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Vector-borne diseases have high morbidity and mortality and are major health

threats worldwide. gdT cells represent a small but essential subpopulation of T

cells. They reside in most human tissues and exert important functions in both

natural and adaptive immune responses. Emerging evidence have shown that

the activation and expansion of gdT cells invoked by pathogens play a

diversified role in the regulation of host-pathogen interactions and disease

progression. A better understanding of such a role for gdT cells may contribute

significantly to developing novel preventative and therapeutic strategies.

Herein, we summarize recent exciting findings in the field, with a focus on

the role of gdT cells in the infection of vector-borne pathogens.
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Introduction

Vector-borne emerging and re-emerging infectious diseases are major public health

problems worldwide, accounting for more than one sixth of all infectious diseases (1, 2).

They are caused by pathogens carried and transmitted by vectors, such as mosquitos,

ticks, fleas, flies, lice, snails, and triatomine bugs (Figure 1).

WHO recently announced the spread of the vector-borne pathogens, primarily

including parasites, viruses and bacteria (https://www.who.int/zh/news-room/fact-

sheets/detail/vector-borne-diseases). Specifically, the parasites included were lymphatic

filariasis (mosquito), schistosoma (aquatic snail), onchocodium filariasis (black fly) and

trypanosoma (triatomine bug, tsetse fly) and etc; viruses include mosquito-borne

chikungunya fever, dengue, lymphatic filariasis, Rift Valley fever, yellow fever, Zika,

and tick-borne Crimean-Congo hemorrhagic fever virus, borrelia burgdorferi, tick-borne

encephalitis virus, and etc.; and bacteria mainly include Typhoid, Coxella bainiensis, spot

fever rickettsia, and etc. (Figure 1).
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Vector-borne diseases may not be directly disseminated

between humans. Under certain circumstances, they can be

transmitted to different hosts through the bite by pathogen-

infected vectors (3, 4). As emerging infectious diseases

(including vector-borne diseases) have certain relationships

with social and economic development (5), a better

understanding of the emerging and recurrent infectious

diseases, especially how these diseases are transmitted, has

profound significance for both human health and

social development.

In response to pathogen invasion, human immune system

acts as an advanced structural and functional architecture, in

which all components (e.g. immune organs and cells,

inflammatory factors, humoral factors, cytokines and

chemokines) are highly orchestrated towards eliminating the

invaded pathogen (6). During the invasion, both innate and

adaptive immune responses can be triggered. Compared to

innate immunity, adaptive immunity utilizes antigen and

antibody specificity to eliminate the pathogen, thereby

maintaining a steady state of the host and creating

immunological memory for combating potential re-invasion of

the same pathogen.

Different leukocytes, for example B and T cells, are known to

play differential roles during these processes (7). T cells can be

categorized to conventional T cells (abT cells) and

unconventional T cells (gdT cells) according to the types of

their cell surface antigen receptors (8). Although abT and gdT
originate (differentiate) from the same thymic precursors, there

are huge differences of biological functions and structures

between the two types of T cells. The abT cell receptors are
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expressed by ~95% of the T cells in the spleen, lymph nodes, and

circulation system, and by ~60-70% of T cells in the peripheral

blood. They have a and b chains and exhibit MHC restriction

during the recognition of antigens (9).

On the contrary, the gdT cells express g and d chains of T cell

receptors, account for ~5-15% T cells in the peripheral blood, and

do not have MHC restriction during the recognition of antigens

(10, 11). At the initial stage during the invasion of pathogens, gdT
cells apparently exert innate immunity functions (6), so that they

can rapidly respond by recognizing some common antigen

components expressed by the invading pathogens, including

glycolipids, glycoproteins, and mycobacterial derivatives (12).

Although gdT cells have been known to act primarily in innate

immunity, more and more findings have shown that these cells

also exert fundamental functions in adaptive immune responses,

for instance, by secreting cytokines and presenting antigens.

