neurons in

neuropathic pain, mice received reserpine administration for 3 consecutive days as an

animal model of FM (RES group), while control mice received vehicle injections in the

same way (VEH group). The mice were subjected to hot-plate and forced swim tests, and

immuno-stained PV-positive neurons were counted in the pain matrix. We investigated

relationships between PV-positive neuron density in the pain matrix and pain avoidance

behaviors. The results indicated that the mice in the RES group showed transient

bodyweight loss and longer immobility time in the forced swim test than the mice in the

VEH group. In the hot-plate test, the RES group showed shorter response latencies and a

larger number of jumps in response to nociceptive thermal stimulus than the VEH group.

Histological examination indicated an increase in the density of PV-positive neurons in the

primary somatosensory cortex (S1) in the RES group. Furthermore, response latencies to

the hot-plate were significantly and negatively correlated with the density of PV-positive

neurons in the S1. These results suggest a critical role for PV-positive neurons in the S1

to develop hyperalgesia in FM.
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INTRODUCTION

Fibromyalgia (FM) presents with chronic systemic pain along with psychotic (e.g., depression)
and autonomic nervous symptoms (1–4). Epidemiological studies of FM in various countries have
reported an average prevalence of 2.7% (5–8). However, FM is refractory, and its pathophysiological
mechanisms are not fully understood. Treatment methods of FM are under development, and
various pharmacological therapies combined with non-pharmacological therapies have been used
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(9–12). Recently, central sensitization, in which pain information
processing is amplified in the central nervous system, has been
suggested to play an essential role in FM (13–15).

Consistent with the above hypothesis, functional magnetic
resonance imaging (fMRI) studies have reported hyperactivity
in multiple brain areas that process pain, including the
somatosensory area, prefrontal cortex, anterior cingulate cortex,
and insula in response to mechanical, thermal and electrical
stimulation in patients with FM as well as an animal model
of FM (16–19). Neurophysiological studies also reported that
excitability in the primary somatosensory (S1) cortex was
increased in patients with FM (20, 21). Furthermore, gamma
oscillations in S1 were correlated with subjective pain (or
behavioral responses to nociceptive stimuli in rats) and/or
physical stimulus intensity in intact humans and rats (22–27).
Gamma oscillations were elevated in the S1, motor cortex,
insula, and prefrontal cortex in patients with FM compared with
controls (28).

Several animal models of FM have been reported. Repeated
injection of reserpine, which results in the depletion of
monoamines in the nervous system, has been used as an animal
model of FM (29, 30). In this model, the animals showed
behaviors associated with pain (hyperalgesia and allodynia),
depression-like symptoms, and gastrointestinal dysfunction
(autonomic symptoms), which are all observed in human FM.
Furthermore, reserpine administration increased the responses
of mechanoreceptive C-nociceptors and the activity of dorsal
horn microglia in the spinal cord (31). These previous human
and animal studies suggest that the forebrain pain matrix might
be hyperactive to display complex FM symptoms. On the other
hand, a recent animal study reported that optogenetic activation
of parvalbumin (PV)-positive neurons in the S1 induced gamma
oscillations of local field potentials and pain-related avoidance
behaviors (32). Furthermore, optogenetic activation of PV-
positive neurons in the prelimbic cortex also enhanced avoidance
responses to nociceptive stimuli (33). Based on these findings, we
hypothesized that PV-positive neurons play an essential role in
pain information processing in FM. In this study, we investigated
the relationship between PV-positive neurons in the forebrain
pain matrix and pain sensitivity in an animal model of FM with
repeated reserpine administration.

MATERIALS AND METHODS

Subjects
Eight to 10-week-old C57BL/6J male mice (n = 60, Japan
SLC, Hamamatsu, Japan) were used. The mice were housed in
groups (four per cage) in a temperature-controlled experimental
room (22 ± 1◦C) with light control (lights on from 07:00 to
19:00) and food and water available ad libitum. The mice were
treated consistently with the guidelines for care and use of
laboratory animals approved by the University of Toyama and
the National Institutes of Health’s Guide for the Care and Use of
Laboratory Animals. The experimental protocol of the study was
approved by the Animal Experiments and Ethics Committee at
the University of Toyama (Permit No. A2016MED-2 3).

