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Abstract

Objective: Schizophrenia is a chronic and debilitating neuropsychiatric disorder. It

has been suggested that impaired brain connectivity underlies the pathophysiology

of schizophrenia. Network analysis has thus recently emerged in the field of schizo-

phrenia research.

Methods: We investigated 48 schizophrenia patients and 24 healthy controls using

network analysis and a machine learning method. A number of global and nodal net-

work properties were estimated from graphs that were reconstructed using probabi-

listic brain tractography. These network properties were then compared between

groups and used for machine learning to classify schizophrenia patients and healthy

controls.

Results: In classifying schizophrenia patients and healthy controls via network prop-

erties, the support vector machine, random forest, naïve Bayes, and gradient boosting

machine learning models showed an encouraging level of performance. The overall

connectivity was revealed as the most significant contributing feature to this classifi-

cation among the global network properties. Among the nodal network properties,

although the relative importance of each region of interest was not identical, there

were still some patterns.

Conclusion: In conclusion, the possibility exists to classify schizophrenia patients and

healthy controls using network properties, and we have found that there is a provi-

sional pattern of involved brain regions among patients with schizophrenia.
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1 | INTRODUCTION

Schizophrenia is a chronic and debilitating mental disorder with a con-

siderable disease burden (Rossler, Salize, van Os, & Riecher-Rossler,

2005). Following on from previous postmortem studies (Bogerts,

1993), there have been efforts to identify anatomical alterations in

brains with schizophrenia, particularly in light of advancements in

brain imaging techniques (Dietsche, Kircher, & Falkenberg, 2017;

Haijma et al., 2013; Shepherd, Laurens, Matheson, Carr, & Green,

2012; van Erp et al., 2018). Although there have been some significant

findings to date on the anatomical alterations in the brains of schizo-

phrenia patients, the pathophysiology of this disorder has not yet
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been comprehensively explained by these findings. It has been

recently suggested that it is not alterations in individual anatomical

regions but the connectivity between multiple brain regions that

underlies the core pathophysiology of schizophrenia (Cui et al., 2019;

Fitzsimmons, Kubicki, & Shenton, 2013; Nelson, Bassett, Camchong,

Bullmore, & Lim, 2017).

In terms of connectivity, network analysis based on the graph the-

ory has recently emerged in the area of schizophrenia research

(Bullmore & Sporns, 2009; van den Heuvel, Mandl, Stam, Kahn, &

Hulshoff Pol, 2010) since its first application with the electroencephalo-

gram and magnetoencephalogram methods (Stam, 2004). Graph theory

is a branch of mathematics that describes a complex system, such as

the brain, as a graph with nodes and edges (Deo, 2017). Brain networks

can also be presented in this way as graphs, with nodes and edges rep-

resenting neural elements and synaptic connections. Although each

graph can only represent topological relationships between brain

regions, it is known that topological distances are related to physical dis-

tances in the brain (Laughlin & Sejnowski, 2003), which indicates that

network analysis with a structural brain image is possible.

It is possible to analyze the brain network after reconstructing it

as a conceptual graph. Such analysis is based on multiple graph fea-

tures or network properties (Bullmore & Sporns, 2009). Some prior

studies that have investigated network properties within conceptual-

ized brain networks in schizophrenia (Fornito & Bullmore, 2015; Jalili &

Knyazeva, 2011; Lord et al., 2011; Nelson et al., 2017) have reported

significant differences between patients and healthy controls. We

have also previously compared brain structural networks between

patients with schizophrenia and healthy controls and found significant

difference in network properties (Shon et al., 2018). Notably, how-

ever, most prior studies have focused only on group differences in

network properties, which has limited their clinical utility in terms of

assessing individual patients or healthy controls.

We have here evaluated machine learning as a method of enhanc-

ing the clinical utility of network properties in individual patients with

schizophrenia and healthy controls. Machine learning is a field of com-

puter science that assesses the use of algorithms to perform a specific

task without specified human instructions (Mohri, Rostamizadeh, &

Talwalkar, 2018). It has seen recent widespread application in various

fields including biology and neuroscience. Various machine learning

techniques have shown great efficacy in this regard, particularly in

classifying items by multiple features. These have also now been

applied also to schizophrenia research (Rozycki et al., 2017;

Winterburn et al., 2017) and have shown high disease classification

accuracy from various nonpathognomonic features.

