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Abstract: In plants, salicylic acid (SA) is a hormone that mediates a plant’s defense against pathogens.
SA also takes an active role in a plant’s response to various abiotic stresses, including chilling,
drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed
the important role of SA in plant morphogenesis. In this review, we summarize data on changes
in root morphology following SA treatments under both normal and stress conditions. Finally,
we provide evidence for the role of SA in maintaining the balance between stress responses and
morphogenesis in plant development, and also for the presence of SA crosstalk with other plant
hormones during this process.

Keywords: salicylic acid; root growth; lateral roots; adventitious roots; abiotic stress; plant de-
fense; auxin

1. Introduction

Recognized as the sixth plant hormone in 1992 [1], 2-hydroxybenzoic or salicylic acid
(SA) belongs to a family of naturally occurring phenolic compounds which possess an
aromatic benzene ring bearing one or more hydroxyl groups. Since then, a huge amount
of data has been accumulated on SA’s involvement in various biological processes. As
reviewed in [2,3], SA has secured a reputation as a vital defense hormone. At the same
time, SA’s impact on cell, tissue, and organ phenotypes is well established (reviewed in [4]).
Despite the growing evidence that SA is an important growth regulator, its morphogenetic
role, especially in relation to roots, has rarely been summarized in reviews.

It is worthy of note that, in roots, SA content and its dynamic during development
may differ from that in shoots [5–8], which can potentially cause differences in SA functions.
For instance, SA basal level in shoots is 2–100 times higher than in roots, depending on the
species [5,6]. The ratio between free and conjugated SA forms, also differs [6]. For example,
the shoots of wheat seedlings, three days after germination (DAG), contain about 48 times
more free than conjugated SA, whereas in the roots, the contrary is seen, with conjugated
SA levels exceeding the level of free SA by about six times. During wheat seedling growth,
SA content in both free and conjugated forms gradually decreases in shoots but not in roots.
In 14 DAG seedlings, the conjugated SA becomes prevalent in both organs but the ratio
of free to conjugated form still differs slightly and amounts to 0.4 and 0.5 for shoots and
roots, respectively. These differences provide ample reason to consider the role of SA in
root morphology, distinct from its function in shoots.

The phenotypic analysis of SA deficient/accumulating lines and SA-treated plants
provides insight into the role of SA in plant growth and development. However, the data
on changes in root morphology in SA mutants are scarce and often contradictory. For
example, decreased root length is reported in SA-accumulating Arabidopsis mutants [9–11]
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and in SA-depleted rice mutants [12,13]. In rice, the inhibitory effects of an SA deficiency
on root length have been reported in relation to both SA biosynthesis mutant aim1 [12]
and plants transgenic for the bacterial Naphthalene hydroxylase G (NahG) gene, encoding
salicylate hydroxylase that inactivates SA by converting it to catechol [13]. In contrast,
transgenic Lotus japonicus plants expressing NahG, demonstrate enhanced root growth [14].
These contradictions may be due to species-specific basal SA levels, which vary greatly
between plant species, even those belonging to the same family [4,15].

In contrast to SA mutants, changes in root morphology after an SA treatment are
described in numerous papers. In our review, we analyzed more than 100 studies on SA
treatments in 40 plant species, with SA doses ranging from 10 fM to 10 mM, to survey the
impact of SA on root system biomass and architecture under normal conditions and in
response to stressors. In this paper, we discuss various aspects of SA’s regulation of root
growth and development, including changes in root morphology after SA treatments, the
molecular basis of these changes, and the impact of SA in root responses to abiotic stress
and other environmental changes.

2. SA Metabolism and Signaling in Plants

SA metabolism has been comprehensively described in numerous reviews, for exam-
ple, [16–20]; therefore, we touch only briefly on this aspect in this review. SA is synthesized
in plants, bacteria, and fungi from chorismate, the final product in the shikimate pathway
(reviewed in [16]). Chorismate is also the primary source for the biosynthesis of aromatic
amino acids (tryptophan, phenylalanine, and tyrosine) and a wide range of aromatic sec-
ondary metabolites, including flavonoids, alkaloids, and lignins. SA biosynthesis (Figure 1,
Table S1) starts in plastids, where chorismate is converted into either isochorismate via
isochorismate synthase (ICS) or prephenate via chorismate mutase (CM), giving rise to
two parallel ICS and phenylalanine ammonia-lyase (PAL) pathways of SA biosynthesis
(reviewed in [16,17,19,20]). The relative contributions of the ICS and PAL pathways to SA
biosynthesis are species-dependent with an equal contribution being made in soybean and
a prevalence of ICS and PAL pathways being seen in Arabidopsis and rice, respectively. In
the ICS pathway, ENHANCED DISEASE SUSCEPTIBILITY 5 (EDS5) transports isochoris-
mate to the cytosol, where it is conjugated with glutamate by avrPphB Susceptible 3 (PBS3)
to produce isochorismate-9-glutamate, which is either spontaneously decomposed into SA
or converted to SA by an acyltransferase Enhanced Pseudomonas Susceptibility 1 (EPS1).
In the PAL pathway, there are two ways of prephenate elaboration into phenylalanine (re-
viewed in [18]). In plastids, prephenate aminotransferases (PPA-ATs) catalyze its transition
to arogenate, which is then converted by arogenate dehydratase (ADT) into phenylalanine.
In the cytosol, the prephenate–phenylalanine transition is realized through phenylpyruvate
by prephenate dehydratase (PDT) and phenylpyruvate aminotransferase (PPY-AT). PAL
turns phenylalanine into trans-cinnamic acid, following which the formation of SA occurs
either through ortho-coumaric acid or benzoic acid (reviewed in [16,17,19,20]). In the latter
case, Abnormal Inflorescence Meristem 1 (AIM1), a 3-hydroxyacyl-CoA dehydrogenase,
contributes to this process. Benzoic acid is hydroxylated to SA, possibly by benzoic acid
2-hydroxylase (BA2H).

A wide number of regulators control SA biosynthesis (Table S1). Among them, the
reactive oxygen species (ROS), particularly hydrogen peroxide, form a self-amplifying
feedback loop with SA, in which hydrogen peroxide promotes SA biosynthesis, and SA
induces hydrogen peroxide accumulation by inactivating its scavengers [21,22] (reviewed
in [23]).

SA levels are regulated not only by SA biosynthesis but also by SA chemical modifica-
tions and intercellular transport (reviewed in [18,24]). These processes have been studied
mainly in Arabidopsis. SA glycosylation occurs via the conjugation of glycosyl onto the
hydroxyl and carboxyl groups of SA, producing two inactive SA storage forms, salicylic
acid 2-O-β-D-glucose (SAG) and salicylic acid glucose ester (SGE). Uridine diphosphate
(UDP)-glycosyltransferases UGT74F1 and UGT74F2 perform the conversion to the former,
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while only UGT74F2 is involved in the catalysis to the latter. The carboxyl group can
be also methylated by the S-adenosyl-L-methionine (SAM)-dependent methyltransferase,
BA/SA carboxyl methyltransferase 1 (BSMT1), producing methyl salicylate (MeSA), the
form of SA that has increased membrane permeability. SA hydroxylation by SA-5 and
SA-3 hydroxylases generates 2,3-DHBA and 2,5-DHBA dihydroxybenzoic acids. Gretchen
Hagen 3.5/WESO 1 (GH3.5/WES1) and another unknown GH3 family enzyme convert SA
into salicyloyl-L-aspartate (SA-Asp). Some of these conjugated forms of SA may also be
glycosylated. Inactive SA forms can be stored until they are required to increase the active
pool of free SA; alternatively, some of them may be subjected to SA catabolism. SA is often
spread via apoplast (reviewed in [24]). Since SA is a weak acid with poor water solubility,
the existence of influx and efflux carriers along with pH-dependent diffusion is proposed
for its movement through the plasma membrane.