Animal Model of FM by Reserpine
An animal model of FM was produced using the protocol
described in previous studies (31, 34, 35). Reserpine (Nacalai
Tesque, Inc., Kyoto, Japan), adjusted to a concentration of 0.25
mg/mL with 0.5% acetic acid, was injected (0.25 mg/kg, s.c.)
into the back skin once a day for 3 successive days (RES group).
As a control, a vehicle solution (0.5% acetic acid) was similarly
injected (VEH group).

Behavioral Tests
Hot-Plate Test

Previous studies reported that gene expression of the acid-
sensing ion channel 3 (ASIC3) was increased in the dorsal root
ganglion of the same animal model of FM, and that a selective
blocker of ASIC3 (APETx2) decreased both mechanical and
thermal hyperalgesia (31, 36). Clinical studies reported that not
only mechanical but also thermal hyperalgesia are important
factors predicting clinical pain intensity in patients with chronic
pain including FM (37, 38). In the present study, thermal
hyperalgesia (avoidance latency) was assessed using the hot-plate
test, data of which were directly applied to correlational analyses
with PV-positive neuron density (see below).

Previous studies reported that pain hypersensitivity
(mechanical allodynia) was detected 3 days after the first
reserpine injection in this animal model and gradually returned
to the baseline levels on 10th to 14th day after the first reserpine
injection (29, 31). Therefore, behavioral responses to noxious
thermal stimuli were observed 3 days after the first injection
in the present study. After placing each mouse on a hot-plate
apparatus (Muromachi Kikai, Japan), the latency of behavioral
responses [hindpaw licking or jumping (whichever came
first)], and the number of jumps were measured. The surface
temperature of the hot-plate was set at 50± 0.5◦C before testing,
and the test was completed in 60 s to avoid tissue damage to
the animals.

Forced Swim Test

Previous studies reported that depression-like behaviors in the
forced swim test were not observed 3 days after the first reserpine
injection, but observed 5–14 days after the first reserpine
injection (29, 34, 35). In the present study, two different groups
of mice underwent the forced swim test 3–4 and 10−11 days after
the first injection to determine the depressive behaviors caused
by reserpine. The procedures were conducted in accordance with
those in Porsolt et al. (39). Each mouse was placed in water (25
± 1◦C) in a glass beaker (23× 35× 20 cm; diameter× height×
depth) for 15min 3 or 10 days after the first injection. Twenty-
four hours after the first forced swim test (i.e., 4 or 11 days after
the first injection), the mice were again placed in the same glass
beaker with water for 5min, and their behavior was recorded by a
video camera. The immobility time wasmeasured for 5min in the
second forced swim test. Immobility was defined as the absence
of any movement except that to keep the mouse’s head above the
water. After testing, the animals were towel-dried and returned
to their cages.
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Immunohistochemistry
PV-positive neurons were immunostained based on the same
protocol used in our previous studies (40–44). After the hot-
plate test was performed 3 days after the first injection,
the mice were sacrificed under deep anesthesia with mixed
anesthetics (5.0 mg/kg butorphanol, 4.0 mg/kg midazolam, and
0.75 mg/kg medetomidine, i.p.), by transcardial perfusion with
heparinized 0.01M phosphate buffer saline (PBS), followed
by 4% paraformaldehyde dissolved in 0.1M phosphate buffer
(PB). After perfusion, the brains were post-fixed in 4%
paraformaldehyde overnight. The fixed brain was then immersed
in 30% sucrose until they sank to the bottom. Then, the brains
were cut into 40µm sections, collected in 0.01M PBS, and stored
in an antifreeze solution (25% glycerin, 25% ethylene glycol,
and 50% 0.1M PB) at −20◦C. Two stains were used on serial
sections every 40µm, one for PV immunocytochemistry, and the
other for Cresyl violet (Nissl staining). In PV immunostaining,
the sections were processed with mouse monoclonal anti-PV
antibodies according to our previous protocol (40–44). Briefly,
the sections were washed 3 times with 0.01 PBS for 5min,
blocked with 3% normal horse serum for 30min, then mouse
monoclonal anti-parvalbumin antibody (1: 10 000 dilution in 1%
horse serum PBS, Sigma, St. Louis, MO, USA) was incubated
overnight at 4◦C. These sections were washed 3 times with
0.01 PBS for 5min and incubated with biotinylated horse anti-
mouse IgG (1:200 dilution, Vector, Burlingame, USA) for 50min
at room temperature. After washing, incubated with avidin-
biotin complex reagent (Vector) for 50min and visualized with
a detection solution (0.25 mg/ml 3, 3

′

-diaminobenzidine, 0.03%
H2O2 in PB). Negative control sections were treated identically
except for omission of the primary antibody. No reaction product
was observed in any of the control sections.