Therefore, they have been considered as a bridge connecting

innate immunity and adaptive immunity. However, the

biological functions of gdT cells are not entirely dependent on

HLA recognition mechanism.

gdT accounts for only a small part of the T cell population

and is widely distributed in different parts of the human body,

such as skin and intestinal tract (7). Human gdT cells are mainly

categorized by the usage of d chain, whereas mouse gdT cells are

often categorized by the usage of g chains. As such, human gdT
cells can be divided into gd1, gd2, and gd3 T cells (13), with their

distribution and function varying from each other (14). gd1 T

cells are mainly distributed in the mucosal epithelium and play

an important role in cell infection by listeria and

cytomegalovirus. gd2 T cells are relatively high in peripheral
FIGURE 1

Major vector-borne diseases and their vectors. Mosquitos, ticks, fleas, flies, lice, snails, and triatomine bugs are best-characterized vectors that
can carry pathogens for a variety of diseases. The listed are representative rather than a complete list of major vector-borne diseases that are
known to be transmitted by each of the vectors.
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blood gdT cells and show strong immune response to

mycobacterium and influenza virus (15, 16). They destroy

pathogens or infected cells by interacting rapidly with them

(17, 18). gd3 T cells, which account for a small proportion of gdT
cell and are abundant in the liver, act during chronic viral

infection (19).

The common and more harmful vector-borne diseases

include dengue virus, Japanese encephalitis, Lyme disease and

malaria. gdT cells play a key role in the host immune responses

to the invasion of arbo-borne pathogens. More and more studies

have shown that gdT cells are critical for antiviral and

immunomodulatory activities in the first stage of arbo-borne

pathogen infection. They are activated and participate in innate

immune responses by producing cytokines associated with

appropriate T-assisted responses during the early stages of

microbial infection, either intracellular or extracellular (20). In

addition to directly fighting against invading pathogens, gdT
cells can also respond by recruiting other natural immune cells

such as neutrophils and macrophages (21).

Infectious diseases are caused mainly by pathogenic

microorganisms such as bacteria, viruses and parasites. gdT
cells play important roles in responding to the invasion of

common pathogens. Zhao and colleagues have summarized

the role played by gdT cells in host responses to
Frontiers in Immunology 03
mycobacterium tuberculosis, Listeria monocytogenes, influenza

viruses, HIV, EBV, and HBV (13). However, little is known

about the effects of vectors on host gdT cells. Emerging vector-

borne infectious diseases are an important part of emerging

infectious diseases and have been in an intensified form globally.

Many social and natural factors, including environmental

pollution and modern transportation and logistics, make it

more convenient for vectors to transmit arboreal pathogens.

Traditionally, many vector-borne diseases can be treated by

antibiotics-based therapeutics. However, at least partly due to

the antibiotics abuse in clinic, a variety of pathogens have

developed resistance to common antibiotics, leading to poor

clinical outcomes when using antibiotics to treat infected

patients (22). To address this problem, it is critical for

developing novel therapeutic approaches. In the past decades,

scientists and clinicians have focused on the roles of

conventional T cells-mediated immune responses during the

pathogen infection. Notably, more and more evidence has

uncove red pr ev ious l y -unr ecogn i zed key ro l e s o f

unconventional T cells in this process. Therefore, we feel it is

important to summarize recent progresses in the field

investigating the functions of T cells (Table 1), especially the

unconventional gdT cells, during the host immune responses to

vector-borne pathogens, such as plasmodium, borrelia
TABLE 1 Potential roles for gdT cells in vector-borne diseases.

Disease Pathogen Involved gdT cells and their potential roles References

Chikungunya

(mosquito-borne)

chikungunya

fever virus

gdT cells; likely involved in promoting protective immunity (23–25)

Rift Valley Fever

(mosquito-borne)

Rift Valley

Fever virus

CD11b+ gdT; may be critical for the host responses in sheep (26–28)

Yellow fever

(mosquito-borne)

Yellow fever

virus

gd2T cells; can respond quickly to virus infection and produce IFN-g (29)

Dengue fever

(mosquito-borne)

Dengue fever

virus

gd2-T-cells; may serve as the early source of IFN-g during dengue virus infection and promote the host immune

responses by eliminating the virus-infected cells

(30–37)

Zika fever

(mosquito-borne)

Zika virus gd2T; unclear (38–40)

West Nile fever

(mosquito-borne)

West Nile

virus

gdT cells; may serve as the main source of IFN-g and may also promote DC maturation and CD4+ T cell infiltration (41–45)

Malaria

(mosquito-borne)

plasmodium

parasite

gdT cells, Vg9Vd2 subpopulation, and gd2+ gdT cells; play both anti-pathogen and pathogenic roles (46–60)

Lyme disease

(tick-borne)

borrelia

burgdorferi

gdT cells; may act indirectly through the actions of Toll-like receptors of DCs or monocytes, and may also act to

activate the host acquired immunity during the infection of the pathogen

(61–66)

Tularaemia

(tick-borne)

Francisella

tularensis

gdT cells can be increased and maintained for up tyo a year in the peripheral blood from tularaemia patients (67–69)