Figure 1. SA metabolism and signaling in plants. SA is synthesized via two routes, the isocho-
rismate pathway or the phenylalanine ammonia-lyase pathway, which both start with chorismate.
SA conversions include SA glycosylation, methylation, hydroxylation, and amino-acid conjugation.
SA signaling depends on the interaction of SA receptor NPR1 with TGA transcription factors and
histone acetyltransferases. SA, salicylic acid; ICS1, isochorismate synthase 1; EDS5, ENHANCED
DISEASE SUSCEPTIBILITY 5; PBS3, avrPphB Susceptible 3; EPS1, Enhanced Pseudomonas Sus-
ceptibility 1; IC-9-Glu, isochorismate-9-glutamate; CM1, chorismate mutase 1; PPA-ATs, prephen-
ate aminotransferases; PDT, prephenate dehydratase; PPY-AT, phenylpyruvate aminotransferase;
ADT, arogenate dehydratase; PAL, phenylalanine ammonia-lyase; AIM1, Abnormal Inflorescence
Meristem 1; TCA-2-OH, trans-cinnamic acid 2-hydroxylase; BA2H, benzoic acid 2-hydroxylase;
UGT74F1/74F2/76B1/71C3, UDP-glucosyltransferases 74F1, 74F2, 76B1 and 71C3; S5H, SA-5 hy-
droxylase; S3H, SA-3 hydroxylase; DLO2, DMR6-LIKE OXYGENASE 2; GH3.5, Gretchen Hagen
3.5; BSMT1, benzoic acid/salicylic acid methyltransferase; SAG, salicylic acid 2-O-β-D-glucose; SGE,
salicylic acid glucose ester; 2,3/2,5-DHBA, 2,3/2,5-dihydroxybenzoic acid; SA-Asp, salicyloyl-L-
aspartate; MeSA, methyl salicylate; MeSAG, methyl salicylate O-β-glucoside; NPR1/3/4, NONEX-
PRESSOR OF PATHOGENESIS RELATED GENES 1/3/4; HACs, histone acetyltransferases; TGA,
TGACG SEQUENCE-SPECIFIC BINDING PROTEIN.
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The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) are the SA
receptors (reviewed in [3,18,24]). At a low SA level, NPR1 oligomerizes in the cytosol.
Meanwhile, NPR1 paralogs, NPR3 and NPR4, directly interact with the basic leucine zipper
(bZIP) family’s TGA transcription factors on the promoters of NPR1 targets, to suppress
their expression. SA facilitates the reduction of cytosolic NPR1 oligomers into monomers,
which are translocated to the nucleus and activate transcription in complex with TGAs. At
the same time, SA inhibits the activity of NPR3 and NPR4 to allow for the transcription of
SA-responsive genes. The NPR1 pathway is functional in both shoots and roots [25,26]. SA
also binds to A subunits of protein phosphatase 2A (PP2A) and inhibits the activity of this
enzyme, thereby altering auxin transport and distribution [26]. There are other SA binding
proteins as well but their functions in SA signaling are largely unknown [27–30] (reviewed
in [31,32]).

3. Modulation of Endogenous SA Levels in Roots

In Arabidopsis shoots, the basal level of SA amounts to 0.25–1 µg per gram of the
fresh weight, rising up to 20 µg.g−1 at the place of pathogen attack [33] (reviewed in [4]).
In many plant species roots also accumulate SA upon invasion of soil-borne pathogens
(Table 1). Rapid SA accumulation is a part of plant immune signaling, which has been
extensively studied in shoots. In this process, SA promotes pathogen-associated molecular
pattern (PAMP)-triggered immunity (PTI), effector-triggered immunity (ETI), and systemic
acquired resistance (SAR), via an NPR-dependent activation of plant defense genes, to resist
biotrophic and semi-biotrophic pathogens (reviewed in [2,3,34]). The mechanisms of plant
defense in roots are less studied, yet pathogen-induced SA accumulation is considered an
essential factor in root protection from biotic stress [35] (reviewed in [36]). The attacks of
soil-borne pathogens are capable of inducing systemic SA accumulation in above-ground
tissue [37], and mutants and transgenic plants with a reduced ability to accumulate SA are
more susceptible to root infections than wild types [38–41].

Table 1. The influence of biotic and abiotic stress factors on SA content in roots.

Plant Species Stress Factor Type Stress Factor 1 SA Level Reference

Biotic stress

Cucumus sativus L. Necrotrophic fungus Rhizoctonia solani ↑ [37]
Zea mays L. Root herbivore Diabrotica virgifera larvae ↑ [42]
Arabidopsis thaliana L. (Bur-0) Biotrophic protist Plasmodiophora brassicae ↑ [43]
Arabidopsis thaliana L. (Col-0) Biotrophic protist Plasmodiophora brassicae - [43]

Abiotic stress

Cassia tora L. Aluminium Al (10–50 µM) ↑ (RT) [44]
Glycine max L. Aluminium AlCl3 (30 µM) ↑ (RT) [45]
Hordeum vulgare L. Heavy metal CdCl2 (25 µM) ↑ (F) [46]
Triticum aestivum L. Heavy metal Cd(NO3)2 (250 µM) ↑ (F) [47]
Arabidopsis thaliana L. (Col) Heavy metal CdCl2 (50 µM) ↑ [48]
Oryza sativa L. Chilling 5 ◦C ↑ (F + C) [49]
Cucumis sativus L. Chilling 8 ◦C ↑ (F + C) [50]
Hordeum spontaneum L. Drought PEG 6000 (−0.75 to −1.5 MPa) ↑ [51]
Hordeum vulgare L. Drought PEG 6000 (−0.5 MPa) ↑ [52]
Scutellaria baicalensis Georgi Drought PEG 6000 (15%) ↓ (F + T) [53]
Scutellaria baicalensis Georgi Salt NaCl (150 mM) ↑ (F + T) [53]
Hordeum vulgare L. UV-B radiation UV-B (0.84 W m−2) ↑ [52]
Arabidopsis thaliana L. (Col-0) Iron deficiency –Fe (0 µM) ↑ (F) [54]
Gossypium hirsutum L. Nitrogen deficiency –N (0 µM) ↑ [55]
Solanum lycopersicum L. Alkalinity pH 9.0 buffer ↑ [56]

1 Biotic stress factors are limited to soil-borne pathogens. PEG, polyethylene glycol; RT, root tip; F, free SA;
C, conjugated SA; T, total SA; “↑”, increase; “↓”, decrease; “-”, no difference.
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SA can also accumulate in roots in response to abiotic stresses such as aluminum,
cadmium, chilling, salt, drought, UV-B radiation exposure, alkalinity, and iron- and nitrogen
deficiency (Table 1), echoing the reported role of SA in abiotic stress resistance (reviewed
in [57,58]). In some cases, stress-induced SA accumulates locally in the root, which comes
into direct contact with the stress factor, but it can also be transported to the aboveground
tissue. For example, in barley, SA accumulates in response to drought in the roots but
not in shoots [51]. In grapes exposed to heat stress, SA is progressively transported from
the roots to shoots via xylem [59]. Stress-induced changes in endogenous SA levels are
species-specific. For example, drought increases SA content in barley [51] but reduces it in
Scutellaria baicalensis roots [53].