Stereological Analysis of PV-Positive
Neurons
PV-positive neurons were counted based on our previous
protocols (42–44). Section images were captured and digitized
using a microscope system (BZ-9000, Keyence Corporation,
Osaka, Japan). Anatomical locations of the brain areas were
determined by examining the anatomically matched adjacent
Nissl-stained sections based on the brain atlas (45); at +0.98,
+0.62, +0.14, −0.34, −0.70, and −1.22mm in the anterior-to-
posterior level from the bregma in the primary somatosensory
cortex (S1); at +1.98, +1.70, +1.42, +1.10mm in the medial
pre-frontal cortex (mPFC) including the prelimbic cortex (PrL),
infralimbic cortex (IL) and anterior cingulate cortex (ACC); at
−0.82, −1.22, −1.58, −1.94, −2.30mm in the lateral (LA) and
basolateral (BLA) nuclei of the amygdala; at−0.82, −1.58mm
in the intercalated cells of the amygdala (ITC); at +0.38, −0.22,
−0.82, −1.22mm in the granular insula (GI), dysgranular insula
(DI), and agranular insula (AI). In S1, both the forelimb (S1FL)
and hindlimb (S1HL) regions were separately analyzed.

The PV-positive neurons were counted using stereological
software (Stereo Investigator version 7.53.1, MicroBrightField,
Williston, VT, USA). The cell bodies of PV-positive neurons in
the sample sites randomly dispersed in each brain region were

counted using a 20× objective lens. The counting conditions
were as follows; sampling grid sizes, 280.87 × 765.50-µm in the
mPFC, and 259.00× 372.40-µm in the S1, amygdala, and insula;
counting frame, 200 × 200-µm; optical dissector height, 5µm.
The software automatically set up square counting frames with
exclusion lines. Within the counting frame, only PV-positive cell
bodies that did not contact the excluding line were counted. The
detailed theoretical and technical methodology for stereological
estimation of cell density has been previously reported (46). The
PV-positive neuron density was estimated in each brain area of
each animal.

Statistical Analysis
Data were shown as the mean± SEM. Normality of the data was
checked by D’Agostino & Pearson test. The bodyweights were
compared between the two groups using a repeated measures
two-way analysis of variance (ANOVA) with post-hoc tests
(Bonferroni tests). In this analysis, the degrees of freedom were
corrected by Greenhouse–Geisser method where appropriate.
Data in the behavioral tests and PV-positive neuron density were
compared between the VEH and RES groups using unpaired
t-tests with Welch’s correction (Welch’s test) except the data
in numbers of jumps in the hot-plate test, immobility time in
the forced swim test 11 days after the first injection, and PV-
positive neuron density in the infralimbic cortex. The data in
numbers of jumps in the hot-plate test, immobility time in the
forced swim test 11 days after the first injection, and PV-positive
neuron density in the infralimbic cortex were analyzed by the
Mann–Whitney U-test because these data did not show normal
distribution. A linear regression analysis was used to analyze the
relationship between the response latencies in the hot-plate test
and PV-positive neuron density. Prism 8 (GraphPad Software
Inc.) was used to analyze the data. A p < 0.05 was considered
statistically significant.

RESULTS

Bodyweights of the Reserpinized Animals
The bodyweight of the RES group decreased after reserpine
injection (Figure 1A). The statistical analysis indicated
significant main effects of group [F(1, 26) = 5.54, p = 0.026]
and day [F(2.82, 73.27) = 49.22, p < 0.001], and a significant
interaction between group and day [F(13, 338) = 30.62, p
< 0.0001]. Post-hoc comparisons indicated that the mean
bodyweights were significantly smaller in the RES group than in
the VEH group 3 days after the first injection (3 d in Figure 1;
22.3 ± 0.5 vs. 25.9 ± 0.4 g: mean ± SEM; Bonferroni test, p <

0.0001), 4 days after the first injection (4 d in Figure 1; 22.8 ±

0.6 vs. 25.9± 0.4 g; Bonferroni test, p= 0.0046), and 5 days after
the first injection (5 d in Figure 1; 23.7 ± 0.5 vs. 26.0 ± 0.4 g;
Bonferroni test, p= 0.0248).

