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Abstract
Surface ozone pollution has attracted extensive attention with the decreasing of haze pollution, especially in China. 
However, it is still difficult to efficiently control the pollution in time despite numbers of reports on mechanism of ozone 
pollution. Here we report a method for implementing effective control of ozone pollution through power big data. Com-
bining the observation of surface ozone,  NO2, meteorological parameters together with hourly electricity consumption 
data from volatile organic compounds (VOCs) emitting companies, a generalized additive model (GAM) is established 
for quantifying the influencing factors on the temporal and spatial distribution of surface ozone pollution from 2020 to 
2021 in Anhui province, central China. The average  R2 value for the modelling results of 16 cities is 0.82, indicating that 
the GAM model effectively captures the characteristics of ozone. The model quantifies the contribution of input variables 
to ozone, with both  NO2 and industrial VOCs being the main contributors to ozone, contributing 33.72% and 21.12% to 
ozone formation respectively. Further analysis suggested the negative correlation between ozone and  NO2, revealing 
VOCs primarily control the increase in ozone. Under scenarios controlling for a 10% and 20% reduction in electricity use 
in VOC-electricity sensitive industries that can be identified by power big data, ozone concentrations decreased by 9.7% 
and 19.1% during the pollution period. This study suggests a huge potential for controlling ozone pollution through 
power big data and offers specific control pathways.
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1 Introduction

Ozone  (O3) pollution in the troposphere has been of 
great concern over the past few decades. Tropospheric 
 O3 is a strong oxidant that affects atmospheric oxida-
tion capacity [1]. It is harmful to human fitness [2, 3] and 
affects vegetation [4, 5]. In addition to fine particulate 
matter (PM2.5), tropospheric ozone is another serious air 
pollution issue in China [6, 7]. Since the implementation 
of the Clean Air Action Plan which was initiated in 2013, 
there has been a significant decrease in fine particulate 
matter (PM2.5) concentrations [8]. However, ground-
level ozone pollution in China remains severe. Surface 
ozone pollution in China has been reported to increase 
since 2013 [9, 10]. There is also a global trend towards 
increased ozone pollution, especially in urban areas [11].

O3 is a typical secondary pollutant. The formation of 
 O3 pollution depends on emissions of ozone precursors 
and local meteorological conditions. Tropospheric ozone 
pollution is mainly generated by atmospheric photo-
chemical reactions of precursors  (NOx and VOCs) during 
the exposure to daylight [12]. Meteorological conditions 
affect ozone production by altering natural emissions 
and chemical rates [13]. The mechanisms of ozone for-
mation are mainly divided into VOC-limited photochemi-
cal regime and  NOX-limited photochemical regime [14]. 
Studies have shown that in China’s major urban and 
industrial areas, ozone production is mainly limited by 
VOCs due to high  NOX levels [15, 16]. China now has a 
well-established network of NOx observation sites and 
is also promoting control measures for NOx (control of 
emissions from coal-fired power plants). However, given 
the complexity of the VOC species, observations of VOCs 
are difficult to obtain, and there is a lack of correspond-
ing data to support the control pathways for VOCs.

Considering the complex non-linear response 
between ozone and precursors and meteorological 
factors, chemical tracer models (CTMs) are commonly 
used to estimate tropospheric ozone [17–19]. These 
models are often complex, require significant computa-
tional resources and are dependent on the updating of 
emission inventories. In recent years, statistical models, 
including machine learning models, have been used in 
ozone pollution studies. As a common statistical model 
in the environmental field, GAMs have no prior assump-
tions between variables and the results of GAMs are 
more interpretable than machine learning models. GAMs 
have been used to analyze the relationship between 
ozone pollution and meteorological conditions [20, 21]. 
However, few studies have considered the effect of pre-
cursors in GAM modelling due to the lack of observa-
tional data on VOCs.