SA (50 µM) treatment promotes adventitious root development at the base of cucumber
hypocotyls and strongly increases endogenous SA levels in the rooting zone [60]. It is
worthy of note that an SA treatment does not necessarily elevate endogenous SA levels in
the root due to exogenous SA uptake. For example, priming wheat seed with SA (50 µM,
3 h) or treating 10 DAG seedlings with 500 µM SA for 1–24 h reduces the endogenous levels
of both free and conjugated SA in roots [6,47]. The endogenous levels of total and free SA
in Scutellaria baicalensis roots also decrease when seedlings are treated with 300 µM SA [53].
Therefore, the type and intensity of exogenous SA effects on plant growth are probably
related to changes in the plant’s endogenic SA content and/or redistribution of free and
conjugated forms. Accordingly, a feasible role of SA biosynthesis in endogenous SA content
after an exogenous SA treatment was demonstrated in several studies [61,62]. Priming
maize seeds with [3,4,5,6-2 H4]-salicylic acid (D4SA; the SA deuterated isotopomer) during
germination allowed researchers to estimate both SA uptake and SA’s regulation of its own
biosynthesis in developing roots [63]. A low SA concentration (50 µM) increased both SA
uptake and biosynthesis, whereas a high SA level (500 µM) more strongly enhanced SA
uptake but inhibited SA biosynthesis.

Growing evidence indicates that normal plant growth requires that optimal levels
of endogenous SA are maintained. Accordingly, a number of negative regulators that
alleviate SA accumulation (such as CPR5, DND1, PI4KIIIβ1, PI4KIIIβ2 etc.) were described
in relation to Arabidopsis [7,8,64,65]. Moreover, hybrids between Arabidopsis accessions
with suboptimal and supraoptimal SA content (Columbia and C24, respectively) show root
growth heterosis [66]. The chromatin remodeler DECREASED DNA METHYLATION 1
(DDM1) links heterosis with endogenous SA levels. Columbia/C24 hybrid heterosis in the
root length is impaired in the ddm1 mutant background.

4. SA Regulates Root Morphology in a Concentration-Dependent Manner
4.1. Regulation of Radicle Emergence

Seed germination proceeds as a transition from dormancy to the radicle (primary root)
emergence, starting from water uptake by dry seeds (imbibition) and being completed with
testa (seed coat) rupture and the radicle protrusion (reviewed in [67]). The primary root
growth along with seed coat and endosperm weakening are three players in the completion
of germination. The radicle growth is based on cell elongation in the hypocotyl-radicle
transition zone [68].

A concentration-dependent effect of SA priming on seed germination, namely, an
increased germination percent at low SA concentrations and a decreased percent at higher
levels, was reported in experiments on carrots, cucumbers, and wheat [69–72] (Table 2). The
activating/inhibitory SA concentrations are species-specific and amount to 7 µM/7 mM
and 10–50 µM/100–500 µM in carrot and cucumber, respectively [69,70]. In wheat, the acti-
vating/inhibitory SA concentrations are also cultivar-specific and were 10–20 µM/30 µM
and 500 µM/1 mM for two different cultivars [71,72]. In Arabidopsis, 100 µM SA enhances
seed germination [73], whereas higher concentrations (250 µM–5 mM) retard it [74,75]. The
SA concentration-dependent effect was also demonstrated in immature maize embryos. SA
(0.5–1.5 mM) stimulated germination of isolated maize embryos at 25 days post pollination
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(DPP), whereas higher SA doses (3–5 mM) completely inhibited this process [76]. Older
embryos (28 DPP) were stimulated by SA at a wider range of concentrations (0.5–3 mM).

Table 2. Concentration-dependent effects of SA on germination.

Plant Species TP 1 SA Concent-Ration TD 2 Ref 3 Plant Species TP 1 SA Concent-Ration TD 2 Ref 3

SA Increased Germination SA Decreased Germination

Daucus carota H. 1 7 µM 24 h [69] Daucus carota H. 1 7 mM 24 h [69]

Cucumis sativus L. 2 10–50 µM 2–14
d [70] Cucumis sativus L. 2 100 µM–0.5 mM 2–14

d [70]

Arabidopsis thaliana L. 2 100 µM 2 d [73] Arabidopsis thaliana L. 1 250 µM–1 mM 24 h [74]
Arabidopsis thaliana L. 2 2.5–5 mM 70 h [75]

Triticum aestivum L. 1 10–20 µM 6 h [71] Triticum aestivum L. 1 30 µM 6 h [71]
Triticum aestivum L. 1 0.5 mM 24 h [72] Triticum aestivum L. 1 1 mM 24 h [72]
Zea mays L. 3 0.5–1.5 mM 24 h [76] Zea mays L. 3 3–5 mM 24 h [76]

1 Treatment Procedure (TP). SA was applied in 1—seed priming, 2—seed germination, 3—embryo culture medium.
2 Treatment Duration (TD). h, hours; d, days. 3 References (Ref).

For many species, SA concentrations that only activate or only inhibit germination
have been described so far (Table S2). SA increases the percentage of germinated seeds in
fenugreek (10 µM), Limonium bicolor (80–280 µM), black cumin (200–500 µM), rice (700 µM),
and Bromus tomentellus (1.5–2 mM) [77–82]. It suppresses seed germination in sesame
(350 µM), pearl millet (500 µM), lentil and barley (1 mM), Lactuca sativa, Deschampsia
flexuosa, and Chamaenerion angustifolium (10 mM) [83].

Other hormones also participate in primary root emergence. Only promoting effects
are reported for ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and
brassinosteroids, and only inhibitory effects for jasmonic (JA) and abscisic (ABA) acids and
auxin [84–107]. ABA suppresses radicle emergence by inhibiting cell wall loosening and
cell elongation [108]. ABA extrusion from the hypocotyl-radicle transition zone takes place
before radicle protrusion [109]. Auxin delays rupture of the soybean testa and radicle emer-
gence by stimulating ABA biosynthesis and impairing gibberellins (GAs) biosynthesis [104].
JA activates ABA signaling [110]. Cytokinins and GAs mainly have a stimulating effect on
seed germination [91,104–107,111–113], wherein GAs promote germination activating SA
biosynthesis and signaling [114], and cytokinin antagonizes ABA-mediated inhibition of
germination by suppressing ABA INSENSITIVE5 (ABI5) [115]. However, in some species, in-
hibition of radicle emergence upon cytokinin and GAs treatment has been reported [71,116].
GAs and brassinosteroids also increase cell elongation in the hypocotyl-radicle transition
zone [117,118].

