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Abstract

We propose a biophysical model of Escherichia coli that predicts growth rate and an effective cellular composition from an
effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steady-
state growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series
of past measurements, where the growth rate and rRNA-to-protein ratio have been measured for seven E. coli strains with
an rRNA operon copy number ranging from one to seven (the wild-type copy number). These experiments show that
growth rate markedly decreases for strains with fewer than six copies. Using the model, we were able to reproduce these
measurements. We show that the model that best fits these data suggests that the volume fraction of macromolecules
inside E. coli is not fixed when the rRNA operon copy number is varied. Moreover, the model predicts that increasing the
copy number beyond seven results in a cytoplasm densely packed with ribosomes and proteins. Assuming that under such
overcrowded conditions prolonged diffusion times tend to weaken binding affinities, the model predicts that growth rate
will not increase substantially beyond the wild-type growth rate, as indicated by other experiments. Our model therefore
suggests that changing the rRNA operon copy number of wild-type E. coli cells growing in a constant rich environment does
not substantially increase their growth rate. Other observations regarding strains with an altered rRNA operon copy
number, such as nucleoid compaction and the rRNA operon feedback response, appear to be qualitatively consistent with
this model. In addition, we discuss possible design principles suggested by the model and propose further experiments to
test its validity.
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Introduction

The rRNA (rrn) operons of E. coli have the important role of

determining ribosome synthesis in the cell (c.f. [1–6] for reviews).

These operons are unique in the sense that a wild-type (WT) E. coli

cell carries seven copies of this operon per chromosome [7] (other

bacteria have copy numbers ranging between 1 and 15 [8]). This

copy number also appears to be selectively maintained. S.

typhimurium for example, from which E. coli is thought to have

diverged 120–160 million years ago [9], also has seven copies of

this operon [10] and in evolution experiments of up to 104

generations no deviations from the WT copy number have been

observed [11]. These findings raise the question of what

underlying mechanisms, if any at all, fixed this copy number to

be seven and not six or eight. In other cases it has been shown that

the WT genome configuration maximizes fitness [12–14]. Thus,

can it be shown that this copy number maximizes fitness?

In general, this question is hard to answer because the natural

environment of E. coli is expected to vary both spatially and

temporally [15,16], thereby invoking complex physiological

responses in the cell that are complicated to model. We therefore

consider a much simpler scenario, where a resource-rich

environment is spatially and temporally constant, and where the

cell is at a state of balanced exponential steady-state growth [3],

such that it has a well defined and reproducible growth rate and

physiological state [17,18]. In such an environment, cells that can

outcompete their rivals will takeover the population and thus fix

their genotype. Thus we refer to fitness in the narrow sense that

previous authors have used [11,14], i.e. it is the potential capacity

of a cell in exponential growth to outcompete another strain

population wise. Therefore, for an exponentially growing cell in a

constant and rich environment, fitness would be, by definition, the

growth rate of that cell.

Experimental evidence indeed suggests that for exponentially

growing cells, cells with altered rRNA operon copy numbers have

a lower growth rate. In a series of experiments, the Squires group

has measured the growth rate and cell composition of seven strains

of E. coli with rRNA operon copy numbers ranging from one to

seven copies per chromosome [19]. All strains were grown in the

same nutrient rich environment and measurements were per-

formed on cells in exponential phase. These experiments show that

cells with fewer than six rRNA operons have a considerable lower

growth rate [19] (c.f. Figure 2A presented later in the text). For

example, cells with five functional rRNA operons have a 21%

PLoS Computational Biology | www.ploscompbiol.org 1 May 2008 | Volume 4 | Issue 5 | e1000038



lower growth rate than WT cells, while cells with only one

functional rRNA operon have a 50% lower growth rate than WT

cells [19]. In addition, a strain carrying extra rRNA operons on a

plasmid exhibited a 22% reduction in growth rate relative to a WT

control strain with a plasmid expressing nonfunctional rRNA [20].

To gain further insight into these findings, we sought to

formulate a model of E. coli that could predict phenotype, such as

growth rate and cell composition, directly from DNA related

parameters, such as the rRNA operon copy number, while keeping

the complexity of the model to a minimum. The model of E. coli

proposed here differs from existing models of E. coli in several

respects. Traditionally, E. coli has been monitored in different or

changing environments [17,21–23], and existing models have

attempted to predict E. coli’s response to such environmental

perturbations [12,23–26]. However, since disparate environments

are expected to induce disparate genetic networks, we anticipate

that such a strong perturbation will be difficult to capture in a

simple model that attempts to predict phenotype from DNA

related parameters (c.f. S2.3 in Text S1). Existing models of E. coli

tend to fall into two classes. One class includes very complex

models, involving tens to hundreds of equations [12,24,25], which

do not lend themselves to simple interpretation. The other class

involves simple and elegant models of E. coli that followed the

Copenhagen school [22,23,26,27] (see [17] for review). These

classic models, however, do not relate genome to growth rate and

composition, nor do they make reference to certain key physical

processes in the cell elucidated since. Included in our current

model are the relationships of genome to growth rate and cell

composition, reflecting key physical processes now better under-

stood, such as RNA polymerase (RNAp)-promoter interaction

[3,28], RNAp autoregulation [29], ribosome-ribosome binding site

(RBS) interaction [30–33], mRNA degradation [34–40], DNA

replication initiation [41–43] and macromolecular crowding (see

below) [44–51]. In addition, we have attempted to find the middle

ground in terms of complexity by coarse-graining, for simplicity,

certain features of the cell: in the spirit of previous works [28,52],

the genome has been lumped into a small set of ‘‘gene classes’’ that

represent all transcription and translation within the cell for the

given environment. Similarly, the cell composition was reduced to

a small set of variables accounting for the macromolecule content

of the cell. The resulting type of model is referred to as a Coarse-

Grained Genetic Reactor (CGGR).

Another point of difference with respect to existing models of E.

coli is that in this model we take into account possible global

biophysical effects resulting from the high volume fraction of

macromolecules in E. coli, a state commonly termed ‘‘crowding’’

[45]. Formulating such a biophysical model for E. coli raises the

basic question: is the macromolecular volume fraction, W= Vmacro/

Vcell, inside E. coli constrained to be fixed or does it change for

genetically perturbed cells? We have explored both of these

possibilities in what we refer to as the constrained (W= const) and

unconstrained (W?const) CGGR models.

