
Astrocytes Modulate the Polarization of CD4+ T Cells to
Th1 Cells
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Abstract

T-cell characteristics are dynamic and influenced by multiple factors. To test whether cells and the environment in the
central nervous system (CNS) can influence T-cells, we tested if culturing mouse CD4+ T-cells on mouse primary astrocytes,
compared with standard feeder cells, modified T-cell polarization to Th1 and Treg subtypes. Astrocytes supported the
production of Th1 cells and Tregs, which was diminished by inflammatory activation of astrocytes, and glutamate
accumulation that may result from impaired glutamate uptake by astrocytes strongly promoted Th1 production. These
results demonstrate that astrocytes and the environment in the CNS have the capacity to regulate T-cell characteristics.
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Introduction

Recently there has been a rapidly increasing recognition that

extensive interactions occur between the immune and nervous

systems [1,2]. This progress is revising previous dogmas about the

insular actions of these two systems, revealing instead that there

are often bidirectional immune-neural interactions. An important

one of these is the actions of T cells in the central nervous system

(CNS), which is now known to include both beneficial and

detrimental influences of T cells on CNS functions [3,4,5].

Beneficial CNS actions of T cells have been particularly well-

established for their roles in contributing to cognition [6,7,8,9,10]

and hippocampal neurogenesis in adult mammals [5,7,11]. Also

well-established are the detrimental actions of T cells in certain

CNS diseases, such as being major drivers of the onset and

progression of multiple sclerosis [12,13].

Multiple sclerosis is the most common inflammatory demyelin-

ating disease of the CNS and is widely considered an autoimmune

disease caused by autoreactive T cells [13,14]. Several of the

clinical, immunological, and neuropathological features of MS are

modeled in experimental autoimmune encephalomyelitis (EAE),

which is induced in susceptible mice by eliciting an immune

response to injected myelin antigens [15,16]. The two major

populations of effector T helper (Th) cells present in the CNS of

mice that are thought to contribute to EAE are interferon-c
(IFNc)-producing Th1 cells and interleukin-17A (IL-17A)-produc-

ing Th17 cells. The differentiation of naive CD4+ T cells into

subtypes results from the activation of their T cell receptor (TCR)

and co-stimulatory molecules in the presence of specific cytokines

produced by the innate immune system [17]. IFNc and IL-12

induce the differentiation of CD4+ T cells to Th1 cells [18,19],

whereas TGFb induces anti-inflammatory regulatory T (Treg) cell

production [20]. Recent discoveries that T cell subtype charac-

teristics can be dynamic [21,22] have added a layer of complexity

and indicates that environmental influences are capable of

modulating the subtype characteristics of T cells.

Although it is evident that T cells in the CNS have a variety of

actions, little is known about how the environment within the CNS

affects T cells. Astrocytes are situated close to blood vessels, thus

being an early cellular contact of infiltrating CD4+ T cells [23,24].

Using in vitro co-cultures of cells, previous studies have reported

that microglia and astrocytes, as well as neurons, can influence the

priming or activation of T cells [25,26,27,28,29,30]. However it is

not clear if astrocytes can affect T cell differentiation character-

istics, even though astrocytes are capable of producing key

regulatory cytokines [23]. In the present study, the co-culture

approach was applied to test if mouse primary astrocytes are

capable of influencing the differentiation of co-cultured CD4+ T

cells to Th1 cells or Tregs.

Materials and Methods

Ethics Statement
All mice were housed and treated in accordance with National

Institutes of Health guidelines and procedures with mice were

approved by the University of Miami Institutional Animal Care

and Use Committee (11-233, 11-238).