Leishmaniasis leishmania gdT cells; a potential role for gdT cells in eliminating the infected parasites, but long-term parasite infection may

lead to gdT lymphoma

(70–73)

South American

trypanosomiasis

Trypanosoma

cruzi

gdT cells; may act by secreting IL-10 to facilitate host responses (74)
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burgdorferi, and dengue fever, with a hope to accelerate our

effor t s in deve loping nove l and effec t ive c l in ica l

therapeutic strategies.
Immune responses of the host gdT
cells to mosquito-borne pathogens

Mosquito-borne viruses

Chikungunya
Chikungunya is caused by the infection of chikungunya fever

virus. Its clinical manifestations include headache, fever, and

serious joint pains (23–25). Vectors for chikungunya fever mainly

include Aedes Aegypti and Aedes albopictus (also called Asian

tiger mosquito) (75). Currently, there is no effective drugs or

vaccines available for treating or preventing chikungunya (76).

Different T cell family members play differential roles after the

invasion of chikungunya fever. Rapidly accumulated CD8+ T

cells have been detected in the joints of mice that are acutely

infected by the virus to promote protective immunity, but the

lack of CD8+ T seems to have no effect in preventing

arthrophlogosis of the infected mice (77). On the contrary, the

virus will not be able to induce joint diseases after the exhaustion

of CD4+ T cells (77, 78). Activated CD4+ T cells have been shown

to be implicated in the pathogenesis of arthrosis swell (77–79).

Unconventional gdT cells are also likely involved in

promoting protective immunity in the host against

chikungunya invasion. The numbers of gdT cells in the feet

and lymph nodes are significantly increased after the mice are

infected by chikungunya. Mice defective in gdT cells are more

susceptible to chikungunya infection, exhibiting more severe

foot swell and inflammation in the ankles, as well as increased

oxidative damages, suggesting that gdT cells play critical roles in

the protective immunity during the infection of chikungunya

and subsequent inflammation and tissue damage (80).

Rift Valley Fever
Rift Valley Fever is a type of zoonosis caused by Rift Valley

Fever virus, transmitted mainly by aedes and culex (26).

Although most of infected patients only have minor fever,

headache, and muscle pains, some patients may develop

serious symptoms, including retinopathy, meningoencephalitis

symptoms, and hemorrhagic fever (27). A possible role for gdT
cells in Rift Valley Fever has been reported for infected sheep.

Similar to other ruminants, the sheep’s gdT cells account for a

major population of its peripheral blood mononuclear cells.

When recombinant Rift Valley Fever vaccine has been injected

into the sheep, the percentage of CD11b+ gdT in its peripheral

blood mononuclear cells can be significantly increased,

suggesting that these cells may be critical for the host

responses in respond to the virus infection (28).
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Yellow fever virus
Yellow fever virus belongs to the Flaviviridae, transmitted

primarily by aedes and haemophilus mosquito. The symptoms

for yellow fever commonly include fever, headache, jaundice,

muscle pains, and emesia. Some patients may develop more

serious symptoms and die quickly (29). So far, the YF-17D

vaccine for yellow fever is probably one of the most effective

vaccines. When it is inoculated into human hosts, gd2T cells can

respond quickly and produce IFN-g within a week (28).

Dengue fever
Dengue virus is a mosquito-borne pathogen that is

transmitted between hosts by mosquito bite (30). In clinic,

most patients with slight infection will not have complications,

and only a small population of patients will progress into severe

disease states, exhibiting thrombocytopenia, end-organ damage,

and other symptoms (31). critically ill patients commonly

develop secondary infection, which is closely related with

innate immunity (32, 33). In the host immunity, T cells are

critical for eliminating pathogen invasion. In in vitro

experiments, CD8+ abT cells can respond to dengue virus,

and many evidence have shown that these cells play important

roles in the host responses (34, 35).

We know relatively less about the roles for gd T cells in the

dengue virus infection. Eleonora Cimini and colleagues analyzed

peripheral blood mononuclear cells from 15 dengue fever

patients, the results show a significant decrease of gd2-T-cell
frequency and an increase of failure markers. In addition, the

ability of gd2-T-cells to produce IFN-g in response to the

phosphor-antigen was limited (36). Interestingly, primary

human gdT has been shown to be able to kill dengue virus in

vitro, suggesting a potential role for these cells in the anti-dengue

virus process. Further investigations by Chen-Yu Tsai and

colleagues have shown that primary gdT cells serve as the early

source of IFN-g during dengue virus infection and promote the

host immune responses by eliminating the virus-infected cells.