Industrial sources of VOCs are the most important 
source of non-methane VOCs in Chinese urban areas [22]. 
For VOC emitting enterprises, the electricity consumption 
data directly reflects the production and operation status 
of these enterprises and also contains information on the 
pollutant emission status of these enterprises. Electricity 
consumption is closely related to pollutant emissions and 
carbon emissions [23–25], but few studies apply electric-
ity data to air pollution analysis. Therefore, high temporal 
resolution electricity consumption data from VOC emitting 
companies may be a valid indicator of VOC emissions from 
industrial sources. At the same time, the electricity data is 
more conducive to the government’s implementation of 
precise control over the relevant key emission industries.

This study quantitatively investigated the influenc-
ing factors of ozone pollution based on GAMs in Anhui 
Province, China together with high resolution electricity 
consumption data. The result provides insight to under-
stand the change in ozone pollution and how to precisely 
control ozone based on electricity data to reduce VOC 
emissions. In the next section, we describe the sources of 
the data, the methods used to implement the model and 
the quality control. In Sect. 3, we first present the spatial 
and temporal distribution characteristics of ozone in Anhui 
Province. We then discuss the influencing factors of ozone 
pollution based on the GAM model and propose a phe-
nomenological pathway to control ozone based on power 
big data. The major findings are summarized in Sect. 4.

2  Data and methods

2.1  Data sources

This study provides an analysis of the characteristics and 
driving factors of  O3 pollution in Anhui Province from 
January 2020 to May 2021 (electricity consumption data 
is only available as early as January 2020). The near-surface 
pollutant data  (O3,  NO2) at hourly resolution were obtained 
from the Department of Ecology and Environment (http:// 
sthjt. ah. gov. cn/ site/ tpl/ 5371) [26]. It should be noted that 
to analyze the historical trends in the spatial and temporal 
distribution of ozone in Anhui Province, we also extracted 
ozone data from state-controlled sites in Anhui Province 
from 2018 to 2020. Meteorological data corresponding 
to pollutant data, including temperature (T), relative 
humidity (RH), wind speed (WS), and wind direction (WD), 
were obtained from the NOAA website (http:// www. cdc. 
noaa. gov) [27]. A list of major VOC-emitting enterprises 
and their electricity consumption data in Anhui Province 
were provided by the State Grid Anhui Electric Power Cor-
poration. We selected major VOC-emitting enterprises 
based on previous work and the actual situation in Anhui 

http://sthjt.ah.gov.cn/site/tpl/5371
http://sthjt.ah.gov.cn/site/tpl/5371
http://www.cdc.noaa.gov
http://www.cdc.noaa.gov
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Province, and divided them into 14 categories [28, 29]. All 
data were averaged hourly and subjected to strict quality 
control to ensure integrity and representativeness. In this 
time period 145,656 valid data were finally obtained.

2.2  Generalized additive model method

In this study, we used GAMs to analyze the main factors 
affecting the variation in ozone concentration in the 
Anhui Province. Generalized additive model is a non-
linear 1regression model, a semi-parametric extension 
of the generalized linear model (GLM) that can directly 
deal with the complex non-linear relationships between 
response variables and multiple explanatory variables [30, 
31]. The model construction is based on the gam function 
with “mgcv” package in R software [32, 33]. “mgcv” is an R 
package for estimating GAMs. The equation is as follows:

where � represents the predicted value for the independ-
ent variables, that is, ozone concentration; xi(i = 1, 2,… , n) 
are predictors (e.g., WS, WD, T, RH, ELE, etc.); fk() is smooth 
functions of the predictors; g(μ) is the link function; ε is 
intercept. Gong, et al. [34] proposed that the distribution 
of ozone is close to Gaussian distribution and identity link 
is suitable for ozone in GAM. Therefore we used Gaussian 
distributions and the identity link function in our research, 
which means g(μ) = μ . Penalized cubic regression splines 
(CRS) were used to smooth the function to ensure that the 
model was not over-fitted or under-fitted [35].