Using the CGGR modeling approach, we have modeled the

seven strains engineered by the Squires group and have calculated

their growth rate and their effective cellular composition. We were

able to reproduce the experimental data within a model in which

macromolecular volume fraction was allowed to change for

genetically perturbed cells. These findings, along with other

biological considerations, seem to favor the unconstrained CGGR

model (see Discussion). According to this model, increasing the

chromosomal rRNA operon copy number beyond seven will over-

crowd the cytoplasm with ribosomes and proteins. Under such

over-crowded conditions, we expect that binding affinities will

weaken due to prolonged diffusion times. As a result, given this

assumption, we show that the growth rate of an exponentially

growing cell in a constant rich medium will not increase

substantially beyond its WT growth rate when the rRNA operon

copy number is increased beyond seven. Although we have not

shown that the maximum in growth rate is a global maximum,

since we only perturbed one genetic parameter, this result suggests

that—at least for the case of a cell undergoing balanced

exponential steady-state growth in a constant and rich medi-

um—basic kinetic and biophysical considerations may have an

important role in determining an optimal rRNA operon copy

number (see Discussion).

Besides explaining the Squires data, the unconstrained CGGR

model is qualitatively consistent with observations regarding

nucleoid compaction in the inactivation strains and with the rrn

feedback response originally observed by Nomura and coworkers

(see Methods and Discussion). Thus, the CGGR model may offer

an initial conceptual framework for thinking about E. coli as a

whole system at least for the simplified environment considered.

More complex genetic networks may subsequently be embedded

into this model enabling one to analyze them in the larger, whole

cell framework. Such a model may also help elucidate how E. coli

works on a global scale by making experimentally testable

predictions and suggesting experiments (see Discussion). We will

also consider possible insights into the ‘‘design principles’’ of E. coli

suggested by the CGGR model, such as intrinsic efficiency of

resource allocation and decoupling of DNA replication regulatory

mechanisms from cell composition.

Methods

The Cell as a Coarse-Grained Genetic Reactor (CGGR)
Our goal is to formulate a model of E. coli that predicts

phenotype, such as growth rate and the cell composition, from

parameters directly related to the genome, while keeping

complexity to a minimum. To reduce the complexity of this

problem we coarse-grained both input parameters (the genome)

and output parameters (the cell composition and growth rate). The

genome (input) was lumped into four basic gene classes: RNA

Author Summary

A bacterium like E. coli can be thought of as a self-
replicating factory, where inventory synthesis, degrada-
tion, and management is concerted according to a well-
defined set of rules encoded in the organism’s genome.
Since the organism’s survival depends on this set of rules,
these rules were most likely optimized by evolution.
Therefore, by writing down these rules, what could one
learn about Escherichia coli? We examined E. coli growing
in the simplest imaginable environment, one constant in
space and time and rich in resources, and attempted to
identify the rules that relate the genome to the cell
composition and self-replication time. With more than
4,400 genes, a full-scale model would be prohibitively
complicated, and therefore we ‘‘coarse-grained’’ E. coli by
lumping together genes and proteins of similar function.
We used this model to examine measurements of strains
with reduced copy number of ribosomal-RNA genes, and
also to show that increasing this copy number overcrowds
the cell with ribosomes and proteins. As a result, there
appears to be an optimum copy number with respect to
the wild-type genome, in agreement with observation. We
hope that this model will improve and further challenge
our understanding of bacterial physiology, also in more
complicated environments.

A Coarse-Grained Model of E. coli and Applications
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polymerase (RNAp), ribosomal protein (r-protein), stable RNA

and bulk protein. The gene classes are represented by genetic

parameters such as: genetic map locations, promoter strengths, RBS

strengths, mRNA half-lives and transcription and translation

times, all of which can be, in principle, linked to the DNA. Genetic

parameters have been determined based on empirical data for the

WT growth rate (or very close to it) and represent all transcription

and translation within the cell at that growth rate (see Results for

more details).

The cell composition (output) was reduced to the following five

macromolecule classes: free functional RNAp, total RNAp, free

functional ribosomes, total ribosomes and bulk protein. The bulk

protein class represents all other cell building and maintenance

proteins in the cell [53]. The concentration of these macromol-

ecules, together with the growth rate constitutes six state variables

that define the cell state. Table 1 gives an example of the observed

WT cell state at 2.5 doub/h. In the Discussion we consider the

applicability of this choice of coarse-graining.

The Feedback Mechanisms within a Coarse-Grained
Model of E. coli

After coarse-graining the cell, one can map the various feedback

mechanisms that exist between these coarse-grained components,

as illustrated in Figure 1A. Transcription of the various gene

classes by RNAp [29] is depicted on the left, and translation of

mRNA by ribosomes on the right. Ribosomes are shown to be

assembled by combining rRNA with r-protein. r-proteins synthesis

rate is regulated to match the rRNA synthesis rate [1] as indicated

by the black arrow in Figure 1A.

RNAp naturally has positive feedback to all promoters, and

ribosomes have positive feedback to all RBSs. In the case of

RNAp, it has been shown [29] that the bb9 subunits, which limit

the production of RNAp (c.f. discussion in [17]), repress their own

translation, and the functional, assembled RNAp holoenzyme

represses transcription of bb9. While the details of the RNAp

autoregulation are still being elucidated, the latter finding suggests

that the apparent fast response of the negative translational

autoregulation of the bb9 operon keeps the concentration of total

RNAp fixed, at least approximately (for a detailed discussion see

S2.1 in Text S1). The level of RNAp may also be modulated by

guanosine 59-diphosphate 39-diphosphate (ppGpp) [3,17,28],

however, since ppGpp levels were measured to be constant for

strains with increased or decreased number of rRNA operons

[20,54], this modulation will not be relevant in this analysis (see

discussion below).

Finally, there is the feedback arising from the translation-

degradation coupling, indicated in Figure 1A by the dashed green

line connecting ribosomes to mRNA degradation. Ribosomes

bound to the RBS of mRNA protect the mRNA from degradation

by preventing RNase E – thought to be the primary endonuclease

Table 1. The cell state at m = 2.5 doub/h, 37uC.

