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Abstract

Certain mutagens, including the APOBEC3 (A3) cytosine deaminase enzymes, can create multiple 

genetic changes in a single event. Activity of A3s results in striking ‘mutation showers’ occurring 

near DNA breakpoints, however less is known about mechanisms underlying the majority of A3 

mutations. We classified the diverse patterns of clustered mutagenesis in tumor genomes, which 

identified a novel A3 pattern: nonrecurrent, diffuse hypermutation (omikli). This mechanism 

occurs independently of the known focal hypermutation (kataegis), and is associated with activity 

of the DNA mismatch repair (MMR) pathway, which can provide the single-stranded DNA 

substrate needed by A3 and contributes to a significant portion of A3 mutations genome-wide. 

Because MMR is directed towards early-replicating, gene-rich domains, A3 mutagenesis has a 

high propensity to generate impactful mutations, which exceeds other common carcinogens such 

as tobacco smoke and UV exposure. Cells direct their DNA repair capacity towards more 

important genomic regions, thus carcinogens that subvert DNA repair can be remarkably potent.

Introduction

Many types of mutation patterns in somatic cells are linked either with exposure to DNA 

damaging agents, or with genome instability resulting from failures of DNA repair. Both are 

causal factors for carcinogenesis due to increases in mutation rates. In addition, dysregulated 

activity of certain enzymes may be mutagenic. For example, many tumors as well as the 

human germline bear signatures of error-prone DNA polymerases 1–4. However, the most 

striking example of endogenous mutagens is the APOBEC family of cytosine deaminases. 
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They defend against viruses and retrotransposons by damaging their genetic material; 

additionally, APOBEC1 is an mRNA editing enzyme (reviewed in ref. 5).

The protein products of APOBEC3 (A3) paralogs were implicated as mutagens in many 

human cancer types 6–10. This is consistent with their ability to deaminate DNA 11,12 when it 

is single-stranded (ss) 13,14. Tumors have a highly variable burden of the A3 mutational 

spectrum, which is associated with differential A3 activity: an activating germline 

polymorphism in APOBEC3A and APOBEC3B genes results in a higher mutation burden 
15, and there is some correlation thereof with tumoral mRNA expression level of 

APOBEC3A and APOBEC3B 4,7,16,17. In addition to the A3 activity, the availability of its 

ssDNA substrate is a requirement for mutagenesis. One known source of such ssDNA are 

intermediates of DNA repair of double-stranded breaks 10,18,19, where A3 results in 

‘mutation showers’ or kataegis (greek for thunderstorm), local hypermutation events that 

may consist of tens of mutations 8,10. While kataegis is striking, it is not common: very few 

of the A3-signature mutations are accounted by the mutation showers 10,20. Additionally, 

DNA secondary structures can generate A3 mutational hotspots 21, however, the processes 

that generate global, abundant ssDNA substrate for A3 mutagenesis need to be further 

explored.

Clues are provided by the peculiarities of the A3 mutation patterns. Most mutation types are 

enriched in late-replicating domains, because DNA mismatch repair (MMR) and possibly 

nucleotide excision repair are more active in early-replicating domains 22,23. A3 signature 

mutations run counter to this trend 20. Additionally the A3 mutations have a curiously strong 

DNA replication strand bias 24–26. These biases, considered together with experimental 

evidence 27–29, suggest that A3 mutagenic activity is coupled to DNA replication. 

Expressing A3 enzymes in E. coli and yeast produced a mutational bias at replication origins 
30,31, suggesting that ssDNA exposed during discontinuous DNA synthesis may be 

vulnerable to A3. In addition, another source of A3 substrate ssDNA was suggested by 

experiments in which the repair of a lesion-bearing DNA by base excision repair (BER) and 

MMR promoted A3 signature mutagenesis in flanking segments 32. Identifying the 

mechanisms that allow access of A3s to nuclear DNA is important because A3 enzymes 

generate cancer driver mutations21,33–35 and promote tumor heterogeneity 36–38.

Kataegis illustrates how mutation clustering patterns can be used to detect ssDNA generating 

mechanisms 10,18. We introduce a sensitive statistical method to detect non-random mutation 

distribution that results from localized mutagenic events. Applying this to human cancer 

genomes uncovered a ubiquitous pattern of diffuse A3 mutation clusters, which we named 

omikli (greek: oμíχλη, meaning “fog”). This ‘mutation fog’, omikli, is more common than 

kataegis, however it occurs via a distinct mechanism. We present evidence that the activity 

of DNA mismatch repair (MMR) promotes A3 mutagenic activity, evident in the omikli 
pattern, and that the same process is responsible for the majority of unclustered A3 

mutations. They are surprisingly likely to impact cancer genes – more so than the changes 

resulting from common external mutagens – because DNA repair directs A3 mutagenesis 

towards early-replicating, gene rich domains.
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Results

Detection of two distinct types of local hypermutation

Our aim was to systematically characterize the different types of mutation clustering in 

human cancer cells. To this end, we developed a statistical approach (HyperClust) that has 

two distinguishing features (Fig. 1a; Extended Data Fig. 1a, b). Firstly, it accounts for the 

heterogeneity of mutation rates and of trinucleotide composition across chromosomal 

domains, which is an extension of our recent approach 4 with additional support for local 

false discovery rate (lfdr) statistics. Secondly, it draws on the signal present in allelic 

frequencies of mutations –serving as a proxy for mutation timing – to enforce that mutations 

constituting one clustered event must occur simultaneously (Methods). We tested these 

improvements in HyperClust using simulated data with spiked-in mutation clusters, 

generating precision-recall curves(Extended Data Fig. 1c-e), comparing HyperClust to two 

previous approaches for detecting clustered mutations 8,10,29. Our simulation studies suggest 

that HyperClust compares favorably in calling shorter clusters consisting of two mutations 

(at various intermutational distance (IMD) distributions, Extended Data Fig. 1e). Therefore 

our method supports systematic studies of diverse types of clustered mutagenesis.

We used HyperClust to identify clustered somatic single-nucleotide variants in whole-

genome sequences of 22 tumor types, detecting a total of 108,401 clustered mutations in 699 

tumors (at a lfdr≤20%). Henceforth, we defined the A3 spectrum as C>T and C>G changes 

in a TCW context (W is A or T). Overall 45% of all clustered mutations are in A3 contexts, 

consistent with A3 enzymes being an important cause of local hypermutation, however 55% 

of mutation clusters are not in the canonical A3 context, supporting that additional 

processive agents including error-prone DNA polymerases commonly mutagenize human 

cells1–4,39 (we note that A3 may also rarely generate C>A changes 40). In contrast to prior 

heuristic rules 29,41,42 that required e.g. at least 5 mutations with an IMD ≤1kb, importantly, 

the majority of A3 clusters do not meet this definition and instead consist of pairs and 

triplets (Fig. 1b, c). The distribution of A3 mutation cluster lengths (number of consecutive 

mutations) was significantly better described by a mixture of two distributions than by a 

single distribution (Fig. 1d; Extended Data Fig. 1f, g). This suggests that there are at least 

two types of mutagenesis generating tracts of A3-context changes, which we estimate to 

have a mean length of 2.2 mutations and 7.1 mutations.

While the latter distribution neatly fits current notions of kataegis, the former one does not. 

We named this type of diffuse mutation clustering omikli (fog), by analogy to the focused 

kataegis (thunderstorm) events. Henceforth, we classify mutation clusters with 2, 3 or 4 

variants as omikli (the short-tract Poisson mixture component predominates; Fig. 1d), and 

clusters with 5 or more single-nucleotide variants as kataegis (with ≥95% contribution of the 

component with long tracts; Fig. 1d). Omikli is ubiquitous, occuring in more tumors (76% 

tumors contain at least three A3 omikli mutations; by random expectation approx. 14% 

would do so; Fig. 1e) than A3 kataegis (48% samples with at least three A3 kataegis 
mutations). In tumors in which they occur, A3 omikli are similarly abundant per genome 

(Q1-Q3: 4-36 mutations) as A3 kataegis (6-36 mutations; Fig. 1f, Extended Data Fig. 1h).
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Distinct mechanisms for kataegis and omikli A3 mutagenesis

Multiple lines of genomic evidence suggest that A3 omikli clusters are generated by a 

mechanism distinct from kataegis. First, kataegis is, expectedly 8,10, enriched near 

rearrangement breakpoints, a proxy for locations of chromosome breaks 43, but not so for 

omikli (Fig. 1g). Second, the burden of A3 omikli clusters appears uncoupled from kataegis 
across individual tumors and is weakly correlated (R 2=0.11) with long kataegis events (≥8 

mutations; Fig. 1h), suggesting that short clusters derive from a different mechanism than 

the intermediate and long ones, which share a common mechanism (R 2=0.52; Fig. 1h). 