2.3  Model parameter selection and quality control

To ensure the validity of the GAM model input predictors, 
we determined the input predictors of the model based on 
the Akaike information criterion (AIC) and  R2 [36]. When a 
valid predictor is added to the model, the AIC value should 
decrease while  R2 increases [34]. Based on the above cri-
teria, we tested the 20 variables selected by adding them 
to the model one by one. The variables included one air 
pollutant variable  (NO2), five meteorological variables, and 
14 electricity consumption variables. A description of the 
variables used in our study is presented in Table S1 (Online 
Resource 1). Fig. S1 (Online Resource 1) shows how the AIC 
and  R2 values change as the variables increase in the mod-
eling of Hefei. The AIC value decreased monotonically with 
increasing variables, and  R2 increased monotonically with 
increasing variables. This indicates that the model does 
not appear to be over-fitted while improving the good-
ness of fit.

g(μ) = f1

(

x1
)

+f2
(

x2
)

+…+fk
(

xi
)

+ε

We evaluated the performance of the model using the 
gam.check function in the mgcv package. Fig. S2 (Online 
Resource 1) illustrates the model quality control results 
for Hefei City. The residuals conform to a normal distribu-
tion and show a random distribution with no significant 
trend. The fitted and observed values of ozone were well 
matched after the fit.

3  Results and discussion

3.1  Spatial and temporal distribution 
characteristics

Anhui Province, an important province in East China 
in terms of population, economy, transportation, and 
agriculture, has faced serious air pollution problems 
in recent years. Figure 1 shows the spatial distribution 
characteristics of the annual mean  O3 concentrations in 
the Anhui Province in 2020. The overall spatial distribu-
tion of  O3 concentrations in Anhui Province shows a clear 
distribution trend of higher concentrations in the north 
than in the south. The relatively dry climate in northern 
Anhui (mainly north of the Huai River) is more conducive 
to the formation and accumulation of  O3.

Exceedances of ozone concentrations in Anhui prov-
ince were shown in Fig. 2, based on the air quality refer-
ence standard issued by the World Health Organization 
(ozone pollution is defined as a maximum daily 8-h  O3 
mass concentration of more than 160 μg/m3 [37]. All cit-
ies in Anhui Province face different levels of ozone pol-
lution. There was a notable decrease in the number of 
ozone pollution days in 2020 (n = 358) relative to 2019 
(n = 675) and 2018 (n = 709) (Online Resource 1, Table S2). 
Decrease in ozone concentrations in 2020 relative to the 
previous two years is closely related to the nationwide 
shutdown of production in China due to COVID-19. It was 
reported that ozone concentrations increased in some 
cities (17% in Europe, 36% in Wuhan) during the COVID-
19 lockdown in the presence of reduced precursor emis-
sions [38], which is contrary to the decline observed in 
Anhui. The variation in ozone concentrations between 
cities during the COVID-19 shutdown is controlled by the 
severity of the shutdown measures, the city’s own emis-
sions and differences in meteorological conditions. In 
VOC-limited cities, ozone concentrations may increase if 
the emissions reduction from the shutdown only affects 
 NOX and VOC emissions are not reduced. Whereas, if 
both precursors are reduced together, then ozone con-
centrations may fall. Therefore, ozone pollution needs to 
be discussed in separate modelling for different cities.
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3.2  Quantify the effect of variables on ozone based 
upon GAM modeling

GAM modeling of the 20 variables listed in Table  S1 
(Online Resource 1) was used to fit the hourly resolution 
ozone concentrations in Anhui. The spatial resolution of 
our model predictions is for integrated city surface areas. 
Table 1 shows the results of modeling 16 cities in Anhui 
Province, characterizing the goodness of fit by adjusted 
 R2 and root mean square error (RMSE). The  R2 value ranges 
from 0.76 (Huangshan) to 0.90 (Chizhou), with an average 
of 0.82. RMSE ranges from 18.63 (Bozhou) to 10.75 μg/m3 
(Bozhou), with an average of 16.19 μg/m3. We also cal-
culated the normalized root mean square error (NRMSE, 

RMSE divided by the mean of the observations), with an 
average of 0.25. Figure 3 shows the relationships between 
the observed and the fitted ozone concentrations in four 
cities in Anhui. In general, a GAM model is considered to 
have a good interpretation of the response variable when 
the adjusted value of  R2 exceeds 0.5 [39]. In comparison 
with previous studies [21, 35, 39], we believe that GAM 
models can capture the characteristics of ozone and the 
results are reliable.