4.2. SA Impact on Root Length

A concentration-dependent effect of SA on the radicle/primary root length in di-
cots was shown for fenugreek, cucumber, lentil, and bean [70,77,119,120] (Table 3) when
low SA concentrations stimulated and higher ones retarded root growth. The activat-
ing/inhibitory SA concentrations differ in different species and amount to 5–10 µM/15 µM;
10–50 µM/100–500 µM; 100–500 µM/1 mM; and 500 µM/1 mM for fenugreek, cucumber,
lentil, and bean, respectively. In monocots, the concentration-dependent influence of SA on
radicle growth was found in wheat where, similar to dicots, low (10 µM) and high (30 µM)
SA levels increased and decreased radicle length, respectively [71]. In other papers on SA
priming of wheat seeds, only an increase in the length of radicle or seminal roots were
reported despite the application of higher SA concentrations (50 µM–1 mM) [6,72,121,122]
(Table S2). SA priming of pearl millet seeds from four varieties uncovers a strong influence
of genotype on the root growth response to an SA treatment [123]. Thus, an SA treatment
of 0.5 mM results in an increased root length in one variety, while SA applied in a con-
centration range of 0.5–3 mM decreases root length in another one. In two other varieties,
a decrease in root length was obtained only at high (2–3 mM) SA concentrations. The
genotype specificity of SA effective concentrations may explain the wide ranges reported
to increase root length in tomato (0.1–100 µM) and rice (700 µM–1 mM) and to decrease
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root length in Arabidopsis (3–250 µM) [9,25,26,56,73,80,81,124–130]. In most species, there
are only a few papers reporting only decreases or only increases in root length after an
SA treatment (Table S2) and similar SA doses may enhance (1 µM–5 mM) or suppress
(0.7 µM–10 mM) root growth depending on the species [42,79,83,97,131–142].

Table 3. Concentration-dependent effects of SA on root growth.

Plant Species TP 1 SA Concent-Ration TD 2 Plant Species TP 1 SA Concent-Ration TD 2 Ref 3

SA Increased Root Growth SA Decreased Root Growth

Trigonellafoenum-graceum L. 2 5–10 µM 8 d Trigonellafoenum-graceum L. 2 15 µM 24 h [77]
Cucumis sativus L. 2 10–50 µM 2–14 d Cucumis sativus L. 2 0.1–0.5 mM 2–14 d [70]
Lens culinaris L. 1 0.1–0.5 mM Lens culinaris L. 1 1 mM [3]
Vicia faba L. 1 0.5 mM Vicia faba L. 1 1 mM [4]
Pennisetum glaucum L. 1 0.5 mM 2 d Pennisetum glaucum L. 1 0.5–3 mM 2 d [5]

Pennisetum glaucum L. 1 2–3 mM 2 d [5]
Triticum aestivum L. 1 10 µM 6 h Triticum aestivum L. 1 30 µM 6 h [71]

1 Treatment Procedure (TP). SA was applied in 1—seed priming, 2—seed germination. 2 Treatment Duration (TD).
h, hours, d–days. 3 References (Ref).

SA controls root growth by regulating root apical meristem (RAM) activity [12,25,143].
It has been shown that 30 µM SA reduces the number of cells expressing cell division
marker CYCLIN B1;1 (CYCB1;1) in the proximal meristem [25]. The suppression of cell
divisions in the proximal meristem explains the decreased root length after treatment with
SA. A treatment with higher SA concentrations (150 µM) results in enlarged proximal
meristem cells without any CYCB1;1 signal in more than a half of treated roots. In the
rice aim1 mutant, the contrary occurs. SA deficiency results in a decreased expression
of several CYCLIN genes, a reduced RAM size, and the decreased longitudinal length of
mature cells [12]. An SA treatment of 500 µM restores the activity of CYCLIN genes and
makes the RAM size and longitudinal length of mature cells in the aim1 mutant similar
to those in SA-treated wild-type plants. SA inhibits the expression of genes related to
redox homeostasis and ROS scavenging to maintain the ROS accumulation necessary for
RAM activity. SA provides this partially through the induction of transcriptional repressors
WRKY62 and WRKY76.

SA regulates root growth along with other plant hormones. Concentration-dependent
effects on root growth were shown also for auxin (indole-3-acetic acid, IAA), ABA, and
brassinosteroids [144–149]. In maize, low doses of IAA or ABA stimulate root growth only
in seedlings with fast-growing roots and inhibit root growth in seedlings with slow-growing
roots, indicating that endogenous hormone levels may not only determine the growth rate
but also the manner of its modification in response to hormonal treatments [147]. In Ara-
bidopsis, treatment with auxin (50–100 pM; both IAA and 2,4-D) increases root growth,
which is inhibited at auxin concentrations above 1 nM [144–146,150]. This inhibition oc-
curs via an extremely rapid non-transcriptionally regulated adaptation of the root growth
rate to the auxin level, which suggests that free and ubiquitinated Auxin/INDOLE-3-
ACETIC ACID (Aux/IAA) proteins promote and inhibit root growth, respectively [150].
The formation of the TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX
PROTEIN–Aux/IAA (TIR1/AFB–Aux/IAA) complex is required for this rapid root growth
regulation. We suggest that SA is one of the interactors within this complex. In the auxin
signaling pathway, SA reduces TIR1 and AFB1 receptor levels, resulting in the stabiliza-
tion of Aux/IAA proteins, which inhibits the auxin response [151]. SA (1 mM) triggers
the repression of TIR1 receptors [152]. In addition, endogenous auxin controls apoplast
acidification and alkalization, which are required for the activation or repression of root cell
elongation, respectively [153]. For ethylene, cytokinin, and jasmonic acid only inhibitory
effects on root growth were demonstrated, while for gibberellins only stimulating effects
on root growth were shown in various species [89,106,113,116,154–183]. SA crosstalks with
cytokinin in root growth regulation [166]. In Arabidopsis, the cytokinin, benzyl adenine
(BA), inhibits primary root growth in the wild type at 50 nM, whereas, in the eds16 mutant,
which is deficient in SA biosynthesis, this occurs at a lower (5 nM) concentration.
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4.3. SA Regulates the Development of Lateral Roots

In Arabidopsis, predetermination of the lateral root founder cells occurs in a subset of
xylem pole pericycle cells, followed by several anticlinal divisions, and culminates with
cell elongation (reviewed in [184]). In the transition zone, oscillations in auxin signaling,
within a period of about 6 h, marks the founder cell; this oscillatory pattern persists in the
elongation zone [185]. In the differentiation zone, the founder cell becomes the prebranch
site, with sustained elevated levels of auxin, and founder cell specification precedes lateral
root initiation, which is marked by asymmetric founder cell division (reviewed in [184]).
Lateral root primordium formation with establishment of a new root apical meristem and
lateral root emergence are the final steps of lateral root development. There are some
species-specific traits in lateral root development. For example, in maize, lateral roots
originate in the phloem pole pericycle cells, and in rice, both pericycle and endodermal
cells contribute to this process [186] (reviewed in [187]).

Adding SA (3–250 µM) to the growth medium reduces the number of lateral roots
and lateral root primordia in Arabidopsis seedlings [9,25,26,128,188] (Table S2). This SA-
induced phenotype is related to plant defense (see below). In contrast, in plant tissue
cultures of the Catharanthus roseus hairy root line obtained from Agrobacterium rhizogenes
infected leaves, SA at a very low concentration (10 fM) increases lateral root number, causes
their early emergence (closer to the root tip), and enhances their growth [189]. However,
before a firm conclusion as to the impact of different SA doses in lateral root development
can be arrived at, further investigation in other species, at low SA concentrations, is needed.