Behavioral Tests
Hot-Plate Test

The mice underwent the hot-plate test 3 days after the
first injection (3 d in Figure 1A). The response latencies to
nociceptive thermal stimuli were significantly shorter in the RES
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FIGURE 1 | Effects of repeated reserpine injection on body weight (A) and behavioral responses (B,C). (A) Time course of bodyweight. The mean bodyweights were

significantly lower in the RES group than in the VEH group 3–5 days after the first injection (3, 4, and 5 d). ****, **, *, significant differences from the VEH group
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FIGURE 1 | (Bonferroni test, p < 0.0001, 0.01, and 0.05, respectively). The arrows indicate reserpine or vehicle injection. Open circles, VEH group; filled circles, RES

group. BL1-3, day 1–3 in the baseline period; 1–11 d, 1–11 days after the first injection. (B) Comparison of response latency (a) and the number of jumps (b) between

the VEH and RES groups in response to the hot-plate test (a thermal stimulus) 3 days after the first injection. ****p < 0.0001 [(a) Welch’s test; (b) Mann–Whitney

U-test). Open circles, VEH group; filled circles, RES group. Numbers in parentheses indicate the number of animals. (C) Comparison of the immobility time between

the VEH and RES groups in the forced swim test on day 4 (a) and day 11 (b) after the first injection. *p < 0.05 (Mann–Whitney U-test). Open circles, VEH group; filled

circles, RES group. Numbers in parentheses indicate the number of animals.

group (18.7± 1.2 s, n= 16) than in the VEH group (35.9± 3.0 s,
n = 16) (Welch

′

s test, p < 0.0001; Figure 1Ba). The number of
jumps was significantly greater in the RES group (5.8± 1.6 times,
n =16) than in the VEH group (0.0 ± 0.0 times, n = 16; Mann–
Whitney U-test, p < 0.0001; Figure 1Bb). These results indicate
that pain sensitivity was increased in the RES group.

Forced Swim Test

Figure 1C shows the immobility time 4 and 11 days after the first
injection (4 and 11 d in Figure 1A). On day 4, the immobility
time in the RES group (156.9± 19.9 s, n= 8) tended to be longer
than that in the VEH group (109.3 ± 17.7 s, n = 8; Welch

′

s test,
p = 0.0967; Figure 1Ca). On day 11, the immobility time was
significantly longer in the RES group (202.8± 12.1 s, n= 6) than
in the VEH group (155.1 ± 8.9 s, n = 6; Mann–Whitney U-test,
p= 0.0152; Figure 1Cb).

PV-Positive Neuron Density
Example microphotographs of PV-positive neurons in S1 for
the VEH and RES groups are shown in Figures 2A,B. The
number of PV-positive neurons was greater in the RES group
than in the VEH group. Figure 2C shows PV-positive neuron
density (cells/mm3) in the S1 forelimb (S1FL) (Figure 2Ca)
and S1 hindlimb (S1HL) regions (Figure 2Cb), and cell density
in the S1L (mean cell density between the S1FL and S1HL)
(Figure 2Cc). TheWelch

′

s test indicated that PV-positive neuron
density was significantly greater in the RES group than in
the VEH group in each area (S1FL, p = 0.0002; S1HL, p
= 0.0004; S1L, p = 0.0002). However, in the other brain
regions, no significant differences were observed. In the mPFC
(Figure 3A), there were no significant differences in PV-positive
neuron density between the RES and VEH groups in the
prelimbic cortex (PrL) (Figure 3Aa), infralimbic cortex (IL)
(Figure 3Ab), and anterior cingulate cortex (ACC) (Figure 3Ac)
(IL:Mann–WhitneyU-test, p> 0.05; other brain regions:Welch’s
test, p > 0.05). In the amygdala (Figure 3B), there were no
significant differences between the RES and VEH groups in
the lateral nucleus (LA) (Figure 3Ba), basolateral nucleus (BLA)
(Figure 3Bb), and intercalated cells (ITC) (Figure 3Bc) (all
regions: Welch’s test, p > 0.05). In the insula cortex (Figure 3C),
no significant differences were observed between the VEH and
RES groups in the granular insula (GI) (Figure 3Ca), dysgranular
insula (DI) (Figure 3Cb), and agranular insula (AI) (Figure 3Cc)
(all regions: Welch’s test, p > 0.05).