The results of F test for GAM reflect the variance con-
tribution of each predictor variable to the response vari-
able [40]. The F value of a single independent variable 
divided by the sum of the F values of all the independent 
variables can represent the contribution of this variable 

Fig. 1  Spatial distribution char-
acteristics of  O3 concentrations 
in Anhui Province in 2020. The 
colours represent the annual 
average of ozone concentra-
tions

Fig. 2  Days of ozone pollution in 16 cities in Anhui Province, 2018–2020. Here ozone pollution is defined as a maximum daily 8-h  O3 mass 
concentration of more than 160 μg/m3
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to the change in the predictor variable [35]. We calculated 
the relative contribution of each variable based on the F 
test, and the results are listed in Table 2.  NO2 is one of the 
most important  O3 precursors. Its contribution to ozone 
change in Anhui Province was 33.72% in average, which 
was the highest of all variables. The electricity consump-
tion parameter (sum of 14 industries) refers to industrial 
sources of VOC emissions, accounting for 21.12% in aver-
age. The total contribution of  NO2 and electricity param-
eters amounted to 54.84%, which emphasizes the domi-
nance of precursors in the ozone generation process. As 
emissions from other VOC sources (e.g. solvent use, natu-
ral sources) were not considered in this study, the actual 
VOC contribution may be higher. Among the meteorologi-
cal parameters, temperature and humidity are the most 
important parameters affecting ozone variability. In this 
study, the two contributions of the most important mete-
orological parameters, relative humidity and temperature 
to ozone were 12.23% and 9.00%, respectively. Hu et al. 
[21] found that temperature and humidity may be the 
most significant meteorological factors influencing ozone 
concentrations in Chinese cities, which is consistent with 

Table 1  Summary of the performance of GAMs in Anhui

City Adjusted  R2 Absolute 
residuals (μg/
m3)

RMSE (μg/m3) NRMSE

Bozhou 0.81 13.98 18.63 0.25
Luan 0.82 12.96 16.73 0.22
Hefei 0.84 12.43 16.03 0.29
Anqing 0.83 11.83 15.12 0.22
Xuancheng 0.79 11.44 14.89 0.22
Suzhou 0.84 13.13 17.28 0.24
Chizhou 0.9 8.07 10.75 0.23
Huaibei 0.84 13.56 17.67 0.24
Huainan 0.83 13.14 16.92 0.23
Chuzhou 0.8 14.0 18.42 0.27
Wuhu 0.8 13.24 17.62 0.32
Bengbu 0.82 12.41 15.88 0.23
Tongling 0.83 10.02 13.0 0.24
Fuyang 0.83 12.84 16.43 0.24
Maanshan 0.81 13.76 17.92 0.3
Huangshan 0.76 12.29 15.77 0.25

Fig. 3  Relationships between the observed and the fitted ozone concentrations in Chizhou (a), Huaibei (b), Suzhou (c) and Hefei (d)
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our findings. Wind direction and speed, which indicate 
ozone transport and removal, account for a relatively lower 
contribution of 2.63% and 1.12%, respectively. This may 
be because transport and removal effects are important 
during specific ozone pollution events; therefore, they do 
not contribute much on a year-round scale.

3.2.1  NO2

In our GAMs modeling results,  O3 was negatively corre-
lated with  NO2 in all 16 cities in Anhui. Figure 4 shows 
the relationship between  O3 and  NO2 in Tongling and 
Huangshan, both showing an evident negative cor-
relation. Schroeder, et al. [41] proposed that when VOC 
concentrations are stable, the relationship between  O3 
and  NO2 driven by nonlinear  O3-NOx chemistry follows a 

log-normal distribution. For high  NOx concentrations  (NOx 
excess zone),  O3 concentrations increase with decreasing 
 NOx concentrations, while when NOx concentrations are 
low  (NOx sensitive zone),  O3 concentrations change in line 
with  NOx. This indicates that Anhui Province is still in a  NOx 
excess zone, and  O3 pollution is mainly controlled by VOCs.