In Arabidopsis, IAA promotes lateral root initiation at low concentrations (1–5 nM)
and inhibits it at higher concentrations (25 nM and more) [190]. In addition, the influence of
auxin on lateral root development depends on the lateral root developmental stage [190,191].
The impact of ethylene on lateral root formation is also dose-dependent [190,192]. ABA
(100 nM–10 µM) stimulates lateral root formation in most legume species (both nodulating
and not nodulating) and suppresses this process in nonlegume species [193]. In Populus,
gibberellin applied directly to the shoot apex inhibits lateral root initiation via crosstalk
with auxin and ABA [194]. On the other hand, in Arabidopsis, GA3 (10 µM) increases the
number of lateral root primordia [128]. Brassinosteroids and jasmonates activate, whereas
cytokinins inhibit, lateral root formation [102,128,165,167,169,172].

4.4. SA Regulates the Development of Adventitious Roots

The dose-dependent effects of SA on adventitious rooting is described in relation to
three species: Arabidopsis, azalea, and mung beans, where low SA concentrations (3–50 µM;
100 µM; and 200–600 µM, respectively) increase the percentage of plants with adventitious
roots or the number of adventitious roots, and higher concentrations (100–200 µM; 10 mM;
and 800 µM, respectively) decrease these parameters [25,142,195] (Table 4). In adventitious
root cultures of madder, SA (20 µM) enhances root growth and elevates fresh and dry root
weights [133] (Table S2).

Table 4. Concentration-dependent effects of SA on adventitious rooting.

Plant Species TP 1 SA Concent-
Ration TD 2 Plant Species TP 1 SA Concent-

Ration TD 2 Ref 3

SA Increased Adventitious Rooting SA Decreased Adventitious Rooting

Arabidopsis
thaliana L. 1 3–50 µM 5 d Arabidopsis

thaliana L. 1 0.1–0.2 mM 5 d [25]

Rhododendron
pulchrum Sw. 2 100 µM 62 d Rhododendron

pulchrum Sw. 2 10 mM 62 d [142]

Vigna radiate L. 3 0.2–0.6 mM 24 h Vigna radiate L. 3 0.8 mM 24 h [195]

1 Treatment Procedure (TP). SA was applied in 1—rooting medium seedlings, 2—rooting medium cutting,
3—rooting medium hypocotyl cutting. 2 Treatment Duration (TD). h, hours; d, days. 3 References (Ref).

In cucumber, SA (50–100 µM) competitively inhibits the formation of IAA-Asp by
CsGH3.5, increases free IAA level, and promotes the formation of adventitious roots [60].
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IAA ( 10 µM) increases the number of adventitious roots per explant more than SA (50 µM)
but decreases the average length of adventitious roots less than SA. Combined IAA and SA
treatments enhance the action of both hormones in respect of root length and reproduce the
IAA result in terms of the number of roots. Auxin also increases the endogenous SA level
in adventitious rooting [196]. In carnation stem cuttings, auxin initiates an SA increase just
after treatment, and SA levels peak at 12 h. Adventitious rooting of stem slices from apple
microshoots moves through three stages: dedifferentiation, induction, and differentiation
with an outgrowth [197]. SA enhances IAA decay via decarboxylation and because of
this SA (30 µM) inhibits the initial stages of rooting (0–120 h) that is promoted by auxin,
and enhances the stage of root outgrowth, which is suppressed by auxin [198]. SA has
the opposite effects on rooting depending on the IAA concentration in slice treatments
with both hormones. At 30 µM and 100 µM IAA, the application of 30 µM SA reduces
and elevates the number of adventitious roots, respectively. Along with IAA and SA,
GH3.5 and its paralogs GH3.3 and GH3.6 conjugate JA and thereby fine-tune adventitious
rooting [60,199,200]. Treatment with jasmonates or cytokinins inhibits adventitious root
initiation [201,202]. Similar to SA, brassinosteroids influence adventitious rooting in a
concentration-dependent manner, promoting rooting at low concentrations (1 µM) and
inhibiting it at higher (2–5 µM) concentrations [21].

5. SA Acts Mainly via the Regulation of Auxin Distribution in the Root

As already mentioned above, the influence of SA on adventitious rooting and root
biomass is mediated via tight crosstalk with auxin. In this section, we overview the
molecular aspects of the interplay between these hormones in roots.

In Arabidopsis, SA differentially regulates the protein level of PIN-FORMED (PIN)
auxin transporters in a concentration-dependent manner. Both low (30 µM) and high
(150 µM) SA concentrations reduce PIN2 and PIN7 levels, while only a high SA concentra-
tion decreases PIN1 by 40%, whereas a low concentration of SA elevates PIN1 by 30% [25].
It is worth noting that, in contrast to the protein level, a high SA dose (250 µM) increases
the transcript number for PIN2, though it still reduces the number of PIN1, PIN4, and PIN7
transcripts [9] (Figure 2). The Ser/Thr kinase PID and protein phosphatase PP2A, which
carry out phosphorylation and dephosphorylation of PIN proteins, respectively, control
their polar localization at the plasma membrane and thereby affect auxin distribution [203].
An SA treatment at a high concentration (250 µM) activates PID. In addition, SA is capable
of binding to the A subunits of PP2A and suppressing its activity [26]. Increased PIN phos-
phorylation and decreased dephosphorylation result in a disturbance of auxin transport and
gradients, which may explain some root phenotypes after an SA treatment (Figure 2). Thus,
PIN2 hyperphosphorylation occurs 15 min after an SA treatment (40 µM) and becomes
more pronounced 45 min later, contributing to a reduction in primary root growth, lateral
root formation, and the gravitropic response [26]. SA (25–50 µM) also affects PIN proteins
by repression of their endocytosis [129,204]. A higher SA concentration (100 µM) and more
prolonged treatment (24 h) result in the condensation of PIN2 proteins into hyperclusters
on the cell surface, hampering auxin transport and impairing root gravitropism [205].

SA can also alter PIN2-based polar auxin transport in the root via a cGTPase NITRIC
OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) [206]. This pathway likely contributes to
the regulation of root waving in Arabidopsis, which is induced by an SA treatment (with
the maximal amplitude at 30 µM within a concentration range of up to 50 µM), in an
NPR1-dependent manner. Besides auxin transport, AtNOA1 mediates an SA-induced
cytosolic Ca2+ increase, which is crucial for SA-induced root waving. AtNOA1 expression
is activated in the root after an SA treatment. Despite the fact that AtNOA1 mediates NO
production during plant development [207,208] and SA induces nitric oxide (NO) produc-
tion in roots [209], the function of AtNOA1 in SA-induced root waving is independent of
NO [206].
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Figure 2. SA regulates auxin distribution in Arabidopsis thaliana root. An SA treatment activates the
auxin biosynthetic enzyme TAA1 and inhibits the PIN2/PIN7 auxin efflux carriers. Low doses of SA
activate PIN1, promoting auxin accumulation and transportation, which leads to a distal meristem
extension. High doses of SA decrease PIN1 expression, inhibiting meristem activity. Moreover,
SA elevates PIN2 phosphorylation, thereby affecting auxin transport. TAA1, TRP AMINOTRANS-
FERASE OF ARABIDOPSIS 1; PIN1/2/4/7, PIN-FORMED 1/2/4/7; PP2AA1, Protein Phosphatase
2A subunit A; PID, Protein kinase PINOID; P, phosphate; RAM, root apical meristem.