Third, correlation of A3 mutation burden with APOBEC3A and APOBEC3B mRNA levels 

is stronger for omikli (Spearman rho=0.31 and 0.45, respectively) than for kataegis(rho=0.04 

and 0.14). This suggests that for omikli the A3 expression is commonly limiting, while for 

kataegis another factor becomes limiting, plausibly the source of ssDNA that is available 

only rarely, e.g. during repair of ds breaks 10,18,44. Fourth, the 5’ mutational context of A3 

omikli mutationshad a significant enrichment of the A3A-like context over the A3B-like 

context 45 in five cancer types, compared to kataegis(Extended Data Fig. 2a–c; the converse 

was not the case in any cancer type), thus A3A and A3B may have preferential roles in 

causing omikli and kataegis, respectively. We also note overall tissue-specific differences 

A3A-like versus A3B-like contexts, as reported 4,45(Extended Data Fig. 2c). Fifth, the 

unclustered A3 mutation burden is highly correlated with omikli (rho=0.66) but less with 

kataegis (rho=0.27). The numerous unclustered A3 mutations can be seen as a mixture of 

three components: singletons created by the omikli process (henceforth, A3-O), singletons 

created by the kataegis process (A3-K), and the remainder (A3-X) would encompass 

mutations caused by A3s independently of kataegis and omikli mechanisms plus the 

TCW>K mutations not caused by A3s. Consistently, the distribution of the numbers of 

mutations per cluster in omikli (Fig. 1d; >98% are pairs or triplets) suggests that A3-O 

generates many A3 singletons while A3-K generates few.

Regional distribution of A3 clusters suggests a link to MMR

To gain insight into the process generating omikli, we studied its distribution across the 

genome. A3-context omikli mutations were strongly enriched in early-replicating regions 

(2.0-fold and 2.5-fold for C>T and C>G respectively, Fig. 2a, b), in contrast to unclustered 

TCW (0.54 and 0.72-fold) and to the control, non-A3 context (VCN, where V is not T; 0.56 

and 0.47-fold). These latter enrichments are similar to various other unclustered mutation 

types (Extended Data Fig. 3a), which are known to be depleted from early-replicating 

domains 46–48. Protection of early-replicating domains from mutations stems from the 

differential activity of DNA mismatch repair (MMR) 4,22,49. The enrichment of diffuse 

clustered A3 mutations (omikli), uniquely, matches the genomic gradient of increasing 

MMR activity, rather than that of decreasing MMR activity, as for most other mutation types 

(this is not explained by the genomic distribution of the TCW trinucleotide; Extended Data 

Fig. 3b).

MMR is directed towards the regions bearing the H3K36me3 histone mark 50, which is 

enriched at gene bodies of expressed genes 51,52, lowering their mutation rates 4,53. 

Consistently with higher MMR activity, we find a significant enrichment of A3 omikli 
clusters at H3K36me3 regions, after conditioning on replication time and gene expression 
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levels (Fig. 2c; Methods). However, the mRNA level, after conditioning on H3K36me3 and 

replication time, was not associated with higher A3 omikli burden (Fig. 2c). This agrees 

with prior data 20,31 suggesting that transcription is not a common source of ssDNA 

substrate for A3 enzymes, even though ssDNA generated during transcription can be prone 

to mutagenic spontaneous deamination 54. Regarding A3 kataegis, the enrichment in 

H3K36me3 regions (Extended Data Fig. 3c,d) might stem from recruitment of the 

homologous recombination machinery (that can generate ssDNA tracts) by this histone mark 
55.

We further examined a set of regions proximal to CpG dinucleotides, proposed to be linked 

with differential MMR activity 56. There were more A3 omikli clusters in the top genomic 

tertile by CpG density (Extended Data Fig. 3e). Consistently with MMR activity causing the 

mutations, this difference was more pronounced within early-replicating regions. The 

mutation rate of the control VCH context in CpG-dense regions was, in contrast, lowered 

(Extended Data Fig. 3e) 56.

Next, we examined the replication strand bias 24,25 of A3 clusters. The ratio of A3 omikli in 

the leading versus the lagging DNA strand closely matched that observed in MMR-deficient 

(microsatellite instable, MSI) tumors (1.006-fold difference, Fig. 2d), but was less 

compatible with strand bias associated with mutated proofreading domain of the leading 

strand-specific DNA polymerase epsilon (POLE, 0.81-fold difference). This suggests that 

the strand asymmetry of postreplicative MMR activity 57 rather than the asymmetry of DNA 

replication itself 58 underlies omikli; see Supplementary Note.

APOBEC mutagenesis hotspots can occur in DNA sequences that form hairpin secondary 

structures 21. Our data do not reflect this: omikli after excluding hairpin loci maintained the 

early replication time enrichment at 2.16-fold.

Coupling of A3 mutagenic mechanisms with DNA replication.

We hypothesized a mechanism by which MMR promotes A3 mutagenesis. MMR generates 

a single-stranded (ss) DNA intermediate during excision of a mutated DNA segment 59,60. 

This provides an opportunity for A3 enzymes to cause DNA damage that converts into 

clustered mutations, wherein such mutation tracts are short (omikli) because the ssDNA 

segments are short. The widespread occurrence of A3 omikli clusters is consistent with most 

tumors being largely MMR-proficient 61–63. This is in contrast to kataegis, which is known 

to also stem from DNA repair intermediates, however, these longer segments result from 

processing of double-strand breaks 10,18,19,40. The MMR mechanism would explain the 

enrichment of A3 diffuse clustered mutations in early-replicating domains, and also 

enrichment in the lagging DNA strand, both associated with higher MMR activity 22,57. 

Because MMR is largely replication-coupled 64,65, the MMR-associated A3 mutagenesis is 

consistent with the greater vulnerability to A3 damage in dividing cells 27.

An additional hypothesis was proposed to explain the associations of A3 mutations with 

DNA replication-related genomic features 20,47: ssDNA exposed during discontinuous 

synthesis of the lagging strand would be mutagenized by A3. This was proposed based on 

strand-biased mutations that result from expressing human A3s in Escherichia coli 30 and in 
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yeast 31. Because length of eukaryotic Okazaki fragments is known, and length of MMR 

intermediates has been characterized in eukaryotic systems reconstituted in vitro 66,67, we 

next examined the length distribution of inter-mutational distances (IMD) in the A3 

clustered mutations.

The IMD distribution for A3 omikli has a global peak at 355 nt, closely matching the peak 

(378 nt) of a simulated IMD distribution resulting from 800 nt long ssDNA segments (Fig. 

2e, Methods). The length of MMR excision tracts was estimated at 800 nt using in vitro 
studies of human and yeast MMR 66,68. Additionally, we approximated the length of MMR 

tracts by an analysis of somatic hypermutation events in lymphomid genomes (Methods); 

this suggested an approx. 400-1000 nt length range (Extended Data Fig. 4a, b). In contrast, 

the global peak in omikli IMD was not compatible with the approx. 200 nt long Okazaki 

fragments 67, which would generate a peak at 96 nt (Fig. 2e).(Of note, in kataegis events, 

IMD are devoid of the peak corresponding to ~800 nt length tracts (Fig. 2e), thus kataegis 
would result independently of MMR). These data suggest that discontinuous lagging strand 

synthesis is not the main mechanism supplying ssDNA that yields A3 clustered mutations 

because the observed IMDs are too long. However the IMDs are compatible with MMR-

supplied ssDNA. Moreover, the proposed mechanism agrees with the early replication time 

enrichment of A3 omikli, which is consistent with higher MMR activity.

We do not exclude however that the discontinuous synthesis of the lagging strand contributes 

to A3 mutagenesis because the omikli IMD distribution has a secondary peak corresponding 

to 200 nt segment lengths (Fig. 2e). Modelling the IMD as a mixture of gamma distributions 

(Fig. 2f) suggests that up to one-quarter of A3 clusters might be generated by a process 

corresponding to ~200 nt long segments (Extended Data Fig. 4c, d). Notably, the mixture 

modelling also suggests a minor component in omikli IMD at very short peak lengths (~25 

nt, Fig. 2f). It is tempting to speculate that this reflects the binding of the ssDNA protective 

protein RPA, which has a 24-30 nt footprint 69,70. A secondary IMD peak of this length is 

observed also in kataegis (Fig. 2e; see Methods for limitations of use of IMD measure for 

kataegis analyses).

MMR deficiencies are associated with lower A3 mutagenesis

We next examined the tumors exhibiting microsatellite instability (MSI), which are MMR 

deficient; we took care to adjust for different statistical power to detect clusters in these high 

mutation burden tumors (Extended Data Fig. 4e, f) making the following analyses 

conservative.