Thus, although the contribution of  NO2 was the high-
est of all the variables, it was negatively correlated with 
ozone. This means that the control of  NO2 may exacerbate 
ozone pollution to some extent. This means that if VOC 
control is neglected, control of NO2 may have exacerbated 
ozone pollution to some extent. Sicard, et al. [38] reported 
that the lockdown during COVID-19 caused a substantial 
decrease in  NOx (~ 56%) and an increase in  O3 (~ 36%) 
in Wuhan. Chen, et al. [42] compared ozone pollution in 
China with ozone pollution in the USA in the 1990s and 
concluded that stricter NOx controls can improve  O3 pollu-
tions over industrialized areas. In the abatement scenario 
of COVID-19, the Anhui region has not reached a NOx sen-
sitive area. Our results may imply that a greater emphasis 
on reducing anthropogenic VOCs may be a more effective 
pathway for ozone control in most industrial areas until 
there are greater improvements in NOx concentrations.

3.2.2  Electricity consumption

As the main VOC emitting industries vary from city to city, 
the production and electricity consumption patterns of 
each industry also vary considerably. After analyzing the 
partial dependence diagrams (Fig. 5) between electricity 

Table 2  Relative importance 
of variables in 16 cities, 
including temperature (T), 
relative humidity (RH), wind 
speed (WS), wind direction 
(WD), hour of day (HOD), 
concentration of  NO2  (NO2) 
and electricity consumption 
(ELE)

City s(HOD) (%) s(NO2) (%) s(RH) (%) s(T) (%) s(WD) (%) s(WS) (%) s(ELE) (%)

Anqing 19.16 41.60 11.75 3.90 3.03 1.56 19.00
Bengbu 18.13 35.47 12.17 10.14 4.30 0.73 19.07
Bozhou 22.33 26.52 10.94 14.78 2.13 0.70 22.60
Chizhou 17.26 39.43 12.51 8.00 2.87 0.89 19.04
Chuzhou 18.68 36.86 12.25 6.44 3.29 0.93 21.55
Fuyang 19.16 36.15 14.17 7.32 1.78 0.97 20.46
Hefei 19.84 26.98 8.23 15.96 3.83 1.15 24.01
Huaibei 17.34 35.22 10.49 13.88 2.59 0.63 19.85
Huainan 20.03 22.00 9.35 15.27 2.84 1.23 29.27
Huangshan 33.09 17.83 24.88 1.51 4.60 3.56 14.54
Luan 15.38 38.75 10.09 6.02 1.94 0.64 27.18
Maanshan 21.88 37.88 11.33 10.70 2.63 0.85 14.73
Suzhou 21.30 41.40 6.42 10.40 1.22 0.86 18.41
Tongling 16.60 46.20 6.87 7.80 1.21 1.62 19.69
Wuhu 21.34 36.43 11.24 8.76 2.21 0.50 19.53
Xuancheng 21.53 20.80 22.91 3.06 1.62 1.14 28.94
Mean 20.19 33.72 12.23 9.00 2.63 1.12 21.12
Std 3.87 8.04 4.85 4.25 0.98 0.70 4.23

Fig. 4  Impacts of  NO2 on  O3 in GAM in Tongling (a) and Huangshan 
(b). The Y-axis in each subplot represents the smoothing function 
term for each predictor, and the numbers in brackets represent 
degrees of freedom. Black markers on the X-axis represent the dis-
tribution of the predictors (corresponding to the scatter points in 
the plot)
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and ozone for all industries, we divided these industries 
into 2 categories.

The first category of industries we refer to as the VOC-
electricity sensitive category. The non-metallic mineral 
products industry in Bozhou and the metal products 
industry in Fuyang, illustrated in Fig. 5a and b, are repre-
sentative of this. The distinctive feature of these industries 
is that the increase in electricity consumption contributes 
to the increase in local ozone concentrations. The VOC 
emissions from this type of industry may be closely related 
to their production and electricity consumption processes. 
For such enterprises, we can effectively control them by 
limiting electricity use, as their increased electricity use 
contributes to local ozone formation.