Mice
C57BL/6 (6–8 weeks) mice were purchased from the Jackson

Laboratories. Mice were housed in a light and temperature

controlled room and treated in accordance with NIH and

University of Miami Institutional Animal Care and Use Commit-

tee regulations.
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Astrocyte culture
Primary glia were prepared from cerebral cortices of 1 day old

C57Bl/6 mice as described [31,32], and cultured in DMEM//F12

medium supplemented with 10% fetal bovine serum (FBS), 0.3%

glucose, 2 mM L-glutamine, 10 U/mL penicillin and 10 mg/mL

streptomycin. For separation of astrocytes and microglia, after 10

days of culture the cells were shaken (30 h; 250 rpm) and released

microglia were discarded, to obtain .99% pure astrocytes as

determined by immunostaining with the astrocyte marker glial

fibrillary acidic protein (GFAP) (Millipore, Bedford, MA), ,1%

were microglia. Protein-free E. coli (K235) LPS was prepared as

described [33]. Cells were left untreated or stimulated with

100 ng/mL LPS for 6 h (to induce cytokine production) in

medium supplemented with 10% FBS.

CD4+ T cell isolation and activation
Spleens and lymph nodes were collected and single-cell

suspensions were prepared by mechanical disruption in RPMI

1640 medium supplemented with 10% FBS, 100 IU/mL of

penicillin, 100 mg/mL of streptomycin, 16 nonessential amino

acids, 1 mM sodium pyruvate, 2.5 mM b-mercaptoethanol and

2 mM L-glutamine (R-10). CD4+ T cells were isolated by

magnetic sorting with DynaLbeads mouse CD4+ beads according

to the manufacturer’s instructions (Invitrogen). Methods for

differentiation of T cells were adapted from previously described

procedures [34]. Conventional irradiated (3,000 rads) spleen and

draining lymph node feeder cells were used as APCs, except where

indicated otherwise, and were cultured with purified CD4+ T cells

at a ratio of 5:1. Alternatively, the same number of CD4+ T cells

was cultivated on a confluent monolayer of astrocytes. CD4+ T

cells were activated with 2.5 mg/mL anti-CD3 (clone 145-11), Th1

cells were differentiated by the addition of recombinant IL-12

(10 ng/mL; R&D Systems) and anti-IL-4 (10 mg/mL; clone

11B11), and Tregs were prepared by incubation with TGFb
(5 ng/mL), anti-IL-4 (10 mg/mL; clone 11B11) and anti-IFN-c
(10 mg/mL; clone XMG1.2).

CD4+ T cells were cultivated with astrocytes in R10 medium.

Where indicated, cells were treated with 10 ng/mL brain-derived

nerve growth factor (BDNF), 100 ng/mL nerve growth factor

(NGF), 10 ng/mL glial derived nerve factor (GDNF), 100 mM

glutamate, or 100 mM MK-801 (Sigma).

Intracellular cytokine staining
Astrocytes and CD4+ T cells were collected by mechanical

pipetting and were stimulated for 4 h with PMA (50 ng/mL;

Alexis) and ionomycin (750 ng/mL; Sigma) in the presence of

Brefeldin A (BFA) at the recommended concentrations (BD

Pharmingen) in a 96 well plate. Standard intracellular cytokine

staining was carried out as described [34]. Cells were first stained

extracellularly with APC–conjugated anti-CD4 (eBioscience) and

fixed and permeabilized with Cytofix/Cytoperm solution (BD

Pharmingen) and then were stained intracellularly with eFluo450-

conjugated anti-IFN-c, phycoerythrin-conjugated anti-IL-17A,

(eBioscience). Samples were acquired on a LSRII (BD) and data

were analyzed with FlowJo software (Tree Star, Inc.).

Carboxyfluorescein succinimidyl ester (CFSE) labeling
CD4+ T cells were suspended at a density of 107 cells per mL in

PBS. CFSE (Molecular Probe) diluted in PBS was added to an

equal volume of prewarmed cell suspension at a final concentra-

tion of 5 mM and the suspension was mixed rapidly. Cells were

incubated at room temperature for 7 min and the reaction was

stopped with FBS. Cells were centrifuged and resuspended in

culture medium.