In our present analyses of a schizophrenia and normal cohort,

we applied the machine learning method to the results of structural

brain network analysis in these subjects, on the basis of graph the-

ory. By conceptualizing hypothetical graphs with the brain

tractography, the brain networks of both schizophrenia patients and

healthy controls were reconstructed for network analysis. Both the

global and nodal network properties of the brain were then com-

pared between schizophrenia patients and healthy controls. Through

the use of machine learning methods, we attempted to create a

possible disease classification model of schizophrenia based on

these network properties, which would have significant future clini-

cal implications. Also, the relative importance of each network prop-

erty or region of interest (ROI) in the machine learning model was

evaluated for further insight.

2 | METHODS

2.1 | Study participants

Study participants were recruited from Asan Medical Center, Seoul,

Korea. This included 48 patients diagnosed with schizophrenia

using the Diagnostic and Statistical Manual of Mental Disorders,

Fourth Edition, Text Revision (American Psychiatric Association,

2011), who had presented with psychotic symptoms within 5 years.

We also enrolled 24 healthy controls without an Axis I psychiatric

diagnosis or any first-degree relative with an Axis I psychiatric diag-

nosis. All subjects were between the ages of 20 and 40 years, were

right-handed, and had no previously known organic disease that

could affect the brain structure or function. Written informed con-

sent was obtained from all study participants. This study was

approved by the Institutional Review Board of Asan Medical Center

(2012-0485).

2.2 | Clinical assessments

Full Scale Intelligence Quotient scores obtained using the short form of

the Wechsler Adult Intelligence Scale—III were used to measure overall

intelligence in all study participants. The Wisconsin Card Sorting Test:

Computer Version 2 (Heaton, Chelune, Talley, Kay, & Curtiss, 1993)

was additionally applied to measure executive function in each study

participant. In addition, the Korean version of the Positive and Negative

Syndrome Scale (Yi et al., 2001) was used to evaluate psychiatric symp-

tom severity in the patients with schizophrenia.

2.3 | Image acquisition

Imaging was conducted on a 3T scanner with an 8-channel SENSE head

coil (Achieva; Philips Healthcare, Best, The Netherlands). T1-weighted

images were acquired using a turbo field echo sequence (TR [repetition

time]/TE [echo time], 4.9/4.6 ms; field of view, 240 × 240 × 170 mm;

and voxel size, 1 mm3). Diffusion-weighted echo planar imaging was

conducted (TR [repetition time]/TE [echo time], 5,422/70 ms; flip angle,

90�; field of view, 224 × 224 × 135 mm; and voxel size, 2 × 2 × 3 mm)

for one baseline (b value, 0 s/mm2) and 32 gradient directions (b value,

1,000 s/mm2). All acquired images were then visually inspected again to

exclude inappropriate images from further analysis. The data for one

patient were therefore replaced with those for a newly enrolled patient

in comparison with our previous study findings (Shon et al., 2018). This

did not alter the results of either study.
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2.4 | Image processing

Because anisotropic voxels can cause undesirable problems such as low

signal intensity-to-noise ratio and a directional error with the fiber tracking

algorithm, the importance of making each voxel isotropic for analysis has

been stressed (P. Mukherjee, Chung, Berman, Hess, & Henry, 2008).

Hence, diffusion-weighted images in this current study were upsampled

and converted to an isotropic voxel size of 2 mm using Slicer Version 4.4

(Fedorov et al., 2012). Corrections for motion and eddy current distortions

were then conducted through the affine transformation of all gradient vol-

umes to the b = 0 baseline using FLIRT (FMRIB's Linear Image Registra-

tion Tool; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012;

Jenkinson & Smith, 2001). T1-weighted images were parcellated into dis-

crete anatomical ROIs using the Desikan–Killiany Atlas of FreeSurfer Ver-

sion 5.3 (Fischl, 2012; Fischl et al., 2002). For each anatomical structure,

white and grey matter ROIs were combined into a single ROI, which

resulted in a total of 87 ROIs across the brain. These T1-weighted images

were then registered into diffusion-weighted images with six degrees of

freedom using FLIRT. Table S1 presents the list of 87 ROIs.