Monocytes can act as helper cells to participate in the virus

infection and enhance the immune reponses in an IL-18-

dependent manner (37).

Zika virus
Similar to dengue virus, Zica virus is primarily transmitted

by infected aedes mosquitoes in tropical and subtropical regions.

The infection of Zica virus can cause Guillain-Barre syndrome,

neuropathy and myelitis. The infection during pregnancy may

lead to the development of microcephaly and other congenital

abnormalities in fetuses and newborns (38), and there has been a

lack of clear treatment strategy. Previous reports have shown

significantly increased Th1, Th2, Th9, and Th17 during acute

Zica infection (39), suggesting that conventional T cells may

dominate the host responses to Zica invasion. However, it

should be noted that Eleonora Cimini and colleagues have also
frontiersin.org
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specifically detected gd2TCR in Zika virus-infected patients and

a significantly increased expression level of CD3+CD4−CD8− T

cell subsets (40), implying a possible role for unconventional

gdT cells.

West Nile virus
West Nile virus is a type of flavivirus, primarily transmitted

by culex pipiens. Most West Nile virus-infected patients exhibit

no significant symptoms (asymptomatic). However, the

incidence of severe cases increases significantly in

immunocompromised populations (41), and there is no

targeted vaccine for such cases. gdT cells are thought to play

an essential role in the early control of infection. They respond

rapidly by producing large amounts of IFN-g (42). In addition to

serving as the main source of IFN-g, gdT cells may also promote

DC maturation and CD4+ T cell infiltration, as suggested by the

observations that the expression of the dendric CD40, CD80,

CD86 and MHC II molecules, as well as the expression of IL-12,

are lower in gdT-deficient mice compared to those in wild-type

mice. Furthermore, West Nile virus-induced activated gdT cells

can promote the maturation of DC and the initiation and

excitation of CD4+ cells (43) to combat against virus invasion.

Besides of above-mentioned roles, West Nile virus-activated

gdT cells are also critical for limiting the invasion of the virus

into the brain central vervous system, which is essential for

protecting most infected-hosts from developing fatal

encephalitis. Thomas Welte and colleagues have shown that,

compared with young mice, older/aged mice are more

susceptible to virus infection and have slower Vg1+ responses
Frontiers in Immunology 05
but more Vg4+ cells, which in turn produce TNF-a, a factor

implicated in the destruction of the blood-brain barrier. On the

other hand, low Vg4+ cells will allow the virus load in the brain,

whereby reducing the mortality rate of virus-caused severe

encephalitis (44). In the acquired immunity against West Nile

virus infection, gdT cells also actively participate in the host

defense process, and decreased memory responses of CD81+ T

cells likely easily lead to secondary infection of the virus in gdT-
deficient mice (45).
Mosquito-borne parasite

Malaria
Malaria is estimated to affect more than 200 million people

each year (46). It is an arbo-borne disease transmitted by the bite

of mosquito-borne plasmodium parasite. Despite more and

more significant progresses in the control and reduction of

malaria cases in the past decade, it still remains a major threat

to global health (47). After invading into the host, malaria

parasites parasitize their spores in the liver of the host, then

start to grow and eventually formmerozoites to invade red blood

cells, leading to significant clinical symptoms and death (48, 49).

The invasion of plasmodium parasites can cause

complicated immune responses, including humoral and

cellular immunity responses. We have very limited knowledge

about the nature of these responses, especially the cellular

immunity responses. Previously, it has been reported that gdT
cells can be activated by phosphor-antigen of the parasites (50),
FIGURE 2

Roles for gdT cells in malaria parasites infection. At the early stage of infection, gdT cells can be activated and expanded and subsequently secret
IFN-g and other cytotoxic effectors to prevent or attenuate the infection. After the parasites have infected blood cells, activated gdT cells can
also bind to the infected cells, release granzymes and granulysin, and kill the invaded plasmodium parasites and infected red blood cells.
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leading to a quick increase of gdT cells, especially the Vg9Vd2

subpopulation (51, 52) (Figure 2). Such activation and/or

expansion of gdT cells appear to be persistent after the

invasion of the plasmodium parasites and can occur during

secondary infections (53–55). It is already known that the main

cause of the high morbidity and mortality of malaria patients is

the successful survival and exponential proliferation of

plasmodium parasites within the host blood. In the

supernatants from the co-culture of plasmodium parasites, gdT
cells can be specifically expanded and promoted to acquire the

parasite-lysing potential through the up-regulated expression of

IFN-g and other cytotoxic effector proteins.