State
variable m (doub/h) nbulk nRNAp nRNAp,free nribo nribo,free

Measured
value

2.5 5.76?106 11400 890 72000 4700

Cell composition (ni) was either directly measured or estimated from empirical
data and is given in units of molec/cell. Measurement error is expected to be
around 15%, mostly due to culture-to-culture variation [17]. More details can be
found in Table S2.
doi:10.1371/journal.pcbi.1000038.t001

Figure 1. The coarse-grained genetic reactor (CGGR) model of
E. coli. (A) A schematic diagram of the cell as a CGGR. This figure
depicts the various gene classes (double stranded DNA on the left),
mRNA (single stranded RNA on the right) and their expressed products,
stable RNA and the various positive (R) and negative (x) feedbacks
between these components. The colored tips on the DNA and mRNA
represent the promoter binding sites and the ribosome binding sites
(RBSs) respectively. The white boxes denote the process of assembly of
functional complexes from immature subunits. The light blue back-
ground represents the finite volume of the cell in which reactions take
place, which is determined by the DNA replication initiation system (see
text and S2.2 in Text S1). (B) The basic reactions taking place in the cell:
Km,i, Vmax

i are the Michaelis-Menten (MM) parameters for transcription
initiation of gene class i [3,28], followed by transcription at a rate of
1/tc,i. Lm,i, Umax

i are the MM parameters of gene class i for translation
initiation (i.e. binding of a 30S ribosome subunit to a RBS) [30,31],
followed by translation at a rate of 1/tl,i. Note that in this scheme, the
30S-RBS binding affinity, Lm,i, includes the 30S interaction with the
secondary structure of mRNA [30]. mRNA degradation is primarily
achieved via the endonuclease RNase E [35] and is assumed to follow
MM like kinetics (Jm,i, W max

i ) [36,37]. In the scheme considered here,
RNase E competes with the 30S subunits in binding to a vacant RBS
[38,39], functionally inactivating it when it binds [38]. This results in a
coupling between translation and degradation [34]. Delays due to
assembly are incorporated separately. The MM parameters, together
with the time constants and map locations define genetic parameters
for the various gene classes, which can be easily ‘‘tweaked’’ by base pair
mutations (c.f. Table 2 and Table S1).
doi:10.1371/journal.pcbi.1000038.g001

A Coarse-Grained Model of E. coli and Applications
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in E. coli [35,55] – from binding to the 59 end of the mRNA and

cleaving it (for recent reviews see [34,38,39]). RNase E is

considered to be the partially or fully rate-determining step in

the mRNA degradation process [35,55–59]. Here we have

modeled this effect by allowing only mRNA’s with a vacant

RBS to be cleaved [38,39,60]. This feedback manifests itself as

dependence of mRNA half-life on the probability that the RBS is

vacant, as suggested by observation [34,56,61] (see S2.7 in Text S1

and discussion further below).

We shall refer to the feedbacks depicted in Figure 1A as internal

feedbacks. If the macromolecular volume fraction is allowed to

change, then an additional internal feedback arises due to the fact

that the binding affinities of RNAp and ribosomes to their

corresponding binding sites may change due to crowding effects.

This kind of dependence on the crowding state of the cell offers an

additional feedback path not explicit in Figure 1A. We will

elaborate on this point in the Results section. Also not explicit in

Figure 1A is DNA replication that determines gene concentration.

This issue will be further discussed below.

The Feedback Response of the rRNA Operons
It has long been known that there is some form of feedback

control on rRNA operons that responds to any artificial attempt to

manipulate ribosome synthesis [1–6,20,62], yet the source of this

feedback has remained controversial. Since we will be considering

perturbations on the rRNA operon copy number, which affect

ribosome synthesis, it is pertinent to identify any additional

effectors that apply a feedback within the system.

Nomura and his coworkers noted that cells with increased

number of rRNA operons did not exhibit a significant increase in

rRNA transcription [62], i.e. the transcription per rRNA operon

decreased by means of some feedback. Furthermore, the absence

of this feedback in cells overproducing nonfunctional rRNA, and

the observation of a feedback response in strains in which

ribosome assembly was blocked, suggests that complete ribosomes

are involved in the feedback response [62]. This became known as

the ‘‘ribosome feedback regulation model’’ (c.f. discussions in

[1,3,5]). Direct effect of ribosomes on rRNA transcription could

not, however, be observed in vitro [62], and it was suggested by

these authors that this regulation may be achieved indirectly [62].

Further experiments indicated that the feedback depends on

translating ribosomes (or translational capacity) rather than free

ribosomes [1,63]. Later studies have demonstrated the feedback

response for various other perturbations that attempted to

artificially manipulate ribosome synthesis rate, including: increas-

ing rRNA operon copy number [20,64,65], decreasing rRNA

operon copy number [54], overexpressing rRNA from an

inducible promoter [66], deleting the fis gene [20,67] (see below),

muting the rpoA gene coding for the a subunit of RNAp [20,68]

and more (c.f. [2,20]). Since many of these perturbations [20], as

well as perturbations in nutritional conditions [2,69], correlated

with changes in the concentration of ppGpp and nucleoside

triphosphate (NTP), Gourse and his coworkers have proposed that

NTP and ppGpp are the feedback regulators [6,69]. In addition,

these authors have suggested a model where translating ribosomes

consume or generate NTP and ppGpp and thus are able to

achieve homeostasis of rRNA expression on a rapid time scale

[6,69]. Yet these authors also point out that these effectors cannot

explain the feedback response specifically associated with changes

in rRNA gene dosage [64] (the perturbations considered in this

study). In this case, it has been demonstrated that the small

molecule ppGpp has no effect on rRNA synthesis rate both in the

case where rRNA gene dosage was increased [20] or decreased

[54] since ppGpp concentration remains constant in these strains

(also indicating that tRNA imbalance was not a problem in those

strains). In addition, feedback inhibition due to increased rRNA

gene dosage was of the same magnitude in both wild-type cells and

strains lacking ppGpp [70]. Similarly, the concentration of the

small effector NTP was shown to be constant when decreasing or

increasing the rRNA gene dosage [64]. In a different study, NTP

concentration decreased by only a small amount (20%) when

rRNA gene dosage was increased [20], such that those authors

concluded that the small change in NTP concentration appears to

be insufficient to account for the entire effect on transcription

initiation. Due to these findings, Gourse and coworkers concluded

that there may be additional mediators involved in feedback

control of rRNA expression when altering the rRNA operon gene

dosage [2,20]. We show that internal feedbacks may account, at

least partially, for the feedback response, although an additional

effector may still be involved. In the Discussion we analyze model

predictions and compare them to observations regarding this

effect. We will also discuss the predicted feedback response in the

context of Nomura and coworkers’ feedback model and show that

there appears to be no contradiction between the two.