Microscopic evaluation of the number of CD4+ T cells per
astrocyte

To determine if the astrocytes and the CD4+ T cells come in

close contact, the proximity of the nuclei of CD4+ T cells to the

nuclei of astrocytes was evaluated by microscopy. The method was

modified from [35]. Cells were co-cultured, stained with Hoechst

and fixed with 3.2% PFA. A ThermoFisher Cellomics ArrayScan

VTI automated fluorescent microscope was used to image the

wells with a 106 objective at 102461024 resolution with 9 fields

per well of a 24-well plate containing co-cultured astrocytes and

CD4+ T cells. Hoechst was used to segment and identify the nuclei

of all cells, and the size and intensity of each individual nucleus

was identified using Cellomic’s ‘‘TARGET ACTIVATION’’

algorithm. This technique is comparable to looking at forward

scatter and Hoechst MFI in flow-cytometry, only the location

information about astrocytes and T cells is preserved. Spotfire

DecisionSite software (TIBCO) was used to analyze the data to

distinguish between the two populations of cells, in the same way

that populations of cells are ‘gated’ in flow cytometry (based on

controls with only one of the cell-types present).

Statistical analysis
Statistical significance was analyzed with a Mann-Whitney test

or one way ANOVA with Bonferroni post-test using Prism

software. A p value of less than 0.05 was considered significant.

Results

Astrocytes are sufficient to induce differentiation of CD4+

T cells to Th1 cells
We tested if astrocytes influence the polarization of CD4+ T

cells to Th1 or Treg cells by comparing T cell populations after

cultivating CD4+ T cells for 4 days on a monolayer of mouse

primary astrocytes or on conventional irradiated spleen and

draining lymph node feeder cells. Culturing CD4+ T cells with

astrocytes without supplements of additional cytokines was

sufficient to induce polarization of 12.7% of cells to IFNc-

producing CD4+ T cells, a marker of Th1 cells (Figure 1A).

Addition of anti-IL-4 antibody (Figure 1B) increased the IFNc-

producing CD4+ T cell population by 3.4-fold to 4262% of cells

(quantitation in Figure 1C), whereas culturing CD4+ T cells on

conventional feeder cells with anti-IL-4 only polarized 13.264%

of CD4+ T cells to IFNc-producing cells (Figure 1C). IL-12 is

classically used to polarize CD4+ T cells to IFNc-producing cells.

Upon addition of IL-12 (Figure 1C, D), astrocytes promoted the

differentiation of 9462% CD4+ T cells towards Th1 cells ,

whereas IL-12 addition to feeder cell cultures resulted in the

production of only 3367% of IFNc-producing CD4+ T cells.

These results demonstrate that astrocytes can be potent inducers of

Th1 cell production, and that the effects of astrocytes are additive

to the effect of IL-12 on promoting Th1 cell differentiation.

Culturing CD4+ T cells on astrocytes also supported polariza-

tion to Tregs. Culturing CD4+ T cells on astrocytes with added

TGFb and anti-IL-4 strongly induced Treg cell (3962%)

production to an extent equivalent to cells cultured on conven-

tional feeder cells (4269%) (Figure 1E, F).

Inflammation usually coincides with increased infiltration of T

cells in the CNS in conditions such as multiple sclerosis and EAE.

Therefore, we tested if activated astrocytes that produce increased

amounts of cytokines influence Th differentiation differently from

resting astrocytes. Astrocytes were pre-activated by overnight

Astrocytes Modulate Th1 Cells
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stimulation with lipopolysaccharide (LPS), followed by washing the

cells before co-culturing with CD4+ T cells. Surprisingly, activated

astrocytes inhibited Th1 differentiation in the absence of IL-12,

but were without effect in the presence of IL-12 (Figure 2A).

Activated astrocytes also inhibited Treg differentiation (Figure 2B).

These results indicate that resting and activated astrocytes

differently modulate T cells. Without activation astrocytes

promote the production of Th1 and Treg cells, whereas this is

impaired upon culturing CD4+ T cells on pre-activated astrocytes.