Subsequently, gdT cells can directly kill plasmodium

parasite-infected red blood cells to prevent or attenuate further

infections (56) (Figure 2). These killer cells can bind to the

infected red blood cells, release granzymes and granulysin to kill

the invaded plasmodium parasites (46). Therefore, a decrease of

the numbers of gdT cells may reversely facilitate the tolerance of

plasmodium parasites. Accordingly, repeated plasmodium

parasites infection may contribute to the development of

clinical immunity in children living in plasmodium parasites-

infested regions, which is characterized by decreased numbers of

patients with clear symptoms, accompanied by increased

numbers of asymptomatic patients (57, 58).

During the repeated plasmodium parasites infections, the

numbers of gd2+ gdT cells will be decreased in the peripheral

blood, along with down-regulated production of cytokines and

up-regulated immune-related factors. As such, repeated

plasmodium parasites infections in the childhood will drive a

progressive loss of the gd2+ gdT cells, leading to increased

immune tolerance of the patients to plasmodium parasites (59).

Notably, besides above-mentioned anti-pathogen roles, gdT
cells may also have a paradoxical role in driving or participating

in the pathogenesis of cerebral malaria, as the incidences of

cerebral malaria complications is lower in infants with lower gdT
reactivity. Julie Ribot and colleagues have shown that the gdT-
deficient mice are more resistant to the development of cerebral

malaria when infected with the plasmodium berghei ANKA

sporozoa. Conversely, the presence of gdT cells can enhance the

production of the plasmodium immune factors at the stage of

liver infection and subsequently promote the inflammation

reactions at the blood infection stage (60). Together, these

findings demonstrate that gdT cells can promote the

pathogenesis of IFN-g-dependent plasmodium infection.
Immune responses of the host gdT cells
to tick-borne pathogens

Borrelia burgdorferi
Compared to mosquito-borne pathogens, there have been

less reports regarding the roles of gdT cells in the infection of

tick-borne pathogens. The Lyme disease is the most frequently
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seen natural epidemic disease in the United States of America

(61) and is transmitted through bites from different hosts by

borrelia burgdorferi-carrying ticks (62). Initial symptoms after

the pathogen invasion in most Lyme disease patients are

characterized by chronic erythema migrans. Several weeks

after the disease onset, some patients may develop

neurological and cardiac problems. After several months, most

patients will have recurrent symptoms such as joint pain or

arthritis (63). Under the stimulation by borbora burgdorferi, an

accumulation can be detected within the inflated joints of the

patients (64), suggesting a possible role for these cells in the host

immune responses to the pathogen. Similarly, proliferated gdT
cells have also been detected in leukocytes from micewith Lyme

disease and in human peripheral blood after tick bites (65).

However, the responses of gdT cells may be indirectly through

the actions of Toll-like receptors of DCs or monocytes, rather

than through a direct mechanism by themselves (64). In

addition, gdT cells may also act to activate the host acquired

immunity during the infection of the pathogen (66).

Tularaemia
The pathogen for tularaemia is Francisella tularensis, a type

of gram-negative bacterium, which can be transmitted by tick

bites from different hosts and cause acute febrile disease (67).

Increased numbers of gdT cells can be detected in the blood from

tularaemia patients (67), possibly attributable to non-specific

phosphor-molecules (68). Further investigations by M. KROCA

and colleagues have revealed that the frequency of gdT cells can

be increased and maintained for up tyo a year in the peripheral

blood from tularaemia patients (69).
Immune responses of the host gdT cells
to other vector-borne diseases

Leishmaniasis
Leishmaniasis is disease caused by the infection of

leishmania and primarily transmitted by the bites from

different hosts by leishmania-infected female diptera insect

phlebotomus fly. Leishmaniasis can be categorized into three

major subtypes, including visceral leishmaniasis, cutaneous

leishmaniasis, and mucocutaneous leishmaniasis. Visceral

leishmaniasis is also called kala-azar (black sickness) and is the

most severe subtype of leishmaniasis. Visceral leishmaniasis

leads to symptoms including irregular fever, weight loss,

hepatosplenomegaly, and anamenia, and may eventually cause

patient death. Cutaneous leishmaniasis is the most popular

subtype and mainly causes skin ulcer. Mucocutaneous

leishmaniasis mainly causes mucous membrane injury within

the oral and nasal cavity. Leishmania belongs to parasites, and

cellular immunity plays a central role in the host responses to its

infection. An accumulation of gdT cells has been detected in the

skin and blood from human hosts infected with leishmania (70,
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71), suggesting a potential role for gdT cells in eliminating the