Correlation Analyses
The relationships between PV-positive neuron density and
behavioral manifestation of thermal hyperalgesia (response
latency) were analyzed in each brain area. The response latencies
in the hot-plate test were significantly negatively correlated with
cell density in the S1FL [r = −0.680; F(1, 18) = 15.50, p =

0.001; Figure 4A], S1HL [r = −0.645; F(1, 18) = 12.80, p =

0.002; Figure 4B], and S1L [r = −0.677; F(1, 18) = 15.19, p
= 0.001; Figure 4C]. In the other brain regions, no significant
relationships were observed. In the mPFC (Figure 5), there was
no significant correlation between response latency and PV-
positive neuron density in the PrL [r = −0.128; F(1, 18) = 0.299,
p = 0.591] (Figure 5A), IL [r = −0.289; F(1, 18) = 1.638, p =

0.217] (Figure 5B), and ACC [r = −0.376; F(1, 18) = 2.958, p
= 0.103] (Figure 5C). In the amygdala (Figure 6A), there were
no significant correlations between the response latency and PV-
positive neuron density in the LA [r = −0.333; F(1, 18) = 2.245,
p = 0.151] (Figure 6Aa), BLA [r = −0.215; F(1, 18) = 0.872, p =
0.363] (Figure 6Ab), and ITC [r = −0.269; F(1, 18) = 1.404, p =

0.251] (Figure 6Ac). In the insula cortex (Figure 6B), there were
no significant correlations between the response latency and PV-
positive neuron density in the GI [r = −0.069; F(1, 18) = 0.086, p
= 0.773] (Figure 6Ba), DI [r = 0.075; F(1, 18) = 0.101, p= 0.754]
(Figure 6Bb), and AI [r = 0.030; F(1, 18) = 0.016, p = 0.900]
(Figure 6Bc).

DISCUSSION

Reproduction of the FM Model
A previous study reported that the metabolites of serotonin,
dopamine, and noradrenaline in the cerebrospinal fluid (CSF)
were lower in patients with FM, suggesting that catecholamine
levels may be lower in the brain (47). Consistently, the animal
model of FM with repeated reserpine administration replicated
human FM symptoms and displayed decreases in catecholamines
in the brain and spinal cord (29, 34, 35, 48, 49). The present
study also replicated characteristic symptoms of human patients
with FM and the animal model of FM reported in previous
studies. First, patients with FM often present with eating
disorders and/or bodyweight loss (50, 51). Previous animal
studies also reported that the FM mouse model displayed the
lowest bodyweight 3 days after the first injection (31, 48). After
the reserpine administration, access to food was reduced, eating
time was extended, and food intake was sharply reduced (52).
In the present study, the RES group also showed a decrease in
bodyweight 3–5 days after the first injection.

Second, previous studies reported that reserpine-induced
changes in pain sensation include mechanical hyperalgesia of
the skin and muscles and thermal hyperalgesia. A single dose
of reserpine (4 to 5 mg/kg) was found to cause skin and
muscle hyperalgesia several hours after injection, and transiently
induced thermal hyperalgesia (53, 54). Repeated administration
of reserpine resulted in a decrease in the escape threshold for
mechanical stimulation of skin and muscle 3 to 14 days after
the first injection, while a decrease in escape latency to thermal
stimulation was observed 3 to 4 days after the first injection
(34, 35, 49). The present results, in which significant thermal
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FIGURE 2 | Effects of repeated reserpine injection on PV-positive neurons in S1. (A,B) Photomicrographs of the mice S1 in the VEH (A) and RES (B) groups. Insets in