Additional Factors Affecting rRNA Expression
In addition to the small molecules mentioned above, rRNA

transcription is further modulated by transcription factors like Fis,

HN-S and DskA, as well as the UP element [1,2,4–6,69,71],

however there is currently no experimental evidence to suggest

that these factors are linked to the feedback response to altered

rRNA gene dosage. DskA, for example, a small molecule that

binds to RNAp, is thought to amplify effects of small nucleotide

effectors such as ppGpp and NTP [4,6,72]. DskA concentration,

however, was found to be unchanged with growth rate and growth

phase and therefore it apparently does not confer a novel type of

regulation on rRNA synthesis [3,72] and is thus considered to be a

co-regulator rather than a direct regulator [4]. Fis stimulates

rRNA transcription by helping recruit RNAp to the promoter

through direct contact with the a subunit of RNAp, while the UP

element, a sequence upstream of the promoter, binds the a subunit

of RNAp and can greatly stimulate rRNA transcription [2,4–

6,71]. Although Fis levels change throughout the growth cycle

[4,5], strains lacking Fis binding sites retain their regulatory

properties [2,5,67] indicating that fis is not essential for regulation

of rRNA transcription during steady-state growth [67], and

perhaps just plays a role in control during nutritional shift-ups and

onset of the stationary phase [5]. HN-S concentration changes

with the growth phase of an E. coli culture [2,69,71] and is thought

to be associated with regulation related to stress [15], particularly

in stationary phase [4,69]. Since there is currently no direct

evidence that shows that any of these or other factors are asso-

ciated with the feedback response to rRNA gene dosage perturba-

tion, no such factors were included in the proposed models, yet

future experiments may prove otherwise (c.f. Discussion).

Kinetic Equations
The biochemical reactions that make up the feedback network

illustrated in Figure 1A are approximated, for simplicity, by

Michaelis-Menten type kinetics [3,28,30,36,37], as is illustrated in

Figure 1B. These reactions include: stable RNA synthesis, bulk

protein synthesis and bulk mRNA decay. Since ribosomes and the

bulk of proteins in E. coli are stable on timescales of several genera-

tions [35,73], their degradation can be neglected compared to the

fast doubling time of the cell (,30 min). We also do not need to

explicitly consider r-protein synthesis since ribosome synthesis is

limited by rRNA [1]. Finally we note that the free RNAp in these

reactions may include RNAp bound nonspecifically to DNA and

A Coarse-Grained Model of E. coli and Applications
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in rapid equilibrium with it [28] that may locate promoters by a

type of 1-D sliding mechanism [74]. In the current model, all

inactive RNAp was assumed to be associated with pause genes (c.f.

[28] and e.g. Table S4) and thus inaccessible to promoters.

However, it may be that some of these inactive RNAp molecules

are just bound nonspecifically to the DNA [28] perhaps serving as

an additional reservoir of RNAp.

Since the Squires strains were measured under steady-state

conditions, we consider next the steady-state equations implied by

Figure 1B.

The CGGR Steady-State Equations
The reactions in Figure 1B can be readily expressed as rate

equations and analyzed at steady-state. Although the full

derivation is rather lengthy (see S2.5 in Text S1), the final

equations lend themselves to simple interpretation. The average

transcription [3,75] and translation [30,31,76] initiation rates are

given by the usual Michaelis-Menten relations

Vi~Vmax
i

1

1zKm,i

�
nRNAp,free

,Ui~Umax
i

1

1zLm,i

�
nribo,free

ð1Þ

where ni denotes the concentration of species i, Vmax
i and Umax

i

are the maximum transcription and translation initiation rates of

the i-th gene class respectively, and Km,i and Lm,i are RNAp

holoenzyme and 30S ribosome subunit binding affinities of the i-th

gene class to their corresponding binding sites respectively,

measured in units of concentration (see Table 2 for notation list

and units). Using this notation, the RNA transcript synthesis rate

per unit volume is vi = diVi (where di is the gene concentration of

the i-th gene class) and the number of translations per mRNA is

ui~UiT
fun
1=2,i

.
ln 2, where T

fun
1=2,i

is the functional half-life of the i-th

gene class mRNA. Therefore, the protein synthesis rate per unit

volume of gene class i is viui. In this notation, the five equations of

state take the form:

ið Þ nRNAp&const

iið Þ nbulk~
1

a
vbulkubulk

iiið Þ nribo~
1

a
vrrn

ivð Þ nRNAp~nRNAp,free

z tc,bulkvbulkztc,r�proteinvr�proteinztc,rrnvrrn

� �
z 1{e{atRNApð ÞnRNAp

vð Þ nribo~nribo,freez tl,bulkvbulkubulkztl,r�proteinvrrn

� �
z 1{e{atriboð Þnribo

ð2Þ

where tc,i and tl,i are the times to transcribe and translate the i-th

gene class respectively, and ti is the average assembly time for

component i (the boxes in Figure 1A). Equation (i) states that the

total RNAp concentration is constant. This is due to our

assumption that the negative autoregulation of RNAp is ideal.

This somewhat naı̈ve model for the autoregulation of RNAp can

be, in principle, replaced with a more sophisticated model

describing the steady-state response of the negative transcriptional

and translational autoregulation of RNAp, once the details of this

mechanism are known. Equations (ii) and (iii) are the bulk protein

and ribosome synthesis equations respectively, assuming exponen-

tial growth, i.e. dilution at a rate of a = mln 2, where m is the

doubling rate. Note that vrrn is the total ribosome synthesis rate per

unit volume. Finally, (iv) and (v) are conservation equations for

RNAp and ribosomes within the cell. In Eq. (iv), these terms

include (left to right): free RNAp, bound RNAp and immature

RNAp (a modified version of Eq. (iv) was first derived in [28]).

Similar terms exist in the ribosome conservation equation (v). The

contribution of RNAp to the conservation equations was neglected

since it constitutes less than 2% of the total protein mass [17]. Note

that in the second term of (v), the number of bound ribosomes to

the r-protein class is determined by the time it takes to translate all

r-proteins and the total rrn transcription rate, due to the matching of

r-protein synthesis rate and rRNA synthesis rate through

regulation at the r-protein mRNA level [1]. The ribosome

conservation equation (v) is equivalent to the previously derived

result [3]: a = (Nribo/P)brcp, where Nribo is the number of

ribosomes per cell, P is the total number of amino acids in

peptide chains, br is the fraction of actively translating (bound)

ribosomes and cp is the peptide chain elongation rate.

Explicit expressions for functional and chemical half-lives of

bulk protein, and their dependence on the concentration of

free ribosomes, can also be derived from Figure 1B, taking

into account the negative autoregulation of RNase E (c.f. S2.5

and Eq. S15 in Text S1). For example, one can show that

the functional half-life of bulk protein mRNA is given by

T
fun
1=2,bulk

~T
fun,o
1=2,bulk

1znribo,free

�
Lm,bulk

� �
, where T

fun,o
1=2,bulk

is a

genetic parameter denoting the functional half-life of bulk mRNA

in the absence of ribosomes. Thus, mRNA half-life increases with

the probability that the RBS is occupied. This relation reflects

translation-degradation coupling trends observed between mRNA

degradation and translation [34,39], further discussed in S2.7 of

Text S1.