We compared the fraction of A3 omikli mutations in MSI and microsatellite stable (MSS, 

MMR-proficient) tumors of the matched cancer types (Fig. 3a). Supporting our hypothesis, 

the fraction of A3 omikli clusters in the MSI samples was significantly lower than in the 

MSS tumors (p<0.001 by Mann-Whitney test; 5.52-fold difference between the median of 

samples), but there was no significant difference in the non-A3-context (VCN>K) clusters 

(p=0.34, 1.2-fold difference; Fig. 3a). Of note, comparing absolute, i.e. not normalized to 

overall number of mutations, omikli A3 burdens were also lower in MSI (p<0.01, Extended 

Data Fig. 4g). Therefore, the depletion of A3 clusters is in contrast with the overall increase 

of mutation load in MSI tumors: MMR normally protects against many types of mutations 
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but provides an opportunity for A3. The MSI-MSS difference is consistently observed across 

three cancer types (4.0, 3.7 and 12.1-fold enrichment of A3 omikli in MMR proficient MSS 

tumors, Fig. 3a) and the overall difference is significant after stratifying by cancer type (Fig. 

3b, pooled p<0.001, Fisher’s method for combining p-values).

The early replication enrichment of omikli is not observed in MSI (Fig. 3c), but instead a 

profile more similar to unclustered mutations is seen, further supporting that MMR directs 

the A3 mutagenesis. Consistently, A3 omikli burden associates with expression levels and 

copy number status of MMR genes MSH6, MSH2 and EXO1 (Fig. 3d, e; Extended Data 

Fig. 3f, g; discussed in Supplementary Note).

We have further validated findings on an independent set of 2,304 tumor whole genome 

sequences (WGS, Methods). This supported the dichotomy between A3 kataegis and omikli 
clustering in tract lengths (Extended Data Fig. 5a-c). The key evidence that links A3 

mutagenesis to MMR activity validates: there is a strongly increased A3 omikli fraction in 

MSS versus MSI cancers, in a data set stratified by cancer type, here also including 

additional tissues such as prostate and breast; this difference is however modest in the 

control, non-A3 context (Extended Data Fig.5d, e). Moreover, additional supporting 

evidence of MMR involvement validates in these data: significantly increased A3 omikli 
burdens in tumors with copy number gains in MSH6 and MSH2 and EXO1 genes (Extended 

Data Fig. 5f), and the altered regional distribution of A3 omikli between MSS (enriched in 

early-replicating) and MSI cancers (less enriched) (Extended Data Fig. 5g). The IMD 

distributions of A3 omikli similarly have a peak corresponding to approx. 800 nt long 

vulnerable DNA segments (Fig. 2e; Extended Data Fig. 5h). Finally, an analysis of >3,000 

whole-exome sequences showed a 3.02-fold excess of nearby TCW mutation pairs (within 1 

kb), compared to more distant TCW pairs, in MSS over MSI samples; we also note the 

overall differences in TCW mutation burden in MSS versus MSI (Extended Data Fig. 5i, j). 

This further supports the association between A3 local hypermutation and MMR activity, 

which – as suggested by our IMD analysis – may stem from the ssDNA excision tracts 

generated during MMR. However other molecular mechanisms may similarly be able to 

explain the MMR-associated A3 mutagenesis, such as changes in replication fork dynamics.

Contribution towards the global A3 mutation burden

While kataegis and omikli clusters are informative markers of certain mutational processes, 

their numbers are low. We quantified the contribution of the two clustered A3 processes to 

the (much more abundant) unclustered mutational burden using a regression analysis, similar 

to ref. 4; see Methods. Informally, a correlation between clustered burden of tumor samples 

and unclustered burden in the same mutational context suggests that the same process 

underlies the clustered and unclustered component (Fig. 4a shows A3 omikli and kataegis 
fits for lung adenocarcinoma; the former is a good fit, while the latter a poor one).

In the pan-cancer data, we estimated that the omikli process contributes approximately two-

thirds of all A3 context mutations (A3-O, 66.4%, Fig. 4b), while the kataegis contribution is 

negligible (A3-K, ~0%) and an unknown process (or a mix thereof) contributes the 

remaining nearly one-third of A3 context mutations (A3-X, 32.4%; Fig. 4b). The lack of 

kataegis contribution is not unexpected, given that this process generates long tracts but 
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almost never pairs or triplets (Fig. 1d) and thus by extension singletons would not be 

generated. The presence of mutations originating from the A3-X process, which is not 

associated with omikli and thus likely independent of MMR, suggests that the MMR 

hypothesis is one of the possible explanations for the mechanisms that generate the global 

pool of ssDNA vulnerable to A3.

We also considered cancer types individually (Extended Data Fig. 6), showing that the 

relative contribution of A3-O was strongly correlated with the absolute A3 mutation burden 

across cancer types (Fig. 4c). This further supported that a MMR-dependant, likely A3A-

driven process which can be diagnosed via omikli is the major source of APOBEC 

mutagenesis in human cancer. This creates very high A3 mutation burdens in lung, breast, 

bladder and head-and-neck cancers (Fig. 4c), while other cancer types such as prostate – 

even though kataegis is known to occur therein – exhibit less omikli and lower overall A3 

mutation burdens.

A3 mutagenesis has a high functional impact per mutation

Certain mutational processes – including A3 activity, MMR failures and use of translesion 

DNA polymerases – were reported to, atypically, produce many mutations in early-

replicating, gene-rich chromosomal domains 4,26. Such ‘mutation redistribution’ 71 means 

that at an equal global mutation burden, different mutagens may have different potential for 

affecting genes, thus having varied functional consequences. To quantify this, we introduce a 

concept of ‘functional impact density’ (FID) of a mutational process: the fraction of 

putatively impactful mutations among all mutations observed.

In case of cancer, a simple estimate of the oncogenic FID is the fraction of changes affecting 

coding regions of known cancer genes (‘oncogenic mutations per thousand’, henceforth 

OMPK; Methods). This is based on the reasonable assumption that many mutations 

occurring in a typical cancer gene are oncogenic and also that the set of 299 frequently 

mutated cancer genes 72 contains many of the driver mutations found in a tumor.

We examined the oncogenic FID of A3-O and A3-K mutations, as estimated from total A3 

burden in tumors that harbor predominantly omikli or predominantly kataegis 
clusters(Methods). This was compared to common mutagenic processes 6 associated with 

tobacco smoking (C>A in lung), UV exposure (C>T in skin), exposure to gastric acid (A>C 

in stomach) and finally with aging (C>T changes at CpG dinucleotides). A3 mutations 

derived either from omikli or from kataegis processes have very high oncogenic FID: 0.47 

and 0.46 OMPK, respectively (Fig. 5a, Methods), approximately twice that of common 

external mutagens: tobacco smoking and stomach acid-associated mutations, both at 0.24 

OMPK, and of UV at 0.19 OMPK.

In addition to A3, another endogenous mutagenic process – the aging-associated C>T 

changes at CpG dinucleotides – also had high oncogenic FID per mutation (Fig. 5a). This is 

in line with a high frequency of CpG dinucleotides in coding regions in the human genome 

(Extended Data Fig. 7a); consistently, aging-related mutagenesis was suggested to have a 

higher risk of generating coding mutations than cancer chemotherapeutics did 73. Of note, 
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the A3 TCW context is not markedly enriched in coding regions so the high FID of A3 

mutations is irrespective of trinucleotide composition therein.

We asked if the high FID of A3 mutagenesis stems from increased positive selection on 

oncogenic changes introduced by A3. Using intronic mutation rates as a baseline 74 

(Methods), we find that selection on A3 mutations is not stronger than on external mutagen-

induced changes (Extended Data Fig. 7b), which agrees with recent reports 33.

Instead, we hypothesized the higher FID of A3 results from the increased susceptibility of 

the affected genes to DNA repair as they are more often located in early-replicating 

euchromatic domains 22,23,25,75 than intergenic regions are. The high intronic/intergenic 

ratio shows that A3 mutagenesis is strongly redistributed towards genic DNA, compared to 

the various external mutagens (Extended Data Fig. 7b). The difference of FID of A3 

processes versus external mutagens is exaggerated in cancer genes that reside in early-

replicating regions (Extended Data Fig. 7c). This suggests that the omikli-driven A3 

mutations are impactful due to an enrichment in gene-dense, early replicating domains, 

which are protected from many other mutation types. In addition to cancer genes, because 

somatic mutations might play a role in aging and neurodegeneration 76,77, we also examined 

a set of known essential genes, and a set of genes linked with neurodegeneration (Methods). 

Overall, we observed very similar results, with FID increases of A3 over the external 

mutagens ranging from 2 to 11-fold (Extended Data Fig. 7d, e).