2.5 | Network reconstruction

FMRIB's Diffusion Toolbox (Behrens et al., 2003; Behrens, Berg,

Jbabdi, Rushworth, & Woolrich, 2007) was used for analyzing

processed diffusion-weighted images. By using BEDPOSTX, the distri-

bution of the diffusion parameters at each voxel was modeled through

the Metropolis–Hastings Markov chain Monte Carlo method. Probabi-

listic tractography was then employed by PROBTRACKX, with

resampling conducted 5,000 times from the distribution for each ROI.

As a result, a set of passing “probabilistic” streamlines was generated

for each ROI. The degree of connectivity was estimated as the num-

ber of streamlines from one ROI to another, divided by the total num-

ber of generated streamlines. The nondirectional connectivity was the

average of both unidirectional connectivities. The brain network of

each study subject was then reconstructed from the ROIs and esti-

mated connectivities and represented as a graph with nodes rep-

resenting ROIs and edges representing connectivities. The threshold

for the 10th percentile among the total connections was applied to

remove weak or false positive connections in each brain network.

2.6 | Network examination

After reconstructing brain networks, a number of network properties

were calculated via the MATLAB-based Brain Connectivity Toolbox

(Rubinov & Sporns, 2010), on the basis of nondirectional weighted matri-

ces. Considering the regional differences of general topology in the brain,

both global and nodal network properties were separately calculated.

As global network properties, global and local efficiency, cluster-

ing coefficient, mean betweenness centrality, small coefficient, and

overall connectivity were measured to represent the topological char-

acteristic of each brain network. In the first instance, the efficiency

(Latora & Marchiori, 2001, 2003) of a network is a measure of how

efficiently it transports information across itself. Global efficiency

quantifies the integrity of the whole network, whereas local efficiency

represents the communication between neighbors. The clustering

coefficient (Watts & Strogatz, 1998) comes from transitivity and is a

measure of how closely a network clusters together. The between-

ness centrality (Barthélemy, 2004), the fraction of shortest paths pass-

ing through each node, is a general measure of centrality. The mean

betweenness centrality, calculated as the average of all betweenness

centralities for each node, is a global property representing the whole

network characteristic in general. Moreover, the small coefficient

(Humphries & Gurney, 2008) is a measure of “small-worldness,” which

means the characteristic of a network with a short mean path length

and clusters of tightly interconnected nodes. This coefficient is calcu-

lated by dividing the ratio of the clustering coefficient by that of the

path length clustering among a given network to a random network.

Lastly, overall connectivity (Beineke, Oellermann, & Pippert, 2002) is

the average of all connection probabilities across the network, rep-

resenting the overall strength of the network itself.

As nodal properties, local efficiency, degree, and betweenness

centrality were measured for each specific brain region. Local effi-

ciency, which represents the regional efficiency of information trans-

ference by the shortest path length between neighbors, quantifies

how much the network is segregated (Latora & Marchiori, 2001). The

degree, which denotes the number of connections to a single given

node, and betweenness centrality both represent the importance of

the individual node (Freeman, 1977; Rubinov & Sporns, 2010).

2.7 | Statistical analysis

For demographics, clinical characteristics, and network properties, group

differences were analyzed by the Statistical Package for the Social Sci-

ences Version 21.0 (IBM Corporation, Armonk, New York). After the

normality of each variable was determined by the Kolmogorov–Smirnov

test, the independent t test or the Mann–Whitney U test was applied

for comparisons. A p value <.05 was considered statistically significant,

and the false discovery rate method was used for correcting multiple

comparisons of nodal network properties.