Cross-talk between Th1 cells and astrocytes is necessary
to promote full Th1 differentiation

To test the hypothesis that a factor secreted by astrocytes

promoted Th1 differentiation, CD4+ T cells were cultivated with

conditioned medium from cultured astrocytes. There was no effect

of the conditioned medium on Th1 cell differentiation (Figure 3A),

since it did not induce Th1 differentiation (Figure 1). This suggests

that it is not a factor secreted by astrocytes in the absence of CD4+

T cells that promotes Th1 cell production. Instead, we hypoth-

Figure 1. Astrocytes alone are sufficient to induce Th1 cell production. (A) CD4+ T cells were cultivated for 4 days on no feeder cells or on a
monolayer of astrocytes. (B) CD4+ T cells were cultivated for 4 days on no feeder cells, on a monolayer of astrocytes, or on irradiated splenocyte
feeder cells with 10 mg/mL anti-IL-4. (C) CD4+ T cells were cultivated for 4 days on no feeder cells, on a monolayer of astrocytes, or on irradiated
splenocyte feeder cells with 10 mg/mL anti-IL-4 and 10 ng/mL IL-12. (A–D) IFNc-producing, Foxp3 expressing and IL-17A-producing CD4+ T cells were
analyzed by flow cytometry after restimulation with ionomycin/PMA/BFA for 4 h. Flow cytometry analyses were quantified and expressed as mean 6
s.e.m. (for the data in D: n = 4–8, Mann-Whitney test, *p,0.05 compared with cells incubated without anti-IL-12). (E, F) CD4+ T cells were cultivated for
4 days on a monolayer of astrocytes or on irradiated splenocyte feeder cells with 10 mg/mL anti-IL-4, with or without 5 ng/mL TGFb. Foxp3-
expressing cells were analyzed by flow cytometry. Flow cytometry analyses were quantified and expressed as mean 6 s.e.m. (n = 4, Mann-Whitney
test, *p,0.05 compared with cells incubated without TGFb).
doi:10.1371/journal.pone.0086257.g001
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esized that CD4+ T cells stimulate astrocytes to release a factor

that promotes Th1 differentiation. To test this, serial dilutions of

CD4+ T cells were cultivated with astrocytes and the proportion of

the generation of IFNc-producing cells was measured. Increasing

dilutions of CD4+ T cells cultivated with astrocytes led to

decreased percentages of Th1 cell production (Figure 3B), while

there was no difference for Treg differentiation (Figure 3C). This

suggests that there is a feedback loop by which the CD4+ T cells

signal to astrocytes to induce production of factors that promote

Th1 cell differentiation.

Are mitogenic factors involved in Th1 cell differentiation
induced in the presence of astrocytes?

CFSE staining of CD4+ T cells cultured on astrocytes showed

that cells incubated in Th1 polarizing conditions had a higher rate

of cell division than undifferentiated CD4+ T cells or than cells

incubated on irradiated lymph node cells and splenocytes in Th1

polarizing conditions (Figure 4A), suggesting that astrocytes may

produce a mitogenic factor that promotes CD4+ T cell prolifer-

ation and differentiation. We tested if the addition of several

mitogenic factors known to be secreted by astrocytes [36,37]

modulate Th1 differentiation of CD4+ cells cultured on spleno-

cytes, including nerve growth factor (NGF), glial derived nerve

factor (GDNF) and brain-derived nerve growth factor (BDNF).

However, there was no increase in the Th1 cell differentiation in

the presence of these factors (Figure 4B).