The second group of industries we call the VOC-electric-
ity insensitive category. Chemical raw material and chemi-
cal product manufacturing in Huaibei and chemical fibre 
manufacturing in Chizhou, illustrated in Fig. 5c and d, fall 
into this category. This category is characterised by the 

fact that there is no tendency for ozone to increase with 
electricity consumption. The VOC emissions from these 
enterprises usually involve the use of solvents. Therefore, 
the VOC emission phase in this category may be concen-
trated before or after the production activity, while during 
the production activity there is less direct emission of VOC. 
For this type of enterprises, the environmental authorities 
have to control their emissions according to the actual sit-
uation and not simply through the use of electricity.

3.2.3  Meteorology

Many studies have been conducted on the relationship 
between ozone and meteorological parameters. Accord-
ing to previous studies, ozone pollution is prone to occur 
on days with strong sunlight and low wind speeds [14]. 
Our modeling results show that ozone concentrations in 
Anhui Province increase with increasing T (Fig. 6a) and 

Fig. 5  Plot of partial depend-
ence of electricity consump-
tion variables on  O3 in repre-
sentative cities. Panel a shows 
the relationship between  O3 
and ELE13 in Bozhou; Panel 
b shows the relationship 
between  O3 and ELE14 in 
Fuyang; Panel c shows the 
relationship between  O3 and 
ELE1 in Huaibei; Panel d shows 
the relationship between  O3 
and ELE2 in Chizhou
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decrease with increasing RH (Fig. 6b), which is consistent 
with previous research findings [20, 21].

Higher wind speeds tend to promote ozone removal, 
but most of Anhui cities in the model do not exhibit this 
feature, except for Huangshan. The relative contribution of 
WD and WS in Huangshan was the highest of all cities, at 
4.60% and 3.56%, respectively. As shown in Fig. 6c, Huang-
shan City shows a decreasing trend of ozone under high 
wind speed conditions, which may be strongly related to 
the topography of Huangshan City. The city of Huangshan 
has a vast mountainous landscape, with the highest eleva-
tion of Huangshan reaching 1864 m. Valley winds have a 
strong effect on pollutants. Highland winds transport  O3 
and other pollutants to the mountains during the day, 
while valley winds send them back to plain areas at night 
[43, 44]. Figure 6d illustrates the relationship between 
ozone and wind direction in Bengbu City. As can be seen 
from the figure, ozone concentrations in Bengbu City 
reach their highest around a wind direction of 250°. This 
could mean that Bengbu is more susceptible to other cities 
in northern Anhui, such as Huainan and Bozhou.

The hour of day (HOD) predictor mainly indicates the 
daily ozone variation characteristics. The daily ozone varia-
tion is primarily influenced by a combination of solar radia-
tion and meteorological parameters such as temperature 
and wind speed. Huangshan City has the highest relative 
contribution of HOD to ozone among all the cities. The 

pattern of daily ozone variation in 16 cities in Anhui Prov-
ince is very similar, with concentrations starting to rise 
during the day from approximately 7 to 8 am, reaching 
a cumulative maximum ozone concentration at approxi-
mately 6 pm, and then starting to fall. Because Huangshan 
City is the least ozone-polluting city in Anhui Province, 
ozone levels may be more controlled by natural sources 
and meteorological conditions.

3.3  Potential controlling pathway of ozone 
pollution

Based on the ozone control approach presented in 
Sect. 3.2.2, we first selected individual industries for the 
abatement sensitivity experiments. We selected an ozone 
pollution event from 18 May 18, 2020, to 3 May 30, 2020. 
As shown in Fig. 7, the ozone scenarios simulated by the 
model for Anqing and Fuyang cities with a 50% reduction 
in electricity consumption for ELE14 (non-metallic mineral 
products industry electricity consumption) are shown. 
Ozone concentrations decreased by 18.8% and 12.6% in 
Anqing City and Fuyang City, respectively, throughout the 
pollution event period. It can be seen that targeted con-
trol of individual key industries can achieve considerable 
results.