2.8 | Machine learning model

We built several machine learning models based on the aforemen-

tioned brain network properties. The models were first built on the

basis of global network properties. Other models were then built on

the basis of nodal network properties, in which case each model was

separately built according to the single nodal network property to pre-

vent overcomplexity. We used various algorithms including support

vector machine (SVM), multinomial naïve Bayes (NB), random forest

(RF), and gradient boosting. SVM (Vapnik, 2000) is a classical supervised

machine learning method that can classify different classes via the opti-

mal “hyperplane” in a multidimensional space created with multiple
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trained features. It has been used in a number of schizophrenia studies

(Lu et al., 2016; Pina-Camacho et al., 2015; Xiao et al., 2017). NB classi-

fier, which is based on a simple theorem of probability known as Bayes'

rule, is one of the classic machine learning methods but still shows sig-

nificant performance in classification problems (Lewis, 1998; Zhou

et al., 2015). RF (Breiman, 2001) is one of the ensemble learning

methods composed of numerous decision trees. It is a popular machine

learning method and shows strong predictive power in classification

problems (Dahinden, 2011; Lee et al., 2018). Gradient boosting

(Friedman, 2002) is also an alternative ensemble learning method with

decision trees, which achieved noticeable outcomes in recent Kaggle

competitions (Ben Taieb & Hyndman, 2014; Hoch, 2015).

Python 3.7.1 (https://www.python.org/) on CentOS 7 (https://

www.centos.org) was used for machine learning in this present study.

Previously developed python modules from Scikit-learn 0.20.1

(Pedregosa et al., 2011; http://scikit-learn.org/) were applied for

model building and testing. XGBoost 0.82 (Chen & Guestrin, 2016;

https://xgboost.readthedocs.io/) was additionally used as a gradient

boosting algorithm. The hyperparameters of each model were opti-

mized using a grid search method. Because the patient and healthy

control sample sizes were imbalanced, the “class_weight” hyper-

parameter was set as “balanced” in all algorithms.

Cross-validation was used to test the model and assess its predic-

tive performance with stratified k-fold (k = 10; Purushotham &

Tripathy, 2011). The accuracy of each model was measured, as was

the area under curve (AUC), which represents the area under the

receiver operating characteristic curve, because this is considered to

be a more appropriate performance measure in classification problems

compared with accuracy (Bradley, 1997). Cross-validation was inde-

pendently done 1,000 times, and the mean and standard deviation of

the accuracy and AUC measures were calculated. After testing the

model and performance assessment, the importance of each network

property within a single machine learning model was estimated. The

mean and standard deviation of each network property's importance

were calculated with 1,000 independent estimations. This was done

only in the decision tree-based models.

3 | RESULTS

3.1 | Demographics and clinical characteristics

There was no significant difference between the age and sex of the

schizophrenia patients and healthy controls. The mean Full Scale Intel-

ligence Quotient of the schizophrenia patients was 97.6 ± 15.8, which

was significantly lower than that for the healthy controls (120.1 ± 9.2;

p < .001). In the Wisconsin Card Sorting Test, our patients achieved

lower scores than the healthy controls, although the t score of the

perseverative responses did not reach statistical significance

(p = .201). Table 1 presents the demographics and clinical characteris-

tics of our current study patients in detail.

3.2 | Comparisons of global network properties

The global and local efficiency, clustering coefficient, and overall con-

nectivity of the network were all significantly lower in the schizophre-

nia group than among the healthy controls. The mean betweenness

centrality and small-coefficient measures were both higher in the

schizophrenia patients, although this difference did not reach statisti-

cal significance in the case of the small coefficient (1.06 ± 4.43E − 2,

1.04 ± 5.90E − 2, Mann–Whitney U = 420.0, p = .062). Table S2 pre-

sents the group differences in the global network properties.

3.3 | Comparisons of nodal network properties

Among the schizophrenia patients in our current study cohort, a num-

ber of the ROIs across the fronto–temporo–parietal brain area

showed a lower nodal local efficiency compared with the healthy con-

trols. Furthermore, a few ROIs at the cingulate cortex and diencepha-

lon also showed a lower nodal local efficiency in these cases. For the

nodal degree, however, the tendency was inconsistent. Although

schizophrenia patients showed a decreased nodal degree value in the

TABLE 1 Demographic and clinical
characteristics of the study participants

Variable Schizophrenia Healthy t or Mann–Whitney U p value

Age (year) 28.9 [6.3] 30.0 [5.3] 495.0 .444

Sex (male/female) 18/30 9/15

PANSS 61.3 [14.8]