To extract the cell composition from Eq. 2 we require

an expression for the gene concentrations, di(m), of the various

gene classes. This expression is given by linking [43] the

Cooper-Helmstetter model of DNA replication [77,78] and

Donachie’s observations regarding the constancy of the initiation

volume [41,79]:

di mð Þ~ 1

Vini ln 2

X
j

2{mi,j Cm ð3Þ

where Vini is the initiation volume, defined as the ratio of the cell

volume at the time of replication initiation and the number of

origins per cell at that time, mi,j represents the map location of the

j-th gene in the i-th gene class relative to the origin of replication

(0#mi,j#1), and finally C is the C period, the time required to

replicate the chromosome (roughly 40 min). Recent observations

and modeling of the replication initiation mechanism in E. coli

[41,42] suggest that the initiation volume is regulated to be fixed,

and therefore it should be independent of genetic perturbations

that do not target that regulation (Tadmor and Tlusty, in

preparation). See S2.2 in Text S1 for further details. Thus, we

can use Eq. 3 to predict the gene concentration for the genetically

perturbed cells considered here.

Equation set 2 provides us with five equations of state. We now test

whether these equations are consistent with observed WT cell

states.

Results

The CGGR Model Can Reproduce the WT Cell State
We wish to see whether given measured genetic parameters at a

specified growth rate, we can reproduce the cell state, namely the

growth rate of the cell and its coarse-grained composition (Table 1).
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For the case of growth at 2.5 doub/h, all genetic parameters,

except the Michaelis-Menten parameters for translation initiation

(Umax
bulk and Lm,bulk) are based on (1) previous estimates derived

from empirical data for this growth rate [28], (2) global mRNA

half-life measurements at 37uC in LB broth [40], and (3) gene

lengths and map locations obtained from the sequenced genome of

E. coli. These genetic parameters are summarized in Table S1.

Umax
bulk was set at several plausible values (above observed average

translation initiation rates [3,80,81] and below the maximum limit

where ribosomes are close-packed), with the remaining parameters

estimated to minimize the mean square error (MSE) with respect

to the WT cell state (Table 1). Errors in estimation of the cell state

were no more than 6% of the observed WT cell state and within

experimental error bounds of these measurements (,15%; c.f.

Table S3 for estimated genetic parameters and corresponding

MSEs). Similar results were obtained for the cell state at 1 and

2 doub/h (see for example Table S3 for 1 doub/h). These results

indicate that the equations in equation set 2 can be mutually

satisfied for these growth rates. We also note that in all cases we

found that Lm,bulk is of same order of magnitude as the

concentration of free ribosome, nribo,free, indicating that the RBSs

are not saturated by free ribosomes, in agreement with pervious

studies [30–33]. Further details are given in S1.1.1 of Text S1.

rRNA Operon Inactivation Experiments: The Squires Data
In the series of experiments that we consider here, Asai et al.

[19] have measured the growth rate and rRNA to total protein

ratio of seven E. coli strains, with rRNA operon copy numbers

ranging from one to seven per chromosome (Figure 2). Since all

strains were grown in a constant environment of Luria-Bertani

broth at 37uC (m = 2.0 doub/h for the WT strain), the CGGR

model is applicable. We first reconstructed the WT genetic

parameters and the relevant physical constants (C periods and

elongation rates) for a growth rate of 2 doub/h (c.f. Table S5 and

S1.2 in Text S1 for a detailed account). Next, by analyzing the

published lineage of these strains (Table S6) we derived the genetic

Table 2. CGGR variables, parameters and constants.

Genetic Parameters units

Vmax
i Maximum transcription initiation rate of the i-th gene class 1/min

Umax
i Maximum translation initiation rate of the i-th gene class mRNA 1/min

Km,i Binding affinity of RNAp holoenzyme to the i-th gene class promoter 1/(mm)3

Lm,i Binding affinity of the 30S ribosome subunit to the i-th gene class mRNA RBS 1/(mm)3

tc,i Average time to transcribe the i-th gene class ( = Li/ci) min

tl,i Average time to translate the mRNA of the i-th gene class ( = Li/3cp) min

mi,j Map location of the j-th gene in the i-th gene class dimensionless

T
fun,o
1=2,i

Functional half-life for the i-th gene class mRNA in the absence of ribosomes min

Vini Initiation volume (mm)3

Cell state variables

nRNAp Concentration of total RNAp 1/(mm)3

nRNAp,free Concentration of free functional RNAp 1/(mm)3

nribo Concentration of total ribosomes 1/(mm)3

nribo,free Concentration of free functional (30S) ribosomes 1/(mm)3

nbulk Concentration of bulk protein 1/(mm)3

a Specific growth rate (a = m?ln(2), where m is the doubling rate) 1/min

Parameters and constants for the unconstrained CGGR

cribo/load Production cost of one ribosome or load protein dimensionless

n0 Minimum cell density 1/(mm)3

Parameters and constants for the constrained CGGR

Mbulk Bulk protein cutoff 1/(mm)3

cmax
p Maximal elongation rate aa/min

h Hill coefficient dimensionless

Other parameters, variables and constants

cp Peptide chain elongation rate aa/min

ci RNA chain elongation rate of the i-th gene class bp/min

C C period min

di Gene concentration of the i-th gene class 1/(mm)3

Li Length of the i-th gene class base pairs

vk Volume of a macromolecule belonging to the k-th species (mm)3

W Macromolecule volume fraction = Vmacro/Vcell dimensionless

Genetic parameters, cell state variables, and other variables and constants associated with the CGGR models. Gene classes labeled by index i include: rrn, r-protein, bulk
protein and any load genes.
doi:10.1371/journal.pcbi.1000038.t002
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parameters for each specific strain (Table S7). In S1.3 of Text S1

we explain which genetic parameters for the WT cells can be

carried over to the inactivation strains and which parameters

change, and how. The WT cell state at 2 doub/h is given in Table

S2 and the genetic parameters at 2 doub/h for the WT cell and

the inactivation strains are summarized in Table S5 and Table S7,

respectively.