Along with the modulation of auxin transport, an SA treatment may enhance IAA
content in the root. The expression of TRP AMINOTRANSFERASE OF ARABIDOPSIS
1 (TAA1), the first enzyme in the main pathway of auxin biosynthesis, increases three-
fold in root tips exposed to SA (both 30 µM and 150µM) [25]. Arabidopsis plants over-
expressing the GH3.5/WES1 gene, encoding an auxin-conjugating enzyme (IAA-amido
synthetase), have a decreased free IAA level, increased SA content, a reduced number of
lateral roots [199], and a reduced primary root length [210]. GH3.5/WES1 is induced by
IAA, ABA, and SA, which highlights that not only hormone biosynthesis but also other
aspects of hormone metabolism participate in SA–auxin crosstalk.

The complex interactions between SA and IAA differentially influence root architec-
ture. In maize, IAA treatment (1 µM) decreases overall root biomass and root length, while
SA (1.5 µM) increases both characteristics [42]. Attacks of Diabrotica virgifera larvae, which
are soil-borne pathogens, seriously damages roots, causing an increase in IAA and SA in
different parts of the maize root tip (in the distal and proximal regions, respectively). SA’s
effect on auxin signaling in roots is concentration-dependent [25]. In Arabidopsis, low
(30 µM) and high (150 µM) SA concentrations increase and decrease the activity of the
DR5:GFP auxin sensor, respectively. It has been reported that 0.5 mM SA blocks strong
induction of DR5:GUS by 1 µM 1-naphthaleneacetic acid (NAA), a synthetic auxin, in
Arabidopsis roots [151]. Auxin and SA signaling antagonize each other in the regulation of
lateral root initiation (see below).

6. SA Regulates Columella Development

The root stem cell niche (SCN) consists of the mitotically inactive SCN organizer and
the quiescent center (QC) and is surrounded by stem cells, including cortex/endodermis
initials (CEIs), stele cells initials (SCIs), epidermal/lateral root cap initials, and columella
stem cells (CSCs) [211,212] (reviewed in [213]). Lateral root cap initials and CSCs form
the root cap or distal meristem, and the rest of the stem cells, together with their dividing
descendants, belong to the proximal meristem (reviewed in [214]). In the event of stem
cell damage, QC cells can divide to replenish them. Ablation of the QC cells causes the
precocious differentiation of CSCs, determined by starch accumulation.
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Both an SA treatment (10–30 µM) and an elevation of endogenous SA levels contribute
to increases in the frequency of QC cells division, which are normally relatively mitoti-
cally inactive. Elevated SA levels give rise to additional QC cells with decreased levels
of WUSCHEL RELATED HOMEOBOX 5 (WOX5), the QC marker [25,215]. In SA over
accumulating constitutively activated cell death 1 (cad1) mutants [216] and in wild-type plants
treated with a low SA concentration (10 µM) for 5 days, CSCs prematurely differentiate
into columella [215]. A high percentage of plants (40–70%) do not have the CSC layer
between the QC and the differentiated columella cells. In contrast, treatment with a slightly
higher SA concentration (30 µM, for 5 days), results in the formation of two to four extra
tiers of QC/CSC-like cells, which express both QC (WOX5) and CSC (J2341) markers and
which lack starch granules [25]. Enlargement of the distal meristem is also reported in
the SA-accumulating mutants dnd1 and dnd2. A further increase in the SA concentration
(150 µM, for 5 days) does not affect the distal meristem organization compared to the wild
type aside from the bigger size of the columella cells and the lack of starch granules.

These alterations in the distal meristem occur via at least two mechanisms: changes in
ROS level and in auxin distribution. SA signaling promotes ROS production and homeosta-
sis [12,215]. ROS signaling regulates QC cell division and CSC differentiation [187,215,217].
Upon a low-dose SA treatment (30 µM, for 24 h), auxin rises in the Arabidopsis root tip
by increasing auxin biosynthesis and the PIN1 level, as well as by suppressing PIN2 and
PIN7 [25]. Higher SA concentrations (100–150 µM, for 24 h) [25,205], or prolonged treatment
with low-concentration SA (10–30 µM, for 5 days) [215], reduces auxin levels according to
decreased DR5 auxin sensor activity in the QC and CSCs. High SA levels (150 and 250 µM)
suppress auxin flow from the stem to the root tip, mainly due to a decrease of PIN1 [9,25].
Thus, low SA doses increase auxin levels in CSCs and promote their differentiation, while
high SA doses decrease auxin levels and retard CSC differentiation.

Experiments with plants treated with auxin, possessing excessive auxin accumula-
tion and with auxin-deficient mutants, confirm the role of auxin in SA-induced columella
changes. Seedlings, treated with NAA (1–5 µM) and PIN-dependent auxin transport in-
hibitor 1-N-naphthylphthalamic acid (NPA; 0.05–5 µM), as well as transgenic lines with
increased endogenous auxin levels, also lose the CSC layer in their root tips due to pre-
cocious CSC differentiation [218]. In contrast, mutants defective in auxin biosynthesis,
signaling, or PIN auxin efflux in the columella, have several layers of CSCs. Thus, facil-
itating CSC differentiation, very low SA doses imitate the effects of auxin treatment or
disturbance of auxin transport, whereas increased SA doses, which result in several CSC
layers, phenocopy mutants in auxin biosynthesis and signaling.

It should be noted that a variety of other hormones play an important role in the
control of QC cell division and CSC differentiation. Elevated levels of endogenous ethylene
or an ACC treatment (50 µM) also cause extra cell divisions in QC and the formation
of several additional cells with QC identity [219]. Inhibition of ethylene biosynthesis by
2-aminoethoxyvinyl glycine (AVG) in wild-type plants reduces the number of columella
layers. JA-treated roots (20 µM, 2 days and more) also have extra cells with QC identity,
and this effect is ethylene independent [170]. In parallel, JA destroys CSC identity; CSC
marker J2341 is expressed in more than one layer but at the same time, some cells be-
low the QC have starch granules. Brassinosteroids at low concentrations (1 fM–0.1 nM)
stimulate mitotic reactivation of QC cells and inhibit CSC differentiation, whereas higher
concentrations (4 nM) promote CSC differentiation up to the disappearance of the CSC
layer [149,220]. In the QC, ABA antagonizes SA and promotes QC quiescence. QC divi-
sions, producing extra QC cells, were detected after blocking ABA biosynthesis and in
ABA deficient or ABA insensitive mutants [33]. ABA regulation of QC divisions is ethylene
independent. In both proximal and distal meristems, ABA suppresses cell differentiation.
ABA (50–500 nM) increases the length of the proximal meristem without activating cell
divisions, just by increasing the number of undifferentiated stem cell descendants. In the
distal meristem, blocking ABA biosynthesis results in starch accumulation, not only in CSC
but also in QC cells. ABA suppression of cell differentiation in the distal meristem depends
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on the WOX5 and AUXIN RESPONSE FACTOR 5/MONOPTEROS (ARF5/MP) function.
Thus, SA (10–30 µM) stimulates QC divisions similar to ACC (50 µM), JA (20 µM), and
brassinosteroids (1 fM–0.1 nM), and unlike ABA [33,149,170,219,220]. In turn and similar
to very low SA doses, treatment with auxin or 4 nM brassinolide promotes CSC differ-
entiation. Similar to higher SA doses, lower auxin and brassinolide concentrations, as
well as ABA treatment, inhibit CSC differentiation and thereby elevate the number of CSC
layers [25,33,149,215,218,220]. In the proximal meristem, where SA inhibits cell divisions,
ABA suppresses cell differentiation [25,33]. Although there likely exists a complex interplay
between SA and the signaling pathways of other hormones, the detailed mechanistic insight
into this crosstalk requires further investigation.