Glutamate modulates Th1 cell production
An important function of astrocytes is the buffering of

glutamate, which is critical for controlling extracellular glutamate

levels and for protecting neurons from excitotoxicity [36,37]. Since

this function can be impaired in CNS diseases, resulting in

increased extracellular glutamate levels, we tested if glutamate

impacts Th1 cell differentiation. Addition of glutamate promoted

Th1 differentiation of CD4+ T cells cultured on splenocytes in the

presence of anti-IL-4 and IL-12 (Figure 5). Conversely, treatment

with the selective NMDA receptor antagonist MK801 reduced

Th1 cell differentiation (Figure 5A). Moreover, addition of

glutamate on CD4+ T cells was sufficient to increase TBet

expression, a marker of Th1 differentiation (Figure 5B). This

suggests that in addition to producing cytokines critical for Th1

cell differentiation, the regulation of glutamate levels by astrocytes

may also be an important modulator of the production of Th1

cells, similar to a previous report that glutamate released from DCs

can regulate the secretion of Th1 cytokines [38].

Th1 cells are dependent on CD4 for their differentiation
on astrocytes

Because the extent of direct interaction between CD4+ T cells

and feeder cells may have a regulatory role in the differentiation of

CD4+ T cells towards specific lineages, we examined if the number

of CD4+ T cells associated with astrocytes was different among

subpopulations of Th cells by measuring the number of CD4+ T

cells associated with astrocytes using high content analysis.

Astrocytes (Figure 6A, D) and T cells (Figure 6B,D) were

distinguished based on nuclear size and intensity, based on

thresholds established from control wells with a single cell type.

CD4+ T cells were observed to be in close proximity to astrocytes

(Figure 6B), and there were similar numbers of astrocyte-

associated anti-IL-4 treated CD4+ T cells, Th1, and Tregs

(Figure 6C). We next tested if blocking the CD4-mediated cell-

cell interaction influences the differentiation of Th1 cells on

astrocytes by incubation with a neutralizing antibody for CD4.

Blocking CD4 was sufficient to block the differentiation towards

Figure 2. Preactivation of astrocytes reduces Th1 differentiation. CD4+ T cells were cultivated for 4 days on a monolayer of astrocytes that
were pre-activated with LPS for 18 h, with or without 10 mg/mL anti-IL-4 and 10 ng/mL IL-12 where indicated. IFNc-producing (A) and Foxp3
expressing (B) CD4+ T cells were analyzed by flow cytometry after restimulation with ionomycin/PMA/BFA for 4 h. Flow cytometry analyses were
quantified and expressed as mean 6 s.e.m. (for the data in A: n = 3, one-way ANOVA test, *p,0.05; for the data in B: n = 2–4).
doi:10.1371/journal.pone.0086257.g002
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Th1 cultured on astrocytes (Figure 6E), without affecting the

percent of CD4+ T cells associated per astrocyte (Figure 6F),

suggesting that the CD4 signaling is important for Th1 differen-

tiation of CD4+ T cells cultured on astrocytes.

Discussion

In contrast to previous dogmas that T cell subtypes and

characteristics are stable, it is rapidly becoming clear that T cell

characteristics are dynamic and subject to change in response to

the environment and other factors [21,22]. This raises the

likelihood that T cells in the CNS are responsive to alterations

in the environment created by resident cells. To begin to test if

astrocytes can modify T cell characteristics, we used the

straightforward paradigm of testing in vitro if astrocytes are

capable of influencing the development of CD4+ T cells to

different subtypes. The results show that resting astrocytes

predominantly promote the development of Th1 cells, but this is

diminished after activation of astrocytes.