infected parasites. Consistently, it has been reported that natural

killer cells and gdT cells act through secreting INF-g and TNF-a,
respectively, to exert their functions in the host innate immunity

against the leishmania invasion (72). Compared with healthy

individuals, double negative T cells from about 75% of the

cutaneous leishmaniasis patients express abT cell receptors,

and the rest of the double negative T cells express gdT cell

receptors (73). In addition, dogs severely infected with

leishmania may develop gdT cell lyphoma (71), suggesting that

long-term stimulation by leishmania may lead to malignant

transformation and lyphoma pathogenesis, but the underlying

mechanism has been unclear.

South American trypanosomiasis
South American trypanosomiasis is also known as Chagas’

disease and mainly caused by direct contact with the excrement

or urinate of Trypanosoma cruzi-infected trypanosoma

triatoroae (stink bug). Currently there is no vaccine available

for this disease. During the acute stage, the infected patients

mainly exhibit symptoms including cyanosis swelling on one

side of the skin or eyelid, headache, difficulty in breath, and

muscle pains. At the chronic stage, the parasites parasitize in the

intestine tracts and the heart. Years later after the infection, some

patients may develop heart and digestive tract diseases. By

utilizing gdT cell-deficient mice as a model, a recent report has

shown that the gdT cells may not play a critical role in the

elimination of the parasites at the acute stage of the disease but

may contribute to tissue damage and pathogenesis. In cutaneous

leishmaniasis patients, abT cells and gdT cells secret

inflammatory factors and IL-10, respectively to protect the

hosts against the parasites invasion (74). Moreover, the

frequency of IL-10 expression by gdT cells have been linked to

an improvement of cardiac functions of cutaneous leishmaniasis

patients, suggesting a potentially important role for gdT cells in

the host responses (74).
Conclusions

It is estimated that vector-borne diseases lead to more than

half million of global deaths each year, and some types of vector-

borne diseases, such as chikungunya, leishmaniasis, and

lymphatic filariasis may cause life-long diseases. Vaccines or

other clinically effective drugs for many vector-borne diseases

are still lacking, further worsening the life quality of the infected

patients. As such, understanding better the host-pathogen

interactions is critical for future developing novel and

curative therapeutics.

Compared to unconventional gdT cells, the role for

conventional abT cells in the host responses to vector-borne

pathogens has been more extensively and comprehensively
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studied, for instance Chikungunya virus (81–83), Rift Valley

Fever virus (28), Yellow fever virus (84, 85), Zika virus (86, 87),

West Nile virus (88), Malaria (89, 90), Borrelia burgdorferi (91),

and Leishmaniasis (73, 92). However, as above-reviewed, our

understanding of the role for gdT cells in these processes has

been preliminary and incomplete.

It should be noted that most types of pathogens for vector-

borne diseases are carried and disseminated by mosquitos and

ticks, which transmitted the pathogens through the bites of host

skin (93, 94). Given that gdT cells primarily reside in skin and

mucosal tissues (95), these cells apparently are in the frontline to

respond to pathogen invasion at the earliest stage. Therefore, it is

important and urgent to gain a better understanding of the role

for gdT cells during these precesses.

Previous studies have shown that abT and gdT cells

cooperate with each other and act synergistically towards

eliminating pathogen invasion. As a bridge between innate and

adaptive immunity, gdT cells have been known to play active

roles during the first and secondary infections by pathogens and

may serve as targets for clinical development. However, we still

have limited knowledge about details of how they appropriately

respond to vector-borne pathogen infection to facilitate the host

immune responses.

During the early events of pathogen infection, activated gdT
cells can secret multiple cytokines and inflammatory factors to

induce the acquired immunity (96–98). Further studies in rodent

models of infection of listeria, cytomegalovirus, and plasmodium

parasites have revealed that gdT cells can strongly respond and

quickly expand during secondary infections, suggesting that they

have acquired certain levels of immune memory. These findings

also suggest that the mode by which gdT cells respond to

pathogen infections may be more complicated than

previously appreciated.

Herein, we have reviewed recent findings related to the

potential roles of gdT cells in response to several types of

vector-borne pathogens, especially the mosquito- and tick-

borne pathogens. We expect that these findings, together with

those from more studies to analyze the interactions between gdT
cells and vector-borne pathogens in the future, will provide

useful information for developing clinically relevant

targeted therapeutics.
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