A3 mutagenesis affects genes encoding chromatin modifiers

FID is a measure of the relative impact of a mutational process (expressed per mutation), 

however the absolute mutational burden of a process also needs to be considered. While 

tobacco smoking and UV mutations are less impactful, they are abundant. Aging-associated 

mutations are impactful per mutation but lowly abundant. The two A3 processes are however 

both impactful and abundant (Fig. 5a; error bars show variation across those tumors that 

were affected by a mutagenic process).

The absolute mutation burden strongly differentiates the omikli from the kataegis 
mutagenesis (A3-O and A3-K, respectively) even though their FID is similar. We estimate 

that the MMR-associated omikli process can generate, in tumors where it is highly active, 

approximately twice as many mutations with oncogenic potential (2.72 per tumor) than the 

DNA break repair-mediated kataegis process (1.32 per tumor) on average. Moreover, omikli 
generates twice as many oncogenic mutations as the aging-associated CpG mutagenesis. 

Notably, the A3 omikli process generates a comparable number of putatively oncogenic 

mutations per sample as the tobacco smoking (2.14 per tumor, in smokers’ lung 

adenocarcinoma) and UV light (3.54 per tumor, in melanoma). This suggests that A3–

considering jointly the (major) omikli and the (minor) kataegis components – may be an 

important carcinogen because, in exposed cells, it is able to create larger numbers of 

mutations in cancer genes than common external mutagens.

We observed a significant association between omikli burden and mutation occurrence 

(Methods) in 22 cancer genes at FDR<5%, and in 30 at FDR<10% (of 61 testable genes 

with ≥3 TCW>K coding mutations in our data; Fig. 5b; Supplementary Table 1). However, 
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no genes were significantly associated with kataegis burden (Extended Data Fig. 8a), 

supporting that omikli is more oncogenic than kataegis. The genes linked with omikli are 

enriched in tumor suppressors (n=14, versus 5 oncogenes; Fig. 5c) and are commonly 

chromatin modifiers (e.g. KMT2A/C/D, NCOR1, SETD2, MECOM) or chromatin 

remodelers (e.g. PBRM1, ARID2) (Fig. 5c) which have a higher count of TCW motifs in the 

coding sequence (Extended Data Fig. 8b). These associations do not however show the 

direction of the effect. We thus examined the control VCN mutations, which were 

significantly associated in only 3 genes (Fig. 5b; Extended Data Fig. 8c). This suggests that 

the MMR-mediated A3 mutagenic pathway is an important source of cancer driver events. 

Consistently, cancer gene mutations in early-replicating regions are more strongly associated 

with overall omikli burden than those in late replicating regions (Extended Data Fig. 8d).

Discussion

Clustered mutations, even though rare, can occur in different types of clustering patterns, 

which serve as markers of different mutagenic processes. Kataegis originates from repair of 

double-stranded DNA breaks by the homologous recombination or break-induced 

replication pathways, which expose long tracts of ssDNA 18,40,78. Here we propose that 

another DNA repair pathway –MMR –promotes A3 mutagenesis, generating omikli clusters 

and the bulk of A3 unclustered context mutations in human tumors. A different link of A3 

with DNA repair was proposed recently, resulting from DNA lesions processed by the base 

excision repair (BER) pathway (abasic sites, uracils, or T:G mismatches), which generated 

A3-context mutations flanking the repaired site 32. MMR was suggested to be able to‘hijack’ 

the BER intermediates to provide additional ssDNA substrate for A3 32. Our data suggest 

that MMR may generate A3 substrate ssDNA more generally, which could occur by 

processing mismatches occurring during DNA replication. We do not exclude that BER-

processed lesions result in A3 mutagenesis in cancer; indeed this may help explain the 

approximately one-third of the unclustered A3 mutations (A3-X) that we do not account for 

via omikli. Another likely contributor to this MMR-independent A3 mutation fraction is A3 

activity at ssDNA occurring discontinuous synthesis of the lagging strand in DNA 

replication24,25,30,31, which finds some support in our IMD distribution analyses.

MMR activity preferentially protects early-replicating, euchromatic regions from mutations 
22,79,80 and additionally transcribed gene bodies therein, because it is recruited by the 

H3K36me3 histone mark 4,53. Therefore, mutagenic processes that subvert MMR would be 

particularly dangerous because they are directed to active genes. One example of this is non-

canonical MMR that recruits the error-prone DNA polymerase η (POLH protein) 81,82, who 

semutational signatures are seen across human tumors 2,4. Here we provide another example 

of MMR activity leading to mutagenesis, in this case by promoting APOBEC activity. Based 

on the enrichment of MMR-associated A3-context mutations in early-replicating gene-rich 

chromosome domains, we propose that the MMR-A3A coupling has particularly high 

potential for generating impactful mutations, exceeding common exogenous mutagens. In 

addition to oncogenes and tumor suppressor genes, A3-context mutations were directed 

towards essential genes and neurological disease-associated genes, suggesting possible roles 

for APOBEC mutagenesis not only in cancer, but also more generally in aging-related 

pathologies.
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Online methods

Data sources

Mutation calls for TCGA-WGS were obtained as in ref. 22. In brief, BAM files were 

downloaded from the cgHub repository (now superseded by the NCI Genomic Data 

Commons) for normal and tumor samples, and somatic single-nucleotide variants were 

called with Strelka 1.0.6 83. Also as previously 4,22 we excluded mutations in blacklisted 

regions by UCSC (Duke and DAC) and in difficult-to-align genomic regions by the ‘CRG 

Alignability 36’ criterion, meaning we required genomic 36-mers to be unique in the hg19 

genome assembly (even after allowing up to two mismatches).

SNP6 Affymerix microarray data were downloaded from the GDC legacy portal 

(portal.gdc.cancer.gov/legacy-archive) for matched donors, with both normal and tumor data 

available. The final dataset contained 699 TCGA samples with WGS mutations and SNP6 

array data available. One of the donors (TCGA-CZ-5454) was excluded from those analyses 

that required external metadata as two different aliquots were available and metadata could 

not be unambiguously matched. This change makes the number of total samples equal to 

697 in some analyses.

MSI status and other metadata for hypermutated tumors (i.e. POLE status) was obtained as 

described in ref. 22. In total, our TCGA-WGS dataset contained 24 MSI samples 

(Supplementary Table 2).

An additional dataset, comprising WGS single nucleotide variants, purity estimates, and 

copy number alterations was obtained from the Hartwig Medical Foundation 84, was used 

for validation analyses in Extended Data Fig. 5a-h. This dataset has been processed similarly 

to our TCGA WGS (Strelka version 1.0.14 was used to call single-nucleotide variants) and 

additionally the Purple tool was used to infer purity and obtain CNA estimates 84 

(Supplementary Table 3).

Inferred MSI/MSS labels 85 were obtained from the supplementary data of the 

corresponding publication 84. We additionally discarded samples (n = 53) that were treated 

with temozolomide (TMZ), which is known to positively select for MMR deficient cells in 

brain tumors 86.

For the functional impact of UV mutations we additionally obtained WGS variant calls of 70 

melanomas tumors from the MELA-AU study 87 within PCAWG. For the somatic 

hypermutation analyses, we additionally obtained WGS variant calls of blood tumors CLLE-

ES and MALY-DE from the PCAWG dataset 88 available as controlled files in the ICGC 

data portal (https://dcc.icgc.org/pcawg). We selected the SANGER pipeline calls 

(Supplementary Table 4).

We obtained exonic mutations from the TCGA mc3 dataset, available at (https://

gdc.cancer.gov/about-data/publications/mc3-2017) 89. This dataset contains unified somatic 

mutation calls for approximately 10,000 whole-exome sequences (WES). We selected 

cancer types that had at least one sample classified as MSI (see below), therefore the subset 

used in this analysis comprised 5,831 tumors from 16 cancer types. Only 6% of the WES 
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samples overlap with the WGS cohort. We obtained the MSI status from ref. 61, which 

contains experimentally determined MSI labels (for ESCA, UCEC, COAD, READ and 

STAD) and additionally inferred MSI status labels at 80% confidence level that covered 

additionally 11 cancer types (Supplementary Table 5).

The acronyms used for cancer types in this analysis are as listed in the ICGC Project portal 

page (https://docs.icgc.org/submission/projects/).

HyperClust, a randomization-based FDR estimation for local hypermutation detection.

The process of detecting local hypermutation (or mutation clusters) aims to distinguish those 

pairs of mutations that occurred in the same event from those that occurred independently. 

The classification is based primarily on intermutational distances (IMD) on the genomic 

sequence but other sources of information can be used such as the allelic fraction of the 

mutations.

We developed HyperClust building upon our recent approach 4 which employs a 

trinucleotide context-preserving randomization of mutations within megabase-sized 

chromosomal domains, obtaining a baseline frequency of mutation cluster occurrence at a 

certain IMD (Extended Data Fig. 1a). While the original approach applied a single IMD 

threshold at which every genome was evaluated, in HyperClust we compute significance 

estimates at the level of each mutation, meaning that many more samples could be analyzed 

while retaining acceptable false discovery rates.