FSIQ 97.6 [15.8] 120.1 [9.2] 110.5 <.001*

WCST (t score)

Total errors 42.2 [15.4] 53.5 [4.9] 236.0 .001*

Perseverative responses 48.3 [16.7] 53.9 [7.7] 343.5 .201

Perseverative errors 47.6 [14.7] 54.8 [7.1] 306.0 .037*

Nonperseverative errors 45.9 [11.9] 52.3 [4.0] 248.0 .003*

Conceptual-level responses 45.5 [11.4] 53.7 [4.5] 4.179 .001*

Note: Values are presented as a mean [standard deviation]; independent t test or Mann–Whitney U test.

Abbreviations: FSIQ, Full Scale Intelligence Quotient; PANSS, Positive and Negative Syndrome Scale;

WCST, Wisconsin Card Sorting Test.

*Statistical significance was set at p < .05.
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right transverse temporal gyrus, right supramarginal gyrus, and right

nucleus accumbens, they also showed an increased nodal degree

value in the left pars orbitalis, right lateral orbitofrontal cortex, right

hippocampus, and right ventral diencephalon. Nodal betweenness

centrality in the right entorhinal cortex was higher among schizophre-

nia patients compared with the healthy controls. However, none of

these results were maintained following a false discovery rate correc-

tion. Table S3 lists all of the significant (uncorrected) group differ-

ences in the nodal network properties.

3.4 | Machine learning model: Global

The SVM model showed a 58.2% mean accuracy and a mean AUC of

0.631, whereas the multinomial NB model showed a 66.9% mean

accuracy and mean AUC of 0.638. The RF model on the other hand

showed a 68.6% mean accuracy and a mean AUC of 0.680. Moreover,

the gradient boosting (XGBoost) model showed a 66.3% mean accu-

racy and a mean AUC of 0.633. Among all of the tested models, the

RF model achieved the highest performance (Table 2). Furthermore,

among the six network properties that were evaluated, overall con-

nectivity was revealed as the most important feature in classifying

schizophrenia patients and healthy controls. Figure 1 shows the rela-

tive importance of each network property in each machine learning

model.

3.5 | Machine learning model: Nodal

All 12 machine learning models, four per nodal network property,

showed a maximum accuracy of around 66% and an AUC of approxi-

mately 0.66. Considering both of these values, the XGBoost model

based on the nodal degree showed the highest performance with a

66.3% accuracy and an AUC of 0.656. All models showed relatively

weaker performances comparing with those based on global network

properties. Table 3 indicates the performance of all machine learning

models tested. Furthermore, for all machine learning models, the

importance of each ROI was investigated. Due to the characteristics

of the gradient boosting model that uses a rather smaller number of

features, there were differences in the relative importance of each

TABLE 2 Performance of the machine learning models: Global

Model Accuracy (%) AUC

SVM 58.2 [17.5] 0.631 [0.202]

Multinomial NB 66.9 [4.0] 0.638 [0.233]

RF 68.6 [16.0] 0.680 [0.229]

XGBoost 66.3 [14.5] 0.633 [0.232]

Note: Values shown are the mean [standard deviation].

Abbreviations: AUC, area under curve; NB, naïve Bayes; RF, random

forest; SVM, support vector machine.

F IGURE 1 Relative importance of
each network property in the machine
learning model. Random forest models are
denoted in grey and XGBoost models in
black. Error bars indicate the standard
deviation. Error bars cannot be visualized
in the XGBoost models due to small
standard deviations

TABLE 3 Performance of machine learning models: Nodal

Model Accuracy AUC

I. Local efficiency

SVM 66.0 [13.7] 0.665 [0.239]

Multinomial NB 66.9 [4.0] 0.347 [0.240]

RF 66.1 [14.9] 0.619 [0.249]

XGBoost 63.0 [11.2] 0.540 [0.237]

II. Degree

SVM 66.7 [4.4] 0.518 [0.055]

Multinomial NB 54.8 [16.7] 0.538 [0.225]

RF 56.9 [17.2] 0.545 [0.228]

XGBoost 66.3 [8.9] 0.656 [0.219]

III. Betweenness centrality

SVM 66.9 [4.0] 0.519 [0.040]

Multinomial NB 47.0 [17.4] 0.410 [0.192]

RF 52.5 [14.8] 0.363 [0.129]

XGBoost 63.5 [9.8] 0.513 [0.223]

Note: Values shown are a mean [standard deviation].