During MS and EAE, peripheral Th1 cells accumulate in the

CNS and contribute to demyelination, whereas Tregs are

protective [13,14]. Here we provide evidence that CNS resident

astrocytes may also play a role in contributing to the regulation of

Th1 and Treg cells. Astrocytes promoted Th1 differentiation in

the absence or presence of exogenous IL-12, but this was impaired

when CD4+ T cells were cultured on astrocytes pre-activated with

LPS. This raises the possibility that depending on the environment

in the CNS, astrocytes can contribute to the orientation of T cell

characteristics towards subsets of Th cells. Although T cells in the

CNS are thought to predominantly express subtype characteristics

Figure 3. Cross-talk between Th1 cells and astrocytes is necessary to promote maximal Th1 differentiation. (A) CD4+ T cells were
polarized toward Th1 cells for 4 days in conditioned medium from unstimulated or LPS-stimulated astrocytes supplemented with 10 ng/mL IL-12
(Th1) or 5 ng/mL TGFb (Treg). Cells were washed and stimulated for 4 h with PMA/ionomycin/BFA and IFNc-producing CD4+ T and Foxp3 expressing
CD4+ T cells were analyzed by flow cytometry. Flow cytometry analyses were quantified and expressed as mean 6 s.e.m. (n = 2). (B–C) Different
quantities of CD4+ T cells were cultivated on an astrocyte monolayer and polarized toward (B) Th1, or (C) Treg cells for 4 days in medium
supplemented with 10 ng/mL IL-12 (Th1), or 5 ng/mL TGFb (Treg). Cells were washed, stimulated for 4 h with PMA/ionomycin/BFA, and IFNc-
producing and Foxp3-expressing CD4+ T cells were analyzed by flow cytometry. Flow cytometry analyses were quantified and expressed as mean 6
s.e.m. (n = 3, , one-way ANOVA test, *p,0.05 compared to 56105 cells).
doi:10.1371/journal.pone.0086257.g003
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prior to infiltration, these results suggest that astrocytes may

contribute to shifts in the subtype characteristics, or influence the

development of any immature infiltrated CD4+ T cells, although

each of these will require in vivo investigations.

In order to determine which specific astrocytic factors

contribute to their modulation of Th1 cell differentiation, we

analyzed candidates known to be involved in the functions of

astrocytes. Among their actions, astrocytes are involved in

neurotransmitter regulation, have mitogenic functions, and are

modulators of inflammation [36,37]. Because the proliferation of

Th1 cells was increased in the presence of astrocytes compared

with cells cultured on irradiated splenocytes, we tested if mitogenic

Figure 4. Th1 differentiation is not dependent on GDNF, BDNF or NGF. (A) CD4+ T cells were polarized toward Th1 cells for 3 days cultured
on astrocytes or with irradiated feeder cells in medium supplemented with 10 ng/mL IL-12 (Th1). Cells were washed and stimulated for 4 hr with
PMA/ionomycin and CD4+ T cells were analyzed for CFSE staining by flow cytometry gated on IFNc+CD4+ T cells. Data are representative of 2
independent experiments. The rate of cell division was higher in cells incubated in Th1-polarizing conditions than undifferentiated cells. (B) CD4+ T
cells cultivated on astrocytes or irradiated splenocytes were stimulated with 10 ng/mL GDNF, 10 ng/mL BDNF, 100 ng/mL NGF, or a combination as
indicated, in the presence or not of Th1 polarizing conditions for 4 days. Cells were washed and stimulated with PMA/ionomycin/BFA for 4 h and
IFNc-producing cells were analyzed by flow cytometry. Plots are representative of 2 independent experiments.
doi:10.1371/journal.pone.0086257.g004
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factors secreted by astrocytes may be involved. However,

incubation with NGF, BNDF or GDNF did not modulate Th1

cell differentiation, indicating that astrocytes can regulate Th1 cells

by other factors or at the MHC level. The latter is consistent with

the previous proposal that the strength of the TCR-MHC

interaction is critical for Th1 differentiation and proliferation.