The prolonged (3–5 days) treatment of 3–4 DAG seedlings with SA (30 µM) also
enlarges the distal meristem width by disturbing cell division planes and increasing division
frequency of epidermal/lateral root cap initials and CEIs [25]. Normally the QC cells with
increased division rates and the CEIs with disordered divisions begin to form in the roots
of older seedlings, starting from 10 DAG, where this phenotype is observed in about 40%
of plants. In Catharanthus roseus hairy root tissue cultures obtained from Agrobacterium
rhizogenes infected leaves, SA at a very low concentration (10 fM) also expands the root cap
width and increases the number of columella cells [189].

7. SA Controls Radial Root Patterning

SA (30 µM) changes radial root patterning in the epidermis and subepidermal tissues
in A. thaliana [25]. Multiple extra divisions are detected in the cells of these outer layers in
SA-treated 3–5 DAG seedlings, starting from 36 h of treatment. The divisions are radially
(tangentially) oriented in the epidermis, cortex, and endodermis, leading to the formation
of extra cells or cell files in these tissues. Additionally, an SA treatment (10–30 µM) induces
periclinal divisions in the endodermis resulting in the formation of the middle cortex, an
intercalary tissue between the endodermis and the cortex [21,25]. Normally, the middle
cortex starts forming in the roots of older seedlings (10–14 DAG) [25,221,222].

The low SA concentration induces middle cortex formation using two aforementioned
mechanisms involved in SA-induced changes in the distal meristem: SA increases auxin ac-
cumulation [25] and promotes hydrogen peroxide production via repressing catalases [21].
Accordingly, the middle cortex develops prematurely after a hydrogen peroxide treat-
ment [223]. SHORT-ROOT (SHR) and CYCD6;1 regulate middle cortex formation [25,222].
SA (30 µM) decreases SHR in endodermis cells and thereby activates CYCD6;1 and enlarges
the CYCD6;1 expression domain to include the cortex and endodermis [25]. This results in
middle cortex formation from endodermis and tangential cell divisions in some endoder-
mis, cortex, and epidermis cells. In addition, SHR elevates reactive oxygen species, mainly
hydrogen peroxide, the scavenging of which greatly reduces SHR mediated periclinal
divisions [21]. Furthermore, SHR promotes hydrogen peroxide generation by activating
the SA pathway.

It is not clear if other pathways contribute to SA-induced formation of the middle
cortex. Although SCARECROW (SCR) is not an SA target [25], scr mutants prematurely
form the middle cortex at phloem poles (starting at 3 DAG and being extensive by 7 DAG)
indicating that SCR regulates both the timing and location of middle cortex develop-
ment [222]. SHR protein is synthesized in the central vascular cylinder and moves into
an adjacent endodermis, where SCR blocks further SHR movement [224]. In contrast
to SA, GA and ABA suppress middle cortex development, and their interaction in this
process is complex [222,225–227]. SCARECROW-Like 3 (SCL3), a direct target of SHR
and SCR, controls middle cortex formation, downstream of DELLA, in the GA signaling
pathway [228]. SEUSS is the upstream regulator of SHR, SCL, and SCL3 during middle
cortex development, integrating SHR and GA pathways [229]. GA downregulates both
SCL3 and SEUSS [228,229]. GA- AND ABA-RESPONSIVE ZINC FINGER (GAZ), which is
repressed by both ABA and GA, affects in feedback the metabolism of both hormones and
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thereby the timing of middle cortex formation [227]. Ethylene, like SA, promotes middle
cortex development but the underlying mechanism is unknown [226].

The endodermis can produce several cortex layers while maintaining a single endo-
dermis layer. For example, in white mustard, which belongs to the Brassicaceae family,
as does Arabidopsis, there are four concentric rings of cortical cells, organized in such a
way that the cells of each ring are located opposite each other, forming radial intercellular
spaces from the endodermis to the epidermis, whereas in tomato, in five cortex layers, the
cell positions in the concentric rings are alternate [230]. In maize roots, five–six concentric
cortex rings can be subdivided into the inner, with opposite, and the outer, with alternate,
cell arrangements. It would be interesting to investigate if SA plays any role in these
cortex arrangements.

8. SA Alleviates Changes in Root System Morphology Induced by Abiotic Stresses

Due to the sessile nature of plants, roots react to various abiotic stresses, changing
the root system architecture. Treatment with SA completely removes the consequences of
weak and moderate stresses and partly recovers inhibition of root growth caused by severe
stresses (Table S3). For example, SA (10 µM) application to chickpea plants exposed to weak
or moderate and strong cadmium (Cd) stress increases, restores and partly restores root
length, respectively [231]. In some cases, SA’s protective effect is due to it reducing stress
factor toxicity [232–234] (reviewed in [235]). For example, the application of exogenous
SA elevates aluminum (Al)-induced citrate efflux from the roots of Cassia tora, which is
associated with an increased tolerance of seedlings to Al [44]. In the present review, we
consider only those cases where SA treatments protect plants from damage to the root
system caused by abiotic stresses.

SA priming of seeds (soaking seeds in an SA solution and subsequent drying) ei-
ther completely or partially recover seed germination inhibited by salinity, drought, and
Cd stresses [71,79,82,236] (Table S3). The effective SA concentration depends on plant
species and stress severity. SA priming of sesame (70–350 µM) and wheat (15 µM) seeds
mitigated salinity-induced (40–50 mM NaCl) inhibition of seed germination [71,97]. SA
priming of mungbean (0.01 µM), fenugreek (15 µM), Arabidopsis (50–500 µM), wheat
(0.3–1 mM), and barley (1 mM) seeds alleviated even higher salinity levels (100 mM NaCl
and more) [72,75,77,114,122,237]. SA seed priming, the addition of SA to the soil or growth
medium, and even spraying shoots with SA can rescue root length and biomass, suppressed
by salt, drought, chilling, nickel, cadmium, arsenic, silicon, zinc, and lead stress (Table S3).

For several species, low SA concentrations (Carum copticum, 10 nM; Arabidopsis,
100 µM; and Limonium bicolor, 0.08–0.2 mM) rescue salinity-induced inhibition of seed
germination, while higher doses (Carum copticum, 1 µM–10 mM; Arabidopsis, 500 µM–
1 mM; and Limonium bicolor, 0.24–0.28 mM) enhance it [74,78,238]. In Arabidopsis, low SA
concentrations are not only effective in increasing root growth but also decrease K+ leakage
from cells due to acute salt stress, whereas high SA concentrations not only inhibit root
growth but also have no impact on K+ leakage [25,239]. Both NaCl-induced K+ leakage
and H+ influx are most strongly decreased in roots treated with low SA concentrations
(10–50 µM) [239]. In most cases, those SA concentrations, which enhance or at least do
not influence root growth under normal conditions, promote plant recovery from stress
conditions [231,236,240] (Table S3). This recovery is related to SA’s protection of cell
divisions. The SA treatment of wheat seeds increases the mitotic index in the root apical
meristem and thereby promotes root tolerance to high salinity and their enhanced recovery
after stress [143].