Abbreviations: AUC, area under curve; NB, naïve Bayes; RF, random

forest; SVM, support vector machine.

JO ET AL. 5 of 11



ROI between the RF and XGBoost models. However, there were still

a few regions contributing to both RF and XGBoost models at the

same time, indicating patterns of involved brain regions. Also, ROIs in

right hemisphere showed more contribution to the model than ROIs

in left hemisphere (right: 37; left: 16). Figure 2 shows the relative

importance of each network property ROI in each machine learning

model.

4 | DISCUSSION

Our study has revealed some significant group differences in the brain

network properties between schizophrenia patients and healthy con-

trols. We first found that the global network properties, global and

local efficiency, clustering coefficient, and overall connectivity of the

networks were significantly lower in the schizophrenia patients than

in the healthy controls. Considering the definition of each network

property (Beineke et al., 2002; Latora & Marchiori, 2001, 2003;

Watts & Strogatz, 1998), these results suggested that there is an

impaired transformation of information across the network of a brain

with schizophrenia, which is poorly clustered and has weak overall

strength. These observations were also strongly consistent with the

findings of many previous studies indicating brain network alterations

in schizophrenia (Cui et al., 2019; Griffa et al., 2015; Micheloyannis,

2012; Nelson et al., 2017; Shon et al., 2018; van den Heuvel

et al., 2013).

In contrast, the betweenness centrality was revealed to be higher

in a brain with schizophrenia than in a healthy brain. This is not

F IGURE 2 Relative importance of each network property—regions of interest (ROIs) in the machine learning model. The 10 ranking ROIs in
each machine learning model are presented. Random forest models are indicated in grey. XGBoost models are denoted in black. The error bars
indicate the standard deviation. Error bars could not be visualized for the XGBoost models due to small standard deviations. The ROIs
contributing to both RF and XGBoost models for each nodal feature are indicated in red. (a) Local efficiency (RF), (b) local efficiency (XGBoost),
(c) degree (RF), (d) degree (XGBoost), (e) betweenness centrality (RF), and (f) betweenness centrality (XGBoost)
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consistent with the current literature (Rubinov & Bullmore, 2013; van

den Heuvel et al., 2013), which has indicated that schizophrenia may

be associated with a deterioration in network hub organization.

According to Cheng et al. (2015), however, the mean betweenness

centrality value may not properly reflect regional impairment in a

brain network because only a small fraction of the nodes in a network

show a high value for this parameter. It has been suggested in fact

that the global properties of the brain are not sensitive enough to

regional abnormalities (Tomasi & Volkow, 2014). Thus, the observed

higher mean betweenness centrality in the brain networks of patients

with schizophrenia in this study may be due to the increased

betweenness centrality among less significant regions and decreased

betweenness centrality among network hubs.

We further observed that in terms of nodal network properties,

schizophrenia patients showed a lower nodal efficiency in a number

of brain regions across the fronto–temporo–parietal area, cingulate

cortex, and diencephalon, when compared with healthy controls.

These results were consistent with the data from previous studies

that indicated impaired connectivity in the frontal and temporal lobe

(van den Heuvel et al., 2010), parietal lobe (Kahn, Andrews-Hanna,

Vincent, Snyder, & Buckner, 2008; Peters et al., 2016), thalamus

(Anticevic et al., 2014), and cingulate (Cui et al., 2015; Wang et al.,

2015). Also, schizophrenia patients showed higher nodal betweenness

centrality in the right entorhinal cortex in our study.