Given the genetic parameters, we set to solve Eq. 2 for the

different strains. However, in order to solve for the CGGR cell

state, which consists of six state variables, we need an additional

relation which apparently does not arise from kinetic consider-

ations. A hint to the solution may lie in the fact that so far we have

neglected the function of the bulk protein and biophysical

considerations such as macromolecular crowding.

Macromolecular Crowding and the Function of the Bulk
Protein

The in vivo milieu of E. coli is extremely crowded with

macromolecules [45] with typical values of macromolecule volume

fraction W= Vmacro/Vcell of 0.3–0.4 [46]. Observations of WT E.

coli in varying environments suggest that the macromolecular mass

density of the interior of the cell is more or less a constant [23]. If

we neglect the contribution of RNAp, mRNA and DNA (,6% at

2.5 doub/h [17]) this is roughly equivalent to stating that

W:vribonribozvbulknbulkzvload nload~const ð4Þ

where vi is the volume occupied by a particle belonging to the i-th

species (c.f. Table S2), and with potential contribution from ‘‘load

genes’’ that express products not utilized by the cell and pose a

pure burden, like antibiotic resistance for example. Equation 4,

which balances bulk protein against ribosomes, leads to a

contradiction: it appears from this model, that by genetic

perturbations, e.g. by increasing the rRNA operon copy number,

one could construct a cell composed almost entirely of ribosomes

with no bulk proteins to support it, or vice versa. To resolve this

difficulty we need to take into account the fact that some of the

bulk proteins are required to support ribosome synthesis.

One possible resolution is to introduce a mechanism that would

limit protein and ribosome synthesis when bulk protein density is

reduced. For example, one could assume that the peptide chain

elongation rate, cp, is given by cp~cmax
p

.
1z Mbulk=nbulkð Þh
h i

,

where h is some Hill coefficient, cmax
p is the maximal elongation

rate and Mbulk is a cutoff. Mbulk may depend on the environment,

reflecting the dependence of cp on the environment [17]. Note that

cp affects our system of equations through the translation times tl,i.

Figure 2. Comparison of rRNA operon inactivation data of Asai
et al. [19] to CGGR models and predictions for higher rRNA
operon copy numbers. (A) Growth rate as a function of rRNA operon
copy number per chromosome. The maximum standard error of growth
rate measurements was 0.07 [19]. (B) rRNA to total protein ratio, where
total protein is given by total amino acids in the form of r-proteins and
bulk proteins. Measurement error was not available for this data. In the
case of the constrained model, solutions were not obtainable above a
copy number 11. (C) Ribosome efficiency, defined as er = a?P/Nribo [3,19]
(see text), was obtained by dividing the growth rate in (A) by the ratio of
rRNA to total protein in (B). All curves are normalized to WT values at
2.0 doub/h. The legend to all figures is given in (A). The kink observed for
copy number 2 is due to strong expression of lacZ in this strain used for
inactivation. Beyond the WT rRNA gene dosage, rRNA operons were
added at the origin (also see S1.4 in Text S1). The rRNA chain elongation
rate, crrn, was assumed to be fixed in these simulations.
doi:10.1371/journal.pcbi.1000038.g002
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This criterion along with Eq. 2 and Eq. 4 define the constrained

CGGR model.

However, is the macromolecular volume fraction, W, really

constant? The phenomenological evidence indicating that W is

roughly constant has been obtained for WT cells in different

environments, and not for a suboptimal mutant growing in a given

environment like the Squires strains. Indeed, it has been proposed

that W can vary by adjusting the level of cytoplasmic water to

counter changes in the external osmotic pressure [82]. These

observations suggest that W= const is apparently not a universal

law in E. coli.

An alternative resolution, which does not hypothesize that

W= const, could be to postulate a cost criterion, which states that the

amount of ribosomes that the cell can produce is limited by

resources, such as ATP, amino acids, etc., that are made available

by the bulk proteins. Assuming that bulk protein concentration,

nbulk, is proportional to its demand, i.e. to total ribosome

concentration, nribo, and also to possible load protein concentra-

tion, nload, the criterion takes the form:

nbulk~n0zcribonribozcload nload ð5Þ

where ci are the costs and n0 is some minimal density of the cell

(e.g. housekeeping proteins, membrane building proteins etc.),

assumed to be more or less constant. cribo, for example, is defined

as the number of bulk proteins per cell, Nbulk, required to increase

the number ribosomes in the cell, Nribo, by one, given a fixed

environment E (i.e. sugar level, temperature, etc.), a fixed cell

volume and a fixed number proteins, Nj, expressed from all other

genes (akin to the definition of a chemical potential):

ci~
LNbulk

LNi

� �
E,Vcell ,Nj=i

ð6Þ

In other words, to synthesize and support one additional ribosome

per cell, in a constant environment, cell volume etc., according to

this definition, would require an additional cribo bulk proteins per

cell (cribo is dimensionless). An equivalent way to interpret Eq. 5 is

to say that cribo is the capacity of a ribosome to synthesize bulk

proteins: one additional ribosome added to the cell will synthesize

cribo bulk proteins. Thus, at steady-state, cost and capacity are

different sides of the same coin. The costs, ci, depend on the

environment since the cost of producing and maintaining a

ribosome in a rich environment is expected to be lower than the

cost in a poor environment due to the availability of readymade

resources that otherwise the cell would need to produce on its

own. The hypothesized costs, ci, can therefore be thought of as

effective environment-dependent genetic parameters and could, in

principle, be estimated from knowledge of the genetic networks

invoked in a given growth environment. Note that Eq. 4 is

actually a special case of Eq. 5 for certain negative costs. Eq. 5

also crystallizes the difference between bulk proteins and load

proteins: the latter are a burden for the former. The cost criterion

together with Eq. 2 define the unconstrained CGGR model. The

final equation set for both models is summarized in S2.6 of

Text S1.

From an experimental point of view it should be possible to

discern between the two hypotheses: one model (Eq. 5) predicts a

positive slope for the nbulk vs. nribo curve, whereas the other model

(Eq. 4) predicts a negative slope. In the Discussion we suggest how

the cost criterion may naturally occur in the cell.

Global Crowding Effects. Since macromolecular volume

fraction can change in the unconstrained CGGR model due to Eq.