In addition to extreme reduction scenarios for indi-
vidual industries, a more general approach should be 

Fig. 6  Plot of partial depend-
ence of meteorological 
variables on  O3 in representa-
tive cities. Panel a show the 
relationship between  O3 and 
T in Hefei; Panel b show the 
relationship between  O3 and 
RH in Huangshan; Panel c show 
the relationship between  O3 
and WS in Huangshan; Panel 
d shows the relationship 
between  O3 and WD in Hefei
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reducing emissions of all VOC-limited industries. There-
fore, we evaluated the effect of ozone pollution control 
under the scenarios of 10% and 20% reduction in electric-
ity consumption for all VOC-electricity sensitive industries. 
As shown in Fig. 8, the 10% abatement scenario resulted 
in an average decrease in ozone concentrations of 9.7% 
(4–17%) during the pollution period (ozone concentra-
tions above 160 μg/m3). In contrast, the 20% reduction 
scenario resulted in an average decrease in ozone con-
centrations of 19.1% (8–36%). The sensitivity of different 
cities to emissions reductions varies considerably. Cities 
with a low industrial presence are relatively insensitive 
to emissions reductions (Huangshan), while cities with a 
high industrial presence are more sensitive to emissions 
reductions (Hefei, Wuhu). It can be seen that there is a very 
large potential to reduce ozone pollution by restricting 
VOC emitting companies. Based on our model results, we 
can implement more targeted controls on ozone pollution 
in each municipality. During high ozone pollution seasons 
and in cities where ozone pollution is severe, measures 
to restrict electricity consumption of key local industries 
can be more effective in controlling local ozone pollution.

4  Conclusion

This study analyzed the spatial and temporal distribution 
characteristics of ozone concentrations in the Anhui Prov-
ince since 2018. Ozone concentrations in Anhui show a 

Fig. 7  Actual observed and model-predicted concentrations of 
ozone in Anqing (a) and Fuyang (b) during pollution events. The 
red dashed line represents the prediction using the original data. 
The blue dashed line represents the prediction for the scenario 
with a 50% decrease in the ELE14

Fig. 8  The effect of ozone pollution control under the scenarios of 10% and 20% reduction in electricity consumption for all VOC-electricity 
sensitive industries in Anhui
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spatial pattern of higher concentrations in the north than 
in the south. Ozone concentrations show a significant 
decrease in Anhui in 2020 relative to the previous two 
years due to COVID-19. In contrast, ozone concentrations 
increased in other cities with large production shutdowns 
during the 2020 epidemic (e.g., Wuhan). As the industry 
recovers, the ozone concentrations in Anhui rebound in 
2021 relative to 2020. This suggests that in Anhui Province, 
the control of anthropogenic precursors of ozone effec-
tively controls ozone pollution.

Therefore, we used the electricity consumption of key 
emitters to represent the VOC emissions of enterprises, 
and based on GAMs modelling, we analyzed the main 
influencing factors of ozone in 16 cities in Anhui Province. 
The results of the model  R2 (0.82), RMSE (16.19 μg/m3), and 
NRMSE (0.25) showed that GAMs could capture the ozone 
variability characteristics in Anhui Province. Among the 
meteorological factors, temperature and humidity are the 
most important factors affecting ozone variability.

The relative contribution of  NO2 concentration was the 
highest of all factors. However, the relationship between 
 NO2 concentration and ozone was negative. This implies 
that Anhui Province may still be in the VOC control area 
and that control measures for ozone should focus more on 
reducing the levels of VOCs from anthropogenic sources.

We further analyze the relationship between enterprise 
electricity consumption data and  O3 for 14 industries and 
categorized them into VOC-electricity sensitive category 
and VOC-electricity insensitive category. Emission reduc-
tions for just one VOC-electricity sensitive industry have 
the potential to reduce ozone concentrations by more 
than 10% during the pollution period. Under scenarios 
controlling for a 10% and 20% reduction in electricity 
use in VOC-sensitive industries, ozone concentrations 
decreased by 9.7% and 19.1% during the pollution period. 
Therefore, we believe that controlling VOC emissions from 
industrial sources has great potential for ozone reduction. 
GAM model based on power big data may be an effective 
way to achieve phenomenological ozone control.
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