Furthermore, we attempted to generate a disease prediction

model of schizophrenia using the machine learning method, which

would have significant clinical applications. We thus built a number of

models based on either global or nodal network properties, all of

which showed a noticeable level of performance in classifying and dis-

tinguishing schizophrenia patients and healthy controls, with encour-

aging accuracy and AUC scores. Although previous studies

(Greenstein, Weisinger, Malley, Clasen, & Gogtay, 2012; Lee et al.,

2018; Schnack et al., 2014) have reported an even higher accuracy

from 70% to 80% in classifying schizophrenia, the lower accuracy we

obtained in our present study may have been due to our small sample

size, considering sufficient sample size is required to reach a target

performance (Figueroa, Zeng-Treitler, Kandula, & Ngo, 2012;

S. Mukherjee et al., 2003; Tam, Kabbara, Yeh, & Leary, 2006). In addi-

tion, most of the previously reported models were based on features

directly related to structural measures such as grey matter density

(Schnack et al., 2014; D. Sun et al., 2009) or cortical thickness

(Greenstein et al., 2012). The models we used in our present study

were based on the features of conceptually reconstructed brain net-

works. Despite the large number of reports to date on the modern

network analysis of the brain with schizophrenia (Micheloyannis,

2012), most have only focused on group comparisons of network

properties between schizophrenia patients and healthy controls.

Therefore, the possibility is noticeable that schizophrenia patients and

healthy controls can actually be classified on the basis of these net-

work properties.

By investigating the importance of each feature of each machine

learning model, the overall connectivity was revealed as the most

important feature in classifying schizophrenia. This was not

unexpected because the disconnection of the brain has been consid-

ered to play a significant role in the underlying pathophysiology of

schizophrenia (Friston, 2002). Moreover, as multiple regions were

reported to show altered connectivity in brains with schizophrenia

(Fitzsimmons et al., 2013; Lynall et al., 2010), the overall brain connec-

tivity must also be altered. Of note in this regard, the global connec-

tivity measure was previously revealed to be decreased in brains with

schizophrenia (Skudlarski et al., 2010).

We observed a noticeable contributing pattern of ROIs in our

machine learning models based on nodal network properties. More-

over, a number of the ROIs that were revealed to be significant in

classifying schizophrenia patients and healthy controls in our current

analysis were previously well-studied brain regions among schizophre-

nia patients. In terms of nodal local efficiency, the rostral anterior cin-

gulate cortex, pericalcarine cortex, superior parietal cortex, inferior

temporal cortex, and superior frontal cortex were revealed as signifi-

cant by our present analyses. The rostral anterior cingulate cortex,

located in the frontal part of the cingulate cortex, has been considered

to be the error-checking system of brain (Kiehl, Liddle, & Hopfinger,

2000). Notably in this regard, patients with schizophrenia have been

reported to show dysfunction of the rostral anterior cingulate cortex

during error processing (Laurens, Ngan, Bates, Kiehl, & Liddle, 2003;

Polli et al., 2008) and even a decreased volume of the rostral anterior

cingulate cortex (Baiano et al., 2007). Impaired connectivity in the

parietal lobe (Kahn et al., 2008; Peters et al., 2016) and frontal lobe

(van den Heuvel et al., 2010) have also been described previously.

Furthermore, the inferior temporal gyrus, which is known to be

involved in visual processes (Papadelis et al., 2016; Zhang, Mlynaryk,

Ahmed, Japee, & Ungerleider, 2018), has shown significant anatomical

connectivity abnormalities in schizophrenia patients (Jeong, Wible,

Hashimoto, & Kubicki, 2009).

With respect to the nodal degree, the lateral orbitofrontal cortex

was also revealed by our analysis to be significant in classifying

schizophrenia patients and healthy controls. The lateral orbitofrontal

cortex, one of the prefrontal cortex regions, is known to be involved

in the decision-making process (Domenech & Koechlin, 2015).

According to a previous study, the sulcogyral pattern of orbitofrontal

cortex is altered in schizophrenia patients (Isomura et al., 2017), and

even the grey matter volume is decreased (Nakamura et al., 2008).