5, it is essential to examine how crowding can affect the input

genetic parameters. We considered two possible crowding

scenarios (c.f. S2.4 in Text S1). In the ‘‘transition state’’ scenario

it was assumed that holoenzyme-promoter and 30S-RBS binding

affinity are transition state limited, that is, the probability that an

association complex will decay to a product is small compared

with the probability that it will dissociate back into the reactants

[83]. Typically such reactions display an increase in efficiency as

crowding is initially increased and eventually decrease in efficiency

since in the limit of high fractional volume occupancy, all

association reactions are expected to be diffusion limited and

hence slowed down [44]. The forward rate of transition state

reactions is predicted to display a bi-modal dependence on the

macromolecular volume fraction W [44,51,83–85]. Such a bi-

modal dependence has been observed experimentally in vitro

[44,86]. Assuming binding affinities weaken in the limit of high

volume fraction we expect that in such a case the binding affinity

will display a maximum (Figure S8A). In the transition state

binding scenario we have further assumed the binding affinity has

been evolutionary tuned to be maximal at the WT value of W
( = 0.34 [46]), similar to the temperature optimum commonly

exhibited for RNAp/promoter complexes [75].

A second, ‘‘diffusion limited’’ scenario, assumed that all

reactions were diffusion limited, that is almost every association

complex will become a product [83]. For this scenario, binding

affinities were assumed to decay exponentially (Figure S8B), as has

been observed in vitro for diffusion coefficients [47,51,87], and

suggested for the forward rate in diffusion limited reactions

[44,51,83–85]. Thus, both models assumed that binding affinities

decay at high W (.0.34), mainly due to diffusion limited forward

rates [44,50,83]. Surprisingly, we found that predictions were

quite insensitive to the exact crowding scenario implemented, due

to a homeostasis mechanism that arises from internal feedbacks

and compensates for moderate crowding effects (W,0.3–0.4). This

effect is further discussed below.

One may suspect that mRNA degradation would also be

influenced by crowding because it involves the association of two

macromolecules (Figure 1B). Yet interestingly, due to the negative

autoregulation of RNase E [57,61,88], which adjusts its steady-

state expression to that of its substrates [61], the crowding effects

on the binding affinity of RNase E to the 59 end of the mRNA

appear to cancel out with the crowding effects on the binding

affinity of RNase E to its own mRNA (c.f. S2.7 in Text S1 for

more details).

Comparison to the Experimental Data of Squires
With the CGGR models at hand, we now compute the cell

states for each of the seven strains used in the Squires rRNA

operon inactivation experiments. We will use this data to fit for the

unknown environment dependent parameter in each of the

CGGR models: cribo for the unconstrained model and Mbulk for

the constrained model. In the case of the unconstrained model, the

predicted rRNA to total protein ratio was more sensitive to cribo

than the predicted growth rate, with a best fit for the former at

cribo<38 bulk proteins per ribosome (for mean square errors refer

to Figure S1). For comparison, a 70S ribosome is about 70 bulk

proteins in mass. Note that cribo has a rather limited range of

values since 0,cribo,nbulk/nribo.101 via Eq. 5.

For the constrained CGGR model, the minimum Hill

coefficient to yield a solution that did not diverge in growth rate

for copy numbers greater than 7, which contradicts observation

(see Introduction), was h = 2 (see e.g. Figure S2 for a fit with h = 1).

For h = 2, Mbulk was chosen minimize the MSE with respect to the

growth rate, which displayed a minimum, and the best fit was
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achieved for Mbulk>7.4?106 molec/WT cell (for all MSEs c.f.

Figure S1). Attempting to minimize the MSE with respect to the

rRNA to total protein ratio resulted in a slightly lower MSE

(though still higher than the MSE for the unconstrained model fit),

however solutions diverged in growth rate for copy numbers

greater than 7, again contradicting observation. Increasing the Hill

coefficient so as to penalize the peptide chain elongation rate, cp,
for higher copy numbers did not remedy this and growth rate

continued to diverge for copy numbers greater than 7 (c.f. Figure

S3) rendering such solutions inapplicable. Finally, increasing the

Hill coefficient beyond 2 did not improve the overall MSE to

either the growth rate or to the rRNA to total protein ratio (Figure

S1). Thus the fit for the constrained model presented here

represents the best fit, over all parameter range, which does not

contradict observation.

Figures 2A and 2B show the observed growth rate and rRNA to

total protein ratio plotted against the best fits of these models. In

both cases, the fit to the observed data was reasonable, however

the model for which macromolecular volume fraction, W, was not

constrained gave an overall better fit indicating a preference for

that model. Further evidence in favor of this model and against the

constrained model will be considered in the Discussion. The

deviation observed for the D6 strain may possibly be due to tRNA

imbalance in this strain [19].

Free RNAp and Free Ribosomes Self-Adjust to Counter
Changes in Binding Affinities Due to Crowding

Whereas the macromolecular volume fraction W in the

constrained model is, by definition, constant, the unconstrained

CGGR model predicts that W increases with the number of rRNA

operons with consequences on binding affinities (Figure 3). This

increase in the macromolecular volume fraction is due to an

increase in both ribosome concentration and bulk protein

concentration due to the relation imposed by the cost criterion

(Eq. 5; also c.f. Figure S5). Quite surprisingly, the fit to the Squires

data depends very little on the crowding scenario chosen. This

results from a self-adjusting homeostasis mechanism: it is the ratios

of free RNAp and free ribosomes with respect to their

corresponding binding affinities that govern the transcription

and translation rates (Eq. 1). Hence, although the binding affinities

change with W, the concentrations of free RNAp and free

ribosomes counterchange to stabilize these ratios (see Figure S4

and S1.6 in Text S1). The efficiency of the homeostatic

mechanism diminishes as the degree of crowding is increased

above ,0.4, as can be seen by comparing to predictions of the ‘‘no

crowding’’ scenario, in which binding affinities were assumed to be

independent of W (Figure 2A and 2B).

Translation-Degradation Coupling
Due to translation-degradation coupling, bulk mRNA half-life

was predicted to mildly increase with rRNA operon copy number

for all models. In both crowding scenarios, bulk mRNA half-life

increased from about 0.8 of the WT half-life to about 1.2 of the

WT half-life. The increase in mRNA half-life is caused by the

increase in the ratio of the RBS binding affinity and the

concentration of free ribosomes with rRNA operon copy number

(Figure S4). This ratio reflects the probability that a RBS is

occupied, thereby protecting the mRNA from cleavage.

Beyond a Copy Number of Seven
Increasing the rRNA operon copy number beyond 7 (at map

location 0), we found that both CGGR models exhibit a shallow

optimum plateau for of the growth rate in the range of 7–12

copies, with the maximum occurring at a copy number of 10–11

for the diffusion limited scenario, and 11–12 for the transition state

scenario. In the case of the unconstrained models, overcrowding

contributed to the formation of this maximum (e.g. there is no

maximum in the unrealistic model where binding affinities are

assumed to be independent of W). A striking difference between the

models is in their predictions regarding the rRNA to total protein

ratio. This ratio strongly diverges in the constrained model at high

copy numbers because ribosomes are formed at the expense of

bulk protein (see Discussion).