HyperClust provides a rigorous estimate of the local FDR (lfdr) for each clustered mutation 

event, given its IMD and the baseline distribution of IMDs in that genome. It is also possible 

to stratify mutations pairs in each tumor sample into smaller sets according to different 

features. Because A3 mutagenesis occurs primarily in coordinated cytosines within ssDNA 

fragments 8,10, we stratified of mutation pairs according to base types (C:G and A:T) and to 

strand-coordinated bases. We additionally stratified by mutation clonal fraction, as it should 

be shared by the mutations occuring contemporaneously in a cluster (Supplementary Note).

We evaluated the different stratification features of HyperClust together with other local 

hypermutation detection approaches from the literature using 48 randomized tumor samples 

with simulated spiked-in mutation clusters. The stratification with both the strand-

coordinated base types and clonal fraction of the mutations outperforms the other tested set 

ups and was therefore used to obtain mutations for the rest of the analysis (Supplementary 

Note).

Our method is designed to test pairs of mutations, instead of on larger groups, which leads to 

balanced power of detection for shorter clusters and longer clusters (kataegis-like), while 

previous methods tend to be better adapted to calling the latter.

Poisson mixture modelling of number of mutations per tract.

The aim of this analysis is to examine whether there exist multiple mechanisms generating 

clustered mutations, resulting in tracts of different lengths. The number of mutations per 

cluster can be modeled with a Poisson distribution. We considered only clustered events 

Mas-Ponte and Supek Page 12

Nat Genet. Author manuscript; available in PMC 2021 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://docs.icgc.org/submission/projects/


consisting of two or more mutations at TCW>K, which are likely to be a highly pure set of 

the A3 mutations. Then, we modeled the probability that x mutations occur in a fragment of 

ssDNA when two mutations are already present P(x| x = 2) = Pois (λ), meaning that 0 

represents a cluster pair, 1 represents a triplet etc. If more than one biological mechanism 

generates clustered mutations at different tract lengths (number of mutations), the observed 

distribution would be better modeled as a mixture of two or more Poisson distributions, than 

by a single Poisson distribution.

We used the R package flexmix 90 to fit a mixture model, testing the range of components 

from 1 to 5. We transformed the Akaike Information Criterion (AIC) values extracted from 

the models to relative likelihoods by calculating the exponential of the difference between 

each AIC value and the minimum AIC (Extended Data Fig. 1f).

We performed a bootstrap likelihood test (LR_test function in flexmix) with 500 iterations. 

This test yields a p-value for the difference of the log-likelihood distributions between the 

selected model and one more or one less component.

The λ of each Poisson component is the exponential of the fitted intercept in the regression. 

The confidence intervals of the λ values were obtained by transforming the standard error of 

that value at C.I.= 95%. We used the λ values to compute density distributions of each 

component.

We then used the posterior probabilities to obtain the proportion of events with a given track 

length that can be attributed to each Poisson component(relevant for Fig. 1d, bars). We also 

obtained a random Poisson distribution for each component based on the λ (relevant for Fig. 

1d, lines).

Samples from skin cancer (SKCM) and B-cell lymphoma (DLBC) were excluded from this 

analysis as they contain particular mutation properties that may confound our analysis. Skin 

cancer has a high percentage UV signature mutations which overlap with the APOBEC 

TCW>T context. Somatic hypermutation (SHM) is common in lymphomas and some 

mutations therein may present a similar profile to the APOBEC mutagenesis.

Association of increased A3 clustered burden with various genomic regions.

Genomic segments and bins extracted from chromatin marks were computed as in ref. 4. In 

brief, data for epigenetic marks (H3K36me3) were downloaded from the Roadmap 

Epigenomics repository, stratified according to the fold-enrichment (FE) of that mark over 

the input, into three equal-sized bins where the FE>1, and additionally the bin 0, which 

correspond to regions with FE<1. Expression values were obtained from Roadmap 

Epigenomics for genic and intergenic regions and processed in a similar manner to the 

ChipSeq data. Replication time bins were computed from wavelet-smoothed RepliSeq signal 

tracks from the ENCODE dataset. Again, we binned the genome into equal-frequency bins 

where bin 1 is the latest-replicating quartile, and bin 4 is earliest-replicating quartile. These 

data were averaged over the 8 cell lines, as in ref. 4.

To detect significant associations of mutations in specific regions of the genome we used a 

negative binomial regression 4 (glm.nb from the MASS R package). In brief, combinatorial 
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intersections between the genomic region sets were computed, 4 bins for each feature. In 

each set, the number of TCW>K mutations were stratified by the four A3 mutation types 

(TCA>T, TCA>G, TCT>T and TCT>G). These values (mutation counts stratified by 

mutation type) are used as the dependent variable in the regression and has a total length of 

256, corresponding to 64 x 4 mutation types. The number of susceptible genomic sites in 64 

bins was also computed and multiplied by the number of samples, thus representing the 

exposure variable. The three independent variables were the genomic bins of each feature, 

encoded as factors. This same approach was used for the control contexts (VCN>T). The 

95% confidence intervals of the regression coefficient were computed with the confint 
function in R.

For this analysis, we excluded the DLBC (lymphoma) dataset and we discarded mutations in 

the somatic hypermutation (SHM) off-targets extracted from ref. 91 which might derive from 

tumor-infiltrated lymphocytes.

Determining IMD distributions of mutation tracts by simulation.

The IMD distribution of a clustered mutational process will be dependent on the length of 

the vulnerable DNA segment (for A3, the length of the ssDNA). To determine the expected 

IMD distribution we randomly sampled with replacement 1,000 times from a set of possible 

positions and computed the distance between random pairs. We used three sets representing 

three lengths of ssDNA fragments: short (25 bp), mid-length (200 bp) meant to represent the 

approximate length of ssDNA between Okazaki fragments in eukaryotes 67 and a long 

ssDNA (800 bp) meant to represent the ssDNA segments generated during the MMR 

process 66. We note that, in order to draw conclusions about ssDNA tract lengths underlying 

kataegis, the cluster span (distance from the first to the last mutation) would be a more 

appropriate measure. However in case of omikli, which consists predominantly of two-

mutation clusters, the IMD measure can for practical purposes be considered equivalent to 

the cluster span measure. For this analysis we considered samples in the APOBEC-prone 

cancer types in our TCGA dataset: bladder, breast, lung (LUAD and LUSC), cervical, head-

and-neck and mismatch repair proficient uterus cancers.

Gamma mixture modelling of IMD distributions.

It is expected the distance between 2 mutations occuring in a single hypermutation event 

will follow a gamma distribution. Thus, to quantify different mechanisms generating 

clustered mutations we modelled the observed IMD distributions as a gamma mixture.

We selected only the TCW>K mutations with IMD lower than 1kb. We also required TCW 

coordination, meaning that at least 70% of the mutations in that clustered event must have 

occurred at TCW sites.

We used the R package mixtools (gammamixEM) that implements an Expectation 

Maximization (EM) based algorithm for the detection of different components. We obtained 

estimates for mixtures that ranged from 1 up to 8 components. As initial parameters, we 

used alpha = 0.2, 100 maximum iterations and an epsilon (convergence difference) of 0.01. 

We re-simulated the original IMD distributions (see above) for 10,000 iterations and re-

computed the parameters. Based on the log-likelihood and the matching shape parameters of 
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the distributions we extracted a total of three components, because the log-likelihood value 

suggests a strong increase from 1 to 2, and from 2 to 3 components, while the increase from 

3 to 4 is more modest; we cannot however rule out a four-component model based on these 

data. Next, we computed the density of the components using the extracted parameters and 

the proportions of each component.

Same as the IMD distribution analysis we used samples in the APOBEC prone cancer types, 

bladder, breast, lung (LUAD and LUSC), cervical, head and neck and mismatch repair 

proficient uterus cancers.

Contribution of A3 clustered mutagenic process to the unclustered mutation burden.

In order to estimate how much the clustered processes contributed to the unclustered burden, 

which is the main contributor to the overall tumor mutation burden (TMB), we adapted a 

method that we recently introduced 4. In brief, we used a robust linear regression (rlm 
function in the R MASS package) to predict the overall unclustered burden in the TCW>K 

context (dependent variable) from the counts of each clustered process (TCW>K kataegis 
and omikli burden, as separate independent variables (predictors), and additionally an 

interaction term.