Lastly, in terms of nodal betweenness centrality, the middle anterior

corpus callosum, entorhinal cortex, posterior cingulate cortex, lateral

occipital cortex, and pars opercularis were revealed by our current

data to be important regions in classifying schizophrenia patients and

healthy controls. Most of these regions have shown anatomical or

functional brain alterations in previous studies of schizophrenia. A sig-

nificant reduction of the corpus callosum in the brain with schizophre-

nia has also been reported (del Re et al., 2016), and reduced fractional

anisotropy was revealed in a prior meta-analysis study (Zhuo, Liu,

Wang, Tian, & Tang, 2016). In another prior study of the posterior

cingulated cortex, although no brain connectivity was found to be

altered, alterations of muscarinic and GABA receptors were observed

among schizophrenia patients (Newell, Zavitsanou, Jew, & Huang,

2007). Postmortem studies have revealed a limbic pathology in
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schizophrenia patients, represented by a volume reduction of the

entorhinal cortex (Falkai, Bogerts, & Rozumek, 1988). Another study

similarly reported cytoarchitectural abnormalities in the entorhinal

cortex of the brain with schizophrenia (Arnold, Hyman, Vanhoesen, &

Damasio, 1991). The lateral occipital complex, which is known to pro-

cess visual perception, has also shown impairment in the brain with

schizophrenia, as reflected by an altered connectivity measured using

functional magnetic resonance imaging (Harvey et al., 2011).

Interestingly, it has been revealed that contributing ROIs in the

machine learning models were located more commonly in the right

hemisphere of the brain. Because it is known that the normal brain

asymmetry may be attenuated in schizophrenia (Ribolsi, Daskalakis,

Siracusano, & Koch, 2014), an asymmetrical hemispheric contribution

could be expected in the machine learning model. Notably in this

regard, alteration of the hemispheric asymmetry has long been recog-

nized in the brain with schizophrenia (Newlin, Carpenter, & Golden,

1981) and was recently advocated also in a number of brain imaging

studies (Joo et al., 2018; Okada et al., 2016; Y. Sun, Chen, Collinson,

Bezerianos, & Sim, 2015). Although the current literature generally

supports mainly left hemisphere anomalies in schizophrenia (Ribolsi

et al., 2009), there have been a number of studies suggesting a rela-

tionship between the right cerebral hemisphere and psychiatric disor-

ders (Cutting, 1990), including schizophrenia (Cutting, 1994).

Our present study had some limitations of note. In the first

instance, the network properties chosen for our machine learning

models were intercorrelated. There are various different network

properties representing the characteristics of each network. Some

attributes are correlated, and some even can be derived from others.

Because machine learning models such as SVM can be affected signif-

icantly by feature selection (Nguyen & de la Torre, 2010), overall

model performance and feature importance could be altered. Hence,

we attempted to choose the most frequently studied network proper-

ties from previous studies (Alexander-Bloch et al., 2010; Lynall et al.,

2010; Zalesky et al., 2011). In addition, the RF and Gradient Boosting

models, which were based on a decision tree algorithm, were not sig-

nificantly affected by correlated features because the decision tree

discarded redundant features (Hall, 1999). Another limitation of our

present analysis was that a relatively small number of study partici-

pants was included. A small sample size makes it hard to correctly

evaluate the model in machine learning (Raudys & Jain, 1991). It can

also cause a large deviation in prediction (Lemm, Blankertz,

Dickhaus, & Muller, 2011). In addition, it is known that a classification

model based on a small sample size is more unstable, particularly

because of the overfitting problem (Arbabshirani, Plis, Sui, & Calhoun,

2017). We thus used a cross-validation method to minimize over-

fitting and also inspected the accuracy and AUC in both the training

and test sets among each fold. The scores from the training and test

sets showed similar values in every fold, which suggested the absence

of overfitting. However, considering the statistical power issues with

our small patient population, further studies with larger sample sizes

are recommended.

In conclusion, we have here found significant differences in the

network properties of a brain with schizophrenia compared with a

healthy brain and also found that schizophrenia patients and healthy

controls can be properly classified by these properties based on

machine learning models. Because there have already been a number

of studies on machine learning and network analysis in schizophrenia,

it is meaningful to evaluate the possibility of integrating both

methods. Further investigations with large sample sizes and extensive

network properties are warranted.
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