Glutamate appears to be an important regulator of T cell

function. T cells have been shown to express many of the subtypes

of glutamate receptors [39,40,41,42]. Exposure to glutamate has

Figure 5. Th1 cell differentiation is promoted by glutamate. (A) CD4+ T cells were cultivated on irradiated splenocytes in the presence of
10 mg/mL anti-IL-4 alone or with 10 ng/mL IL-12 for 4 days, with or without 100 mM MK801 or 100 mM glutamate, each of which was reloaded after 2
days of polarization. Cells were washed and restimulated with PMA/ionomycin/BFA for 4 h and analyzed by flow cytometry. Flow cytometry analyses
were quantified and expressed as mean 6 s.e.m. (n = 3, one-way ANOVA test, *p,0.05). (B) CD4+ T cells were cultivated on irradiated splenocytes in
the presence 10 mg/mL anti-IL-4 for 4 days with or without 100 mM glutamate, and cells were washed and restimulated with PMA/ionomycin/BFA for
4 h and analyzed by flow cytometry. The histogram represents TBet expressing cells.
doi:10.1371/journal.pone.0086257.g005
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Figure 6. Th1 cell differentiation is promoted by CD4+ T cell activation. CD4+ T cells were cultivated on astrocytes in the presence of 10 mg/
mL anti-IL-4 alone (anti-IL-4), with 10 mg/mL anti-IL-4 and 10 ng/mL IL-12 (Th1), or with 10 mg/mL anti-IL-4 and 2.5 ng/mL TGFb (Treg) for 4 days. Cells
were stained with Hoechst and fixed and analyzed using an ArrayScan VTI automated fluorescent microscope. (A) astrocytes alone with nuclei traced
(a 20-fold magnification is shown in the small box), (B) astrocytes co-cultured with CD4+ T cells with nuclei traced (a 20-fold magnification is shown in
the small box), (C) quantitation of percent of CD4+ T cells associated per astrocyte (mean 6 s.e.m.; n = 3), (D) scatter plot showing the cells identified
as astrocytes (red) and CD4+ T cells (blue). (E) CD4+ T cells were cultivated on astrocytes in the presence of 10 mg/mL anti-IL-4 and 10 ng/mL IL-12 for
4 days, with or without 10 mg/mL anti-CD4 (GK1.5). Cells were washed, and restimulated with PMA/ionomycin/BFA for 4 h and analyzed by flow
cytometry. The histogram represents IFNc-expressing CD4+ T cells (n = 2, unpaired t-test *p,0.05). (F) CD4+ T cells were cultivated on astrocytes in
the presence of 10 mg/mL anti-IL-4 and with 10 ng/mL IL-12 for 4 days, with or without 10 mg/mL anti-CD4 (GK1.5). Cells were stained with Hoechst
and fixed and analyzed with an ArrayScan VTI automated fluorescent microscope. Bars represent mean 6 s.e.m. (n = 3).
doi:10.1371/journal.pone.0086257.g006
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been reported to modulate several functions and the proliferation

of T cells by activating glutamate receptors expressed by T cells

[38,43,44,45,46,47,48,49]. Furthermore, the NMDA receptor

antagonist memantine was reported to promote the development

of Tregs [50]. A major function of astrocytes is to take up the

neurotransmitter glutamate to prevent its accumulation in the

synapse where it can reach levels sufficient to cause excitotoxicity

in some neurological diseases. We found that glutamate has the

capacity to regulate Th1 cells, as addition of exogenous glutamate

promoted the production of Th1 cells. Thus, although it has been

known for several years that astrocytes can interact with T cells via

MHC-TCR interactions, these findings indicate that astrocytes

also may affect the characteristics of T cells in the CNS, such as

Th1 cell production, but whether this is critical in the development

of EAE or other diseases remains to be determined. Furthermore,

CD4 activation was found to be important for the differentiation

of CD4+ T cells toward Th1 cells cultured on astrocytes,

confirming that the TCR pathway plays an important role, since

CD4 is a co-receptor of the TCR.

Although it is evident that T cells in the CNS have a variety of

actions, evidence that the environment within the CNS affects

resident T cells is only recently being identified. Thus, significant

advances have recently been made concerning mechanisms

regulating the infiltration of T cells and their actions in the

CNS, but still to be defined is the dynamicity of their

characteristics and the influence of the environment in the CNS

on their characteristics and actions. The recent rapid growth of

identified actions of T cells in healthy and diseased CNS and of the

dynamic characteristics of T cells indicates that the capacity for

unanticipated CNS-immune interactions should not be underes-

timated, such as the capacity of CNS cells to influence T cell

characteristics as reported here.
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