SA protection of the root system under stress conditions is also related to the optimal
SA endogenous level. For example, soil alkalinity, one of the threats to crop productivity,
decreases both tomato root length and dry weight [56]. Treatment with SA (100 µM),
not only compensates for this damage but additionally enhances both parameters com-
pared to control plants. Soil alkalinity elevates the endogenous SA level in roots, whereas
simultaneous SA treatment completely eliminates this increase.
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In roots, the alleviation of abiotic stress damage with SA occurs via SA crosstalk with
other hormones and via hydrogen peroxide and nitric oxide produced in response to both
SA and stress [241–244] (reviewed in [235]). We have already discussed SA involvement
in crosstalk with hormones, ROS, and nitric oxide, however, stress responses have some
specific characteristics. For example, in Arabidopsis roots, SA and ethylene signaling
interact with each other in response to Al [245]. Single npr1 and ein2 mutants have a lower
decrease in root fresh weight compared to the wild type and npr1 ein2 double mutant.
SA-mediated stress responses may recruit other hormonal pathways. In barley exposed
to Cd (15 µM), IAA content in root tips increases three-fold [243]. Both Cd and IAA
(1 µM) treatments result in root growth suppression and swelling. Post-treatment with SA
(0.25–0.5 mM) rescues the normal root phenotype without affecting IAA content in roots,
possibly acting on IAA signaling pathways. Elevation of auxin and ethylene signaling
follows iron deficiency-induced SA accumulation in Arabidopsis [54]. An increase in
endogenous ABA levels is a possible intermediate in SA protection against various abiotic
stresses [233,246].

9. SA Couples Root Morphology and Plant–Soil Biota Interactions

Due to their direct contact with the soil, roots are vulnerable to soil-borne pathogens
such as fungi, bacteria, viruses, nematodes, and herbivorous insects. Recent studies demon-
strate that some SA-induced morphological and morphogenetic changes are a part of
the strategy that SA utilizes to restrict pathogen invasion in the root. Some pathogens,
for example, viruses, are capable of invading epidermal and cortical cells intracellularly
through plasmodesmata [247–249]. In Arabidopsis, exogenous SA (50 µM, 24 h) or cucum-
ber mosaic virus-induced SA, triggers plasmodesmal closure in root meristematic cells
via Remorin-dependent membrane lipid organization to impede virus spread [250]. This
regulation employs NPR-mediated SA signaling. In asparagus, SA pretreatment facilitates
Fusarium oxysporum-induced cell wall reinforcement in the root due to enhanced lignin
synthesis, thereby alleviating pathogen propagation [251]. SA antagonizes auxin in lat-
eral root formation to restrict bacterial infection. Pseudomonas syringae strain Pto DC3000
invades Arabidopsis plants through emerged lateral roots and then induces lateral root
formation by producing auxin, which activates the ARF7/ARF19–LATERAL ORGAN
BOUNDARIES-DOMAIN 16 (LBD16)/LBD18 regulatory module [188,252]. SA represses
lateral root formation via the induction of PATHOGENESIS-RELATED GENE 1 (PR1) and
PR2 transcription, thereby decreasing the number of potential pathogen entry sites [188].
Notably, the bacteria fight against this defense strategy; auxin-activated ARF7 directly
represses the transcription of PR1 and PR2 to derepress lateral root development. In re-
sponse to pathogen attacks, plants accumulate SA, which represses auxin signaling [151]
and transport [9,25,253].

In addition to pathogens, plant roots contact a plethora of non-pathogenic soil microor-
ganisms. The microbial community associated with the plant roots facilitates physiological
and morphological functions of roots, including organogenesis and root architecture (re-
viewed in [254–256]). SA can impact these processes by shaping root microbiota (reviewed
in [257,258]). An essential role of SA in modulating colonization of the root by specific bac-
terial families was nicely demonstrated for Arabidopsis [35]. Presumably, SA functions as a
part of the immune system or affects microbe—microbe interactions and root physiology
via yet undefined mechanisms.

In legumes, symbiotic Rhizobium bacteria under nitrogen-limiting conditions, trigger
the plant-guided formation of novel root organs called nodules, which promote rhizobia-
mediated nitrogen fixation from the atmosphere (reviewed in [254,259]). The symbionts
are capable of escaping host immunity to invade the root (reviewed in [260]). It is gener-
ally accepted that exogenous SA (25–100 µM) inhibits the association of rhizobia with the
host plant root and suppresses nodulation in indeterminate-nodule-type plants [261,262].
Decreased SA levels through the overexpression of NahG, promote infection thread and
nodulation, including the determinate-nodule-type plant Lotus japonicus [14]. The bac-
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terial Nod factor contributes to the avoidance of microbe-induced SA accumulation in
the roots of at least some species, such as peas and alfalfa, while in others (for example,
vetch) this tolerance does not depend on Nod [261–263]. Interestingly, low exogenous SA
concentrations of 5–10 µM, stimulate nodulation in several legume species including the
determinate-nodule-type plant L. japonicus [262,264]. This gives an idea of a possible SA
contribution in the nodulation process, independent of plant immunity mechanisms. This
is consistent with the recently described role of SA in the regulation of the subcellular
localization of plasma membrane microdomains, which is essential during the early stage
of nodulation in soybeans [265].

Another example of SA participation in symbiont-induced morphogenesis is the induc-
tion of second-order lateral root development in Arabidopsis, elicited by the rhizobacterium
Serratia marcescens, strain 90–166. It is alleviated in SA-deficient plants overexpressing NahG,
highlighting the impact of the SA signaling pathway in this morphological trait [266].

10. Conclusions: SA Links Stress Response and Development

Salicylic acid is often considered in the context of its protective mechanisms against bi-
otic and abiotic stress. Providing this dual function, SA greatly influences root development
starting at seed germination, through to root elongation, root branching, and adventitious
rooting. Treatment with SA often causes dwarf plant phenotypes, which is interpreted
as being an SA-induced shift of plant resources from growth to defense. To ensure opti-
mal plant growth in an unfavorable environment, different mechanisms controlling the
growth-defense balance in plants have evolved, in which SA plays an important role. First,
SA-mediated concentration-dependent positive/negative feedback regulation of its own
biosynthesis fine-tunes this balance [63]. Another vivid example is the growth and stress
regulator CPR5, which attenuates both (1) SA levels, and (2) SA- and the endoplasmic
reticulum stress-induced IRE1-bZIP60 arm [11]. The latter is capable of promoting inhibi-
tion of root elongation under elevated SA conditions and mediating the unfolded protein
response. Therefore, CPR5 directly manages the trade-off between plant growth and stress
responses. Being the precursor of both IAA and SA, shikimate may act as a switch from
plant development to a protection mode (reviewed in [267]). Thus, intense morphogenesis,
requiring local IAA biosynthesis, limits the ability of a proper response to stress, and stress
response blocks morphogenesis.

On closer inspection, SA-mediated morphological changes such as the reduction of
lateral root formation, enhanced adventitious rooting, nodulation, cell wall lignification,
and plasmodesmal closure, can directly impede pathogen invasion in the root or facilitate
plant growth under adverse conditions. In this context, it is important to highlight that
most of the SA effects are concentration-dependent, which was demonstrated at least in
several species. Consequently, there are two bioactive concentration windows for SA in the
root system; at low levels, it acts as a developmental regulator, and at high levels, SA acts
as a stress hormone [25]. It has been suggested that endogenous SA is a hormetic regulator
which produced heterosis in Arabidopsis Columbia/C24 hybrids at sub- and supra-optimal
doses [66]. Most of the evidence reviewed herein, suggests that SA’s hormetic abilities act
to stimulate growth at low doses and to inhibit growth at high doses.
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