From the fitted model, the intercept is the number of unclustered mutation that cannot be 

explained by the presence of either omikli or kataegis clusters, thus, these mutations likely 

occur independently from the mechanisms that generate either omikli or kataegis. We named 

this mutational process A3-X. Similarly, we obtained estimates of the average unclustered 

mutation burden when one of the two types of clusters (either omikli or kataegis) is not 

present but the other type is. These estimates represent the contribution of the omikli (A3-O) 

and kataegis (A3-K) processes to the unclustered A3 mutation burden. By adjusting for the 

total predicted unclustered mutations we can obtain estimates of the contribution of kataegis 
and omikli to unclustered burden. Note that because the A3 trinucleotide context (here 

defined as TCW>K) overlaps with signatures of certain other mutagens, presence of these 

non-A3-derived unclustered mutations may inflate the estimate of the intercept in the fits 

(Fig. 4a), causing a downward bias in the estimated omikli contribution to global A3 burden 

(A3-O). For further details, see Supplementary Note.

Parsimony suggests that unclustered (singleton) mutations are generated by the clustered 

processes of the same mutational context (TCW>K). However, we cannot rule out the 

possibility that the two processes (omikli and unclustered) are mechanistically distinct but 

tightly co-regulated thus co-occuring in the same tumor samples.

We extracted the 95% prediction intervals of the unclustered values (representing the 

number of mutations at the average value of each variable) by the R function predict. We 

then used the upper and lower ends of the interval to compute upper and lower bounds of the 

contribution in percentage. Error bars (Fig. 4 a-c) represent the SEM extracted from this 

interval.
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Functional impact density of mutational processes.

We define the functional impact density (FID) as the putative functionally relevant mutations 

that occur in a certain set of genes which are associated with a selected mutational process. 

For a set of genes G and a mutational process S, the FID is computed as the number of 

mutations falling in the coding sequences (CDS) of G divided by the total number of 

mutations from S. For sake of clarity, this value can be represented as the number of 

mutations that fall in a gene coding sequence per thousand mutations.

This measure reports the joint effect of the mutational spectrum, the trinucleotide 

composition of the gene coding sequence (CDS) and, importantly for the A3 example, the 

regional preferences of the mutational process. For instance, if the trinucleotide composition 

of G matches with the trinucleotide propensity of S it will increase the FID. Also, if S is 

enriched in certain parts of the genome where G is also enriched, it will also yield a higher 

FID.

We selected three disease associated gene sets from the literature, (i) a set of 299 cancer 

genes, including tumor suppressor genes and oncogenes, which were recurrently mutated in 

TCGA cancer genomes 72,(ii) a set of genes associated with neurodegenerative disease (n = 

39) 92, and finally (iii) a set of cell essential genes extracted from CRISPR/Cas9 genetic 

screens (n = 683) 93.

In order to obtain mutations that are putatively generated by a given mutational process, we 

selected those mutations matching the susceptible trinucleotides in a set of tumor samples 

where the mutational process was reported to occur. In total, we defined four mutational 

processes: (i) the aging associated process, (ii) “smoking”, (iii) “UV” and (iv) Signature 17. 

For the ageing process the trinucleotide set was NCG>T and the sample set was comprised 

by all samples (n= 697). For the “smoking” process the trinucleotide subset was NCN>A 

and the sample set was comprised by lung (LUAD and LUSC) tumor patients with at least 

three years of tobacco smoking 94 (self-reported data; sub21). For the “UV” process the 

trinucleotide subset was TCC>T (thus minimizing overlap with other mutational processes) 

and the sample sets were the skin cancer patients from the TCGA (n = 13) and a set of 

melanomas PCAWG dataset (MELA-AU, n =70) that were included to increase the number 

of mutations. For the Signature 17 process the trinucleotide subset was defined as AAN>C 

and the sample set was the stomach cancers available in our TCGA-WGS data (n =20).

Note that estimates from this analysis are likely conservative because we use a stringent A3 

trinucleotide context of TCW>K, and moreover because we examined only unclustered A3 

mutations but did not explicitly consider the A3 clustered omikli and kataegis events in this 

analysis, on the basis of their lower abundance (Fig. 1f) relative to the unclustered A3 

mutations.

Logistic regression approach to determine susceptibility in cancer genes.

We used a logistic regression to determine if the occurrence of a mutation in a cancer gene 

was associated with a higher burden of either omikli or kataegis. We examined the set of 299 

cancer genes 72 and selected mutations in their coding sequence (CDS) matching the A3 

context TCW>K (W is A or T; K is T or G). If a gene contained at least one of these 
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mutations in the CDS it was classified as mutated by an A3 process. We tested only the61 

cancer genes (Supplementary Table 1) that bore A3 context mutations in at least 3 samples 

from the TCGA-WGS dataset. As negative control we also counted mutations in the cancer 

genes at the non-A3 context VCN>K (V is not T).

Next, we performed a multiple logistic regression using the square-rooted burdens of omikli 
and kataegis as independent variables to predict the mutation status of the gene (dependent 

variable). The independent variables were always restricted to the A3 (TCW>K) context to 

represent the A3 activity of either omikli or kataegis. The mutation status was tested both 

with genes harboring A3 mutations and the control context (VCN>K). The p-values for each 

gene were FDR adjusted using the Benjamini-Hochberg correction.

We also divided the CDS fragments from the cancer genes according to their replication 

time and then used logistic regression to predict if any of the CDS located in that specific 

replication time bin was mutated. We used the number of omikli mutations (square-rooted) 

as predictor.

Statistics

If not stated otherwise, the comparison of two distributions of continuous values was tested 

with a two-tailed Mann-Whitney U test. Pooling p-values obtained from stratified data 

groups was performed with the Fisher’s method for combining P-values. P values are shown 

as exact values or otherwise referenced as symbol according to this scale: *** < 0.001, ** < 

0.01, * < 0.05, “.” < 0.1.

All boxplots used in the current analysis are represented according to the standard boxplot 

notation in the R statistical environment (ggplot2 package): the central box represents the 

inter quartile range (IQR), the central line is the median value of the distribution, the outlier 

points are instances higher or lower than 1.5 times the IQR from the median value and the 

whiskers are the lowest and highest points of the distribution after removing the outliers. If 

the boxplot has notches, the notch width is 1.58 times the IQR divided by the square root of 

the sample size, which is an estimate of the 95% C.I. of the median.
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Extended Data

Extended Data Fig. 1. Detecting clustered mutations and simulating processes that generate 
clustered mutations.
a, Method to determine significant mutation clustering in HyperClust. A baseline 

distribution is generated by shuffling mutations within 1 Mbp windows multiple times (R1, 

R2, …, Rn) to matching trinucleotide context. For every mutation, the observed 

intermutational distance to its nearest neighbour (nIMD) is compared with distributions of 

expected IMDs (from randomized data) to determine a local FDR (lfdr). Thresholding by 
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lfdr yields clustered mutation calls (blue). b, Overview of study. c, Precision-recall curves 

for models in Fig. 1a, derived from simulated data with spiked-in mutation clusters: kataegis 
(top; with five mutations per cluster at an average 600 bp pairwise distance) or omikli_M 

(bottom; two mutations at 101 bp). Two examples of high mutation burden tumors (TCGA-

AP-A0LD, TCGA-AP-A0LE) were used here to generate the background mutation 

distributions. d-e, Testing accuracy of mutation cluster calling methods using simulated data. 

Points represent randomized tumor samples into which spiked-in mutation clusters were 

introduced. Samples are ordered according to total mutation burden (d). Columns show 

different performance metrics: F1 score, precision, and recall, all at lfdr=20%. Rows 

represent different types of spiked-in mutation clusters (IMD distributions plotted in panel e, 

where kataegis have five mutations and omikli_K/M/O two mutations. Boxplots compare 

cluster calling methods, including implementations of some previous methodologies (details 

in Methods). The strand-clonality-lfdr (blue) is the HyperClust method used throughout our 

work. f-g, Poisson mixture modelling (related with Fig. 1d) of the number of mutations per 

cluster, showing relative likelihood (panel f) of models with increasing number of 

components and the density functions (panel g) of a model with two Poisson components. 

solid line represents mean and dashed lines the 95% C.I.. h, Number of mutation events per 

tumor sample (X-axis, n) per local hypermutation type (rows), either the A3 context 

TCW>K, or the remaining mutations (columns).
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Extended Data Fig. 2. Tetranucleotide context suggests a role for the A3A enzyme in generating 
omikli and for A3B in kataegis mutations.
a, c, Ratios of the YTCA (A3A-like) and RTCA (A3B-like) mutation frequencies suggest 

differential mutagenic activity of A3A versus A3B enzymes in cancer samples. The C>T 

and the C>G changes in the two A3 contexts are shown in a pan-cancer analysis (panel a) 

and broken down by cancer type (panel c). At least 100 TCW mutations of a certain type 

across all tumor samples were required to perform analyses on that tissue (number of 

mutations in brackets). Error bars are the bootstrap 95% C.I. of the ratio. KICH and THCA 

cancer types are not shown due to low overall number of A3-context mutations. b, Across 

multiple cancer types, omikli shows a tendency towards A3A-like, lower RTCA/YTCA-

ratios than does kataegis. Difference tested by Fisher’s exact test (per tumor type), two-

tailed; p-values were adjusted for multiple testing. Dashed line is FDR = 20%. Lower odds 

ratios (<1) denote relative enrichment of YTCA (A3A-like) mutations in omikli compared to 

kataegis; see illustration above plot.
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Extended Data Fig. 3. Association of clustered mutation rates with replication time (RT).
a, RT association per cancer type. Number of mutations per replication time bin in each 

context: A3 (top row) and the non-A3 control context at C:G nucleotide pairs (bottom row). 