(a) are shown in (b) as enlarged views. The number of PV-positive neurons was increased in the RES group. S1HL, S1 hindlimb area; S1FL, S1 forelimb area. (C)

Comparison of the PV-positive neuron density in the S1FL (a), S1HL (b), and S1L (c) between the VEH and RES groups. S1FL, S1 forelimb area; S1HL, S1 hindlimb

area; S1L, S1 leg area (mean of S1FL and S1HL). ***p < 0.001 (Welch’s test). Open circles, VEH group; filled circles, RES group. Numbers in parentheses indicate the

number of animals.
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animals. ns, non-significant (p > 0.05).
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FIGURE 4 | Relationships between response latency in the hot-plate test and PV-positive neuron density in the S1FL (A), S1HL (B), and S1L (C). **p < 0.01,
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FIGURE 5 | Relationship between the response latency in the hot-plate test
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significant correlation between response latency and PV-positive neuron
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hyperalgesia in the hot-plate test was observed 3 days after the
first injection, were consistent with those of previous studies.

Third, depression is an important characteristic of human FM,
and the same pathophysiological mechanisms may be involved
in both depression and changes in pain sensitivity (55, 56).

Depression-like symptoms (i.e., immobility in the forced swim
test) were not observed 3 days after the first injection of reserpine
but were observed 5–14 days after the first injection (29, 34, 35).
Consistently, the immobility time tended to increase 4 days after
the first injection and was significantly increased 11 days after
the first injection in the RES group. These findings indicate that
the present study replicated the symptoms of the FM model with
repeated reserpine administration.

Relationship Between PV-Positive Neuron
Density and Hyperalgesia
In this study, repeated reserpine administration increased
PV-positive neuron density in S1, and there was a negative
correlation between PV-positive neuron density and behavioral
latency in the hot-plate test. Previous studies reported that
optogenetic activation of fast-spike PV-positive neurons
controlled pyramidal neuron activity and generated gamma
oscillations above 40Hz (57–59). Consistently, optogenetic
activation of PV-positive neurons in the S1 induced gamma
oscillations (32). Since gamma oscillations in S1 were correlated
with behavioral responses to nociceptive stimuli and gamma
oscillations were elevated in S1 in patients with FM (see
Introduction), the present results with elevated PV-positive
neuron density in S1 and decreases in response latencies in the
hot-plate test suggest that gamma oscillations were increased in
the RES group. This further suggests that increases in PV-positive
neurons in S1 are involved in hyperalgesia.

Optogenetic activation of PV-positive neurons in S1 not only
increased behavioral sensitivity to nociceptive stimuli but also
markedly increased activity of the rostroventral medulla (RVM),
which functions as the descending pain modulatory system (32).
It has been demonstrated that the periaqueductal gray (PAG) and
RVM in the midbrain regulate nociceptive inputs (60–64). ON
and OFF cells are mixed in the RVM. Nociceptive information
processing is suppressed by the activity of OFF cells, whereas it is
promoted by the activity of ON cells (65–67). In an FM model
with reserpine administration, mechanoreceptive C nociceptor
responses and activity of dorsal horn microglia in the spinal cord
were increased (31), and activated microglia might disinhibit
dorsal horn nociceptive neurons (68). Along with the reduction
of descending pain-inhibitory catecholaminergic inputs to the
spinal cord by reserpine (29, 31), activation of PV-positive
neurons in S1might promote the activity of ON cells in the RVM,
most of which might be non-serotonergic (69), to further amplify
pain information processing in the dorsal horn.

On the other hand, human fMRI studies reported increased
activity in the pre-frontal cortex, anterior cingulate, amygdala,
and insula at rest and in response to heat noxious stimuli in
patients with FM (70–72). The size of the amygdala changes
in patients with FM (73–75). These previous studies suggest
that these brain regions might be involved in the pathological
processes in FM. However, PV-positive neuron density did
not change in these brain regions in the present study. These
findings suggest that pathological alterations in PV-positive
neurons specifically occur in S1 in an animal model of FM with
repeated reserpine administration. However, in the present study,
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reserpine was administered for only three consecutive days,
suggesting that the present results might reflect acute effects. A
larger number of reserpine injections would induce changes in
other brain regions since sustained changes in catecholamine
levels are critical to inducing hyperalgesia (49). Furthermore, in
the present study, the animals were sacrificed 3 days after the
first injection. Therefore, it is also possible that a longer duration
after the first injection might be required to induce changes in
PV-positive neurons in other brain regions. Further studies are
required to confirm the S1 specificity of PV-positive neuronal
changes in FM.

Possible Pathophysiological Mechanisms
of FM by Reserpine
A previous clinical study reported decreases in catecholamine
metabolites in the CSF in FM patients, but no alteration of
those levels in patients with rheumatoid arthritis, suggesting
that alteration of catecholamine metabolites is a cause, but not
a consequence, of chronic pain (47). Previous studies reported
that catecholamines in the brain suppressed gamma oscillations,
whereas their depletion increased gamma oscillations. Dopamine
controls gamma oscillations differently depending on its
receptor type (76). However, gross depletion of dopamine
by pharmacological lesions of dopaminergic terminals in the
striatum was found to increase gamma oscillations (77).
Furthermore, dopamine reduced gamma oscillation through
the α1-adrenergic receptor in the primary motor cortex (78).
In addition, electrical stimulation of the dorsal raphe nucleus
to release serotonin downregulated cortical gamma oscillation
(79), while pharmacological stimulation of the locus coeruleus
to release noradrenalin reduced gamma oscillation in the
dentate gyrus (80). Another line of evidence also indicated an
involvement of reserpine in induction of gamma oscillations:
reserpine injections increased rapid eye movement (REM) sleep
(81), in which gamma oscillations increased compared with non-
REM sleep (82). On the other hand, pregabalin, an antagonist
of voltage-dependent Ca2+ channels (VDCCs), is reported to
be effective in treating FM (83). VDCCs are reported to be
critical for gamma oscillations in the thalamocortical system
(84). All of these findings support the critical role of gamma
oscillation in pain information processing in the forebrain
of FM. Gamma oscillation is reported to induce synaptic
plasticity (85, 86), by which pain sensory circuits might be
strengthened in FM. Alteration of PV-positive neurons in the
present study may reflect these pathological changes induced
by reserpine.

Limitation
Previous studies reported that non-neuronal cells express PV:
ependymal cells in the ventricular wall could express PV in
pathological conditions such as brain injury and ventricular
stenosis (87, 88). However, PV is a neuronal marker in the brain
in intact animals (89, 90). Furthermore, staining distributions
of PV-positive cells in the present study were comparable to
those of PV-positive neurons observed in the cingulate cortex
and reticular thalamic nucleus, as reported previously (91, 92).
Although we did not perform double stanning of PV and NeuN,

these findings suggest that PV-positive cells were not glial cells
but neurons in the present study.

Second, we did not analyze PV-positive neurons in the dorsal
horn of the spinal cord, since low frequency oscillations (5–
10Hz) were reported in the dorsal horn (93), compared with
high frequency gamma oscillation in the forebrain. However,
oscillation frequencies in the dorsal horn could be increased
if excitatory inputs to PV-positive neurons in the dorsal
horn are increased (94). Reserpine could alter descending
projections from the forebrain to the dorsal horn (see above),
and consequently increase excitatory inputs to PV-positive
neurons, which might lead to activation of PV-positive neurons
and induction of gamma oscillations in the dorsal horn.
Third, although available information suggest that gamma
oscillations may be increased by repeated reserpine injection
(see above), there is no direct neurophysiological evidence that
repeated reserpine injection induces gamma oscillation in S1
in the present as well-previous studies. Fourth, the present
study lacks direct pharmacological evidence indicating that
catecholaminergic depletion induces increases in PV-positive
neuron density in S1 leading to hyperalgesia. However, indirect
evidence supports the present idea: clinical studies reported that
serotonin and noradrenaline reuptake inhibitors reduced FM
symptoms including hyperalgesia (95–97) while an animal study
reported that microinjection of a serotonin reuptake inhibitor
into S1 attenuated thermal hyperalgesia (98). To prove or
disprove the current idea of a PV-neuronal involvement in FM
hyperalgesia, further studies are required to analyze relationships
between changes in catecholaminergic levels in the brain and
pain sensitivity-related parameters (pain sensitivity, and PV-
positive neuron density and gamma oscillations in S1 and the
dorsal horn).
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