A Simplified Model
For the data of the Squires strains, the unconstrained CGGR

can be approximated by a simplified three-state model involving

only nribo, nbulk, and m (c.f. S3 in Text S1):

ið Þ nribo~grrn=m

iið Þ nbulk~gbulknribo=m

iiið Þ nbulk~n0zcribonribo

ð7Þ

where grrn and gbulk are effective genetic parameters that are

estimated from the WT cell state. Equation (i) reflects ribosome

synthesis, (ii) reflects bulk protein synthesis and (iii) is the cost

criterion. Interestingly, in a different context of WT cells measured

Figure 3. Predicted effect of crowding on the rRNA promoter
binding affinity for two crowding scenarios. In the transition state
scenario, binding affinities initially strengthen as macromolecular
crowding is increased due to increased entropic forces, while in the
diffusion limited scenario binding affinities weaken as macromolecular
crowding is increased due to increased diffusion times. In both cases,
binding affinities weaken when macromolecular crowding is increased
beyond the WT crowding state due to increased diffusion times (see
also Figures S8 and S2.4 in Text S1). Quantitatively, affinities can vary by
up to a factor of 5 (transition state limited scenario) to 16 (diffusion
limited scenario), measured as the ratio of the maximum and minimum
values of binding affinities in the range of rRNA operon copy numbers
considered. Similar results are obtained for RBS binding affinities.
Binding affinities were normalized to WT values. Insert: predicted
macromolecular volume fraction, W, as a function of rRNA operon copy
number per chromosome.
doi:10.1371/journal.pcbi.1000038.g003

A Coarse-Grained Model of E. coli and Applications

PLoS Computational Biology | www.ploscompbiol.org 9 May 2008 | Volume 4 | Issue 5 | e1000038



in varying environments, a relation similar to Eq. (ii) has been

observed [21]. Solving Eq. 7 for the growth rate we obtain

m~
cribogrrn

2n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4

n0gbulk

grrnc2
ribo

r
{1

 !
ð8Þ

In the limit grrnR‘, m#gbulk/cribo, suggesting that in the absence

of crowding effects, growth rate would be limited by the

production cost of a ribosome. To fit to experiments where the

rRNA operon copy number is manipulated, we approximate that

grrnRgrrn?copy #/7. The best fit to the Squires data was obtained

for cribo.38.262.8, in agreement with the prediction of the full

unconstrained model (see Figure 2A and 2B, and also Figure S1

for MSEs). Since the simplified model is unrealistic in the sense

that it lacks crowding effects, growth rate continues to increase

with rRNA operon copy number.

Ribosome Efficiency
Ribosome efficiency has been previously defined as er;brcp

= aP/Nribo [3,19] where cp is the peptide chain elongation rate and

br is the fraction of actively translating ribosomes. For wild-type

cells, br = 80%, and is independent of growth rate [17].

Genetically perturbed cells may however respond differently

[19]. For example, the simplified model predicts that er = aP/
Nribo = ln 2(gbulkLbulk+mLr-protein), where Li is the length of gene class i
and m is given by Eq. 8. Since cp is assumed to be fixed in the

unconstrained/simplified models, ribosome efficiency is therefore

expected to decrease purely due to kinetic considerations.

Crowding effects tend to either increase or decrease ribosome

efficiency, depending on the scenario. In Figure 2C we plot the

ribosome efficiency for the various crowding scenarios in the

unconstrained CGGR model, for the constrained CGGR model

and for the simplified three-state model. We see that the data

points lie between the diffusion limited crowding scenario and the

transition state crowding scenario, which possibly indicates that

the in vivo crowding scenario is somewhere between being diffusion

limited and transition state limited. Overall however, the diffusion

limited model was a better predictor of ribosome efficiency than

the transition state model and its deviation from the observed data

points was on the order of the maximum error for these points (the

maximum deviation from experimental data points is ,10%, and

although the error for the protein measurement was not stated in

[19], the maximum error on ribosome efficiency was at least 9%

based on the errors quoted in [19]). This result possibly indicates a

preference for the diffusion limited scenario for the in vivo case (see

Discussion). The solution for which binding affinities are

independent of crowding (the ‘‘no crowding’’ scenario) also fits

the data due to the proposed homoeostasis mechanism for

W,,0.4. The constrained model clearly deviates from the

experimental points indicating, as we have seen before, that the

constrained CGGR model is not applicable to E. coli. Finally, the

simplified model appears to adequately trace the observed

ribosome efficiency.

The Initiation Rate of a Single rRNA Operon
Figure 4 shows the initiation rate of a single rRNA operon, Vrrn,

as a function of the rRNA operon copy number as predicted by

the unconstrained model (Eq. 1). The solid lines represent models

where the rRNA chain elongation rate was assumed to be constant

(85 nuc/sec [17]; Table S5). Both unconstrained models exhibit

an increase in rRNA expression per operon as copy number is

decreased from 19 copies per chromosome down to 3 copies per

chromosome (in the case of the diffusion limited model) and 5

copies per chromosome (in the case of the transition state model).

This trend is in agreement with the feedback response mechanism,

especially for the diffusion limited model (see Discussion). It has

been shown that the rRNA chain elongation rate (but apparently

not mRNA chain elongation rate) increases in inactivation strains

from ,90 nuc/sec in a WT strain to ,135 nuc/sec in a strain

with four inactivated rRNA operons [54], but remains constant in

strains with increased rRNA gene dosage [65]. To check how

these finding affect our predictions, we also included a model

where rRNA chain elongation rate decreased linearly from

160 nuc/sec for one functional rRNA operon per chromosome,

to 85 nuc/sec for the WT strain (dashed lines in Figure 4). Indeed,

the feedback response seems to be stronger for the inactivation

strains when assuming that rRNA chain elongation rate increases

as more operons are inactivated. Quantitatively, for the diffusion

limited model, rRNA expression from a single operon increased

from 0.6 of the WT expression for 19 chromosomal rRNA

operons to about 1.1 of the WT expression for 3 chromosomal

rRNA operons. Finally, the ‘‘no crowding’’ scenario exhibited a

milder feedback response due to departure from the homeostasis

discussed earlier.

Discussion

The goal of the coarse-grain genetic reactor (CGGR) approach

is to attempt to link global phenotypes, such as growth rate and

cell composition, directly to genetic parameters, while keeping the

model as simple