RT bins are ordered from the latest-replicating quartile to the earliest-replicating quartile; 

mutation rates are shown relative to the latest bin. Enrichments not shown when the 

mutation count was lower than 10. b, Trinucleotide composition of the human reference 

genome in four replication time bins, normalized to the latest quartile (leftmost point). The 

A3 trinucleotide contexts (TCW, green) are similarly abundant in the late and in the early-
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replicating regions of the genome. c-d, Enrichment of A3-context kataegis clusters, 

considering only RT (b), or jointly considering RT, mRNA levels and the H3K36me3 

histone mark levels; points are coefficients from negative binomial regression, and error bars 

are 95% C.I. e, Mutation rates in genomic bins with different CpG density (determined per 

10 kb segment), stratified by RT quartiles. Y-axis shows mutation densities relative to the 

first bin (“t1”, lowest tertile by CpG content). f, Spearman correlation between mRNA 

expression of A3A, A3B and MMR genes, and the TCW context enrichment of clustered 

mutations in a tumor. Error bars are 95% C.I. from the Fisher transformation of the 

correlation coefficient. g, Association of A3 mutation burden (clustered and unclustered) 

with copy number alterations of MMR genes. Significance by a two-tailed Mann-Whitney 

test, comparing tumor samples with neutral (0) versus gain/amplification (+1 and +2) states 

(blue stars show p-values according to legend), and independently, comparing samples with 

neutral (0) versus loss (−1 and −2) states (purple stars). P-values were not adjusted.
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Extended Data Fig. 4. Simulations estimate power to detect mutation clusters and deconvolute 
their IMD distributions.
a-b, An analysis of somatic hypermutation (SHM) events in lymphoid cancers suggests 

length of MMR excision tracts in human cells. The distance from the initiating AID 

mutation (here, WNCYN>N context) to the flanking mutation introduced by error-prone 

MMR (here, any mutation at a A:T pair) is plotted, in known SHM off-target regions (blue) 

and, as a control, in intergenic regions (red) (panel a). A statistically significant enrichment 

is seen in the bins of the distance to central AID mutation (X-axis) between 400-1000 nt 
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(panel b). Numbers above/below bars are p-values by Chi-square test on the standardized 

residuals. c, Gamma mixture modelling of the IMD distributions. Log-likelihood values for 

different number of components when modelling IMD of the A3 kataegis and omikli 
mutations. d, The alpha and beta parameters of the three fitted Gamma distributions 

(“comp.1”, “comp.2” and “comp. 3”) approximately match the alpha and beta parameters 

expected from simulated distributions with IMD at 30 bp, 800 bp and 200 bp, respectively. 

e-f, Simulations using spiked-in clustered mutations into genomes obtained by randomizing 

and subsampling mutations from MSI-H hypermutated tumors (panel e) and other 

hypermutators (panel f), with the goal of determining the recall (sensitivity; Y-axis) of 

recovering mutation clusters at various global mutation burdens (X-axis). Dashed line is a 

loess fit and shaded area is its 95% C.I. Vertical lines are residuals of the fit. g, Difference 

between MSI and MSS tumor samples in the absolute burden of clustered A3 omikli 
mutations; significance by Mann-Whitney (two-tailed).
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Extended Data Fig. 5. Validation analyses using independent genomic data sets.
a-c, Fitting a Poisson distribution mixture to the number of mutations per cluster in the 

Hartwig Medical Foundation (HMF) dataset. The near-maximum log likelihood (LL) is 

obtained with two components (panel c) and the increase to three components is not 

statistically supported; p-values are from a two-sided bootstrap test. d-e, The relative density 

of A3 context (left) clustered mutations is higher in MSS (MMR-proficient) than in MSI 

(MMR-deficient) samples of the same tumor type (left column) in the HMF data. The 

difference is smaller for the non-A3, control context (right). Significance by Mann-Whitney 
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(two-tailed), n is the number of samples, *** is p < 0.001. Numbers show fold-difference 

between MSS and MSI samples. The “other A3 tissues” are lung, head-and-neck, skin, 

pancreas and bladder cancer. f, In HMF data, the A3-context omikli clustered mutations are 

enriched in tumors with amplified MMR genes; significance by Mann-Whitney test (two-

tailed) comparing the neutral (0) versus the gain states (+1 and +2, considered jointly); n is 

the number of samples. g, In HMF data, A3-context omikli are enriched in early replicating, 

H3K36me3-marked genomic regions; error bars are 95% C.I. h, Intermutational distance 

distributions for kataegis (top) and omikli (bottom) A3 context mutations in the HMF data. 

Dashed lines show peaks of the simulated distributions (Fig. 2) with segment lengths of 

25bp (green), 200bp (purple) and 800bp (orange). i-j, Whole-exome sequences in the TCGA 

data show an excess of A3 context (TCW) mutation fraction in MSS compared to MSI 

cancers (panel i), and an excess of TCW mutations at distances <1000 bp, normalized to 

longer distances, in MSS over MSI samples (panel j). “MSI-exp” (152) denotes the 

experimentally established MSI-H statuswhile “MSI-pred” (18) is the MSI status predicted 

using machine learning(ref. 61), “nonMSI” (5,661) is neither of these cases.
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Extended Data Fig. 6. Contribution of the omikli and the kataegis mechanism to the unclustered 
A3 mutation burden in various tissues.
a, The omikli mechanism generates many unclustered mutations (“A3-O”) in various cancer 

types. b, The kataegis mechanism generates comparatively few unclustered mutations (“A3-

K”). Panels show the fit (red line) of the unclustered A3 burden (Y-axis) to the clustered A3 

burden (X-axis), (see Methods). Error bars are 95% prediction intervals at x = 0, and at x = 

mean burden of A3 clustered mutations for that cancer type. Horizontal dashed lines are the 

predicted numbers of unclustered A3 mutations at those two points (for clarity also shown in 
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blue/green bars next to each plot). Fits use robust regression (rlm function in R). For visual 

clarity, only the part of the plot up to the mean of unclustered mutation burden plus a margin 

is shown, however the fit uses all data points (i.e. tumor samples) including ones not 

visualized.

Extended Data Fig. 7. Mechanisms underlying A3 clustered mutations generate many impactful 
changes, affecting disease genes.
a, Coding regions in the human genome are enriched for CpG dinucleotide (NCG), but not 

with the A3-context TCW trinucleotides, compared to random expectation. b, Enrichment of 
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mutations in exons versus introns (estimate of selection strength, X-axis) and the enrichment 

in intergenic regions versus introns (estimate of redistribution of mutations towards genic 

DNA, Y-axis; flipped). The comparison of mutagenic agents against APOBEC was 

performed for selected tissues, matching the relevant tissue for the particular mutagen 

(tumor samples listed in Supplementary Table 7). Error bars are 95% C.I. from negative 

binomial regression; numbers in parenthesis are the tally of mutations. c, The differential 

functional impact of the tested mutagens across replication time (RT) bins. Left: total length 

of CDS in the late and early RT bins, shaded by the RT sextiles that were merged to create 

the two bins (where 1 is the latest and 6 is the earliest). Middle: expected number of cancer 

gene CDS-affecting mutations in an average tumor sample (same sets of samples, genes and 

mutations as in Fig. 5a; Y-axis) for the late versus early RT bin (X-axis), for various 

mutagens (colors); error bars are S.E.M. Right: fold-difference between the functional 

impact at the late versus early bin, for various mutagen types. d-e, The functional impact 

density (FID) of various mutational processes in a set of cell-essential genes (panel d) and 

neurodegenerative disease-associated genes (panel e). Slope shows the fraction of impactful 

genetic changes i.e. those affecting the coding region of at least one gene in the set. Points 

show the expected number of impactful changes resulting from a mutational process, on 

average, in a tumor genome affected by the mutational process. Error bars are S.E.M. 

“APOBEC-O4” is A3 mutagenesis in omikli-rich tumors. “APOBEC-K2” is A3 

mutagenesis in kataegis-rich tumors.
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Extended Data Fig. 8. Associations between genic mutations and global burden of clustered 
mutations.
a, Associations between A3-context TCW>K mutations in coding regions of each cancer 

gene, and the global burden of A3 kataegis (top left) or omikli (middle left) and their 

interaction term (bottom left). Right panel is same as middle-left panel, but showing only the 

significant genes with labels. Volcano plots show logistic regression coefficients 

(transformed to odds ratio) on the X-axis and the log FDR on the Y-axis. Genes bearing 

coding mutations in at least three tumor samples were tested. b, Number of TCW sites in a 

gene coding sequence (CDS; X-axis) predicts the association of cancer gene mutations (Y-
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axis) with A3 omikli burden (bottom) but not with A3 kataegis burden (top). Error bands are 

95% C.I. of the linear fit. c, Same association analysis as panel a but for the control, non-A3 

context VCN>K mutations in the gene CDS. d, Early RT cancer genes are more affected by 

A3 mutagenesis. Cancer genes were stratified into RT quartiles (X-axis) and logistic 

regression coefficient (log odds ratio, Y-axis) linking A3 omikli burden with the presence of 

a mutation in the CDS of any cancer gene in that RT bin was determined. Error bars are 95% 

C.I. from logistic regression (on n = 593 tumor samples).
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Figure 1. Two types of local hypermutation in human tumors.
a, The HyperClust framework detects mutation clustering by accounting for heterogeneous 

mutation rates at the megabase scale, further stratifying mutations by type, and additionally 

by their approximate timing (clonal fraction). b, Kataegis(thunderstorm) and omikli (fog) 

mutation clusters in an example tumor genome segment (chromosome 8 of TCGA-DK-

A1A6). Vertical lines are rearrangement loci. c, Distribution of the number of A3-context 

TCW>K mutations in omikli (bottom) and kataegis (top) of different sizes (number of 

mutations per cluster; callouts). d, Poisson mixture modelling of number of A3 context 
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mutations per cluster. Solution with two distributions is shown (kataegis, teal and omikli, 
orange). Stacked bars show component proportions and curves are density estimates. Grey 

curve is the baseline solution with one component; p-values are from a two-sided bootstrap 

test; LL, log likelihood. e, Cumulative percentage of tumor samples that contain at least the 

given number of clustered mutations, either observed, or expected at random. f, Distribution 

of the burden of A3 context somatic mutations per tumor, across tumors; samples with no 

omikli or no kataegis mutations were not considered. g, Cumulative fraction of A3 mutations 

within the neighborhood (width on X-axis) of a rearrangement breakpoint. Error bars are 

95% binomial C.I.; number of mutations listed in parenthesis. h, Pearson correlation 

between the burden of two-mutation omikli and of long kataegis events (left) and the 

correlation between burden of kataegis of different lengths (right). Significant difference by 

a two-tailed t-test on the Fisher-transformed correlation coefficients.
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Figure 2. Association of A3 clustered mutation density with genomic features.
a, Mutation rates in replication time (RT) quartiles, relative to the latest RT, for A3 mutation 

contexts (top) and control contexts (bottom). b, Mutation enrichment in the earliest versus 
latest RT quartile for A3 context clusters (top) and non-A3 context clusters (bottom). Cancer 

types are ordered by total A3 burden across all tumors (shading in top bar). Moderate/low-

A3 burden cancer types are pooled into the group “other”. c, Relative density of A3 and non-

A3 mutation types across genomic regions. All enrichments are relative to the lowest bin 

(the latest-replicating quartile for RT), which is not shown on figure. Points are coefficients 
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from negative binomial regression, and error bars are 95% C.I. d, Replication strand bias 

(ratio of mutation count on the leading versus lagging DNA strand) of clustered TCW 

mutations. Error bars are binomial 95% C.I. As a control, the reciprocal of the strand bias 

for MSI-H (orange; 24 samples) and POLE-mutant (purple; 9 samples) tumors is shown as a 

dashed line. Values in parentheses are mutation counts used to estimate the ratios. e, 

Distributions of intermutation distances (IMD) in A3 context kataegis and omikli clusters 

(left). Expected IMD distributions from simulations using three different segment lengths 

(right). f, Gamma mixture modeling of the omikli IMD distribution using three components. 

Bar shows proportions of the three components, while curves show their densities at various 

IMDs.

Mas-Ponte and Supek Page 39

Nat Genet. Author manuscript; available in PMC 2021 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. MMR activity in tumors is associated with APOBEC mutagenesis.
a, Proportion of omikli clusters in A3 (left) and control non-A3 contexts (right), comparing 

MMR deficient (MSI-H) samples with MMR-proficient (MSS) samples, in matched tissues 

(“MSI tissues”, COAD, STAD and UCEC, green) or in non-matched tissues (red). 

Significance by Mann-Whitney test, two-tailed; p < 0.001 (***); number of tumor samples 

listed in parenthesis. b, Same as (a) but broken down by tissue. UCEC, uterus; STAD, 

stomach; COAD, colon. Pooled p-value (p < 0.001 for A3; p = 0.433 for control) from two-

tailed Mann Whitney tests on stratified data. c, Enrichment of A3 omikli clusters and 

unclustered A3 mutations in various genome regions in MMR-deficient samples (MSI-H). 

Related to Fig. 2c. Coefficients of negative binomial regression are shown (as log2), 

indicating enrichments of mutation frequency in a genomic bin versus the lowest bin (in case 

of RT, latest-replicating), where enrichment would equal unity and is thus not shown. Error 

bars are 95% C.I. d, Correlation of the burden of A3-context (TCW>K) kataegis, omikli, 
and unclustered mutations with mRNA levels of MMR genes and of APOBEC3A and 

APOBEC3B genes. Error bars are 95% C.I. e, Association of copy number alterations 

(CNA) in selected MMR genes with burden of A3 omikli. CNAs are represented as integer 
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copy number differences (Methods); positive values are gains and negative losses. See also 

Extended Data Fig. 3g. Significance by Mann-Whitney test (two-tailed) comparing the 

neutral (0) versus the gain (+1 and +2) states considered jointly.
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Figure 4. The omikli process generates the majority of unclustered A3 mutations across tissues.
a, A regression analysis estimates the contributions of omikli and kataegis processes towards 

the unclustered A3 mutation burden, shown for lung adenocarcinoma (LUAD, other cancers 

in Extended Data Fig. 6) tumor samples (points). For clarity, data panels show combinations 

of two variables (omikli versus unclustered, center; kataegis versus unclustered, right), 

whereas the regression is performed on the three variables simultaneously (schematic in 

leftmost panel; Methods). Red line is the intersection of the fitted plane with the shown two-

dimensional coordinate system. Error bars are 95% prediction intervals of the fit. Dotted line 

is the average of omikli (center) and kataegis (right) mutation burden across tumors. Bottom 

panels have same data as top panels, but zoomed in on the X-axis for clarity. b, Pan-cancer 

regression analysis provides estimates of the fraction of unclustered TCW>K mutations 

contributed by processes that generate omikli(A3-O), that generate kataegis (A3-K) and a 

remainder (“intercept”) not explained by either process (A3-X). Error bars are standard 
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errors (S.E.) of regression coefficients; n = 646 tumors. c, Relative contribution of the 

omikli-process to the unclustered A3 burden (Y-axis) of cancer types correlates with the 

overall burden of A3 mutations in that cancer type (X-axis) suggesting that differential 

activity of the omikli mechanism drives differences of A3 burden between tissues. Error bars 

are S.E. of regression coefficients. Shaded band is 95% C.I. of the linear fit.
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Figure 5. APOBEC mutagenesis generates many impactful mutations.
a, Functional impact density of mutational processes (slope of line), estimated as the number 

of mutations in coding regions of 299 cancer genes (Y-axis) normalized to the total mutation 

tally contributed by a process (X-axis). Bottom panel shows the number of mutations 

estimated to result from each process across tumor samples. Points in boxplots (lower panel) 

and on lines (upper panel) are the average mutation burden of that process in the affected 

samples (definition in Methods); error bars are S.E.M. b, Occurrence of A3 context 

mutations in many cancer genes is associated with the genomic burden of A3 omikli 
mutation clusters, suggesting that the omikli process generates driver mutations. FDRs are 

Benjamini-Hochberg adjusted p-values from a logistic regression to predict presence of a 

TCW>K (A3 context, X-axis) or a VCN>K (control non-A3 context, Y-axis) mutation in 

each driver gene. Red and gold, hits at stringent (5%) and permissive (10%) FDR thresholds 

in the A3 context; blue, hits in the control context (FDR < 5%) suggesting an indirect 

association with A3 omikli burden. Diagonal line denotes equal FDR between the A3 and 

the control contexts. FDRs were capped at 0.1%. c, Burden of A3 omikli mutations in 

tumors which are wild-type(teal) or which are mutated (orange) in the driver genes that were 

significantly associated in the logistic regression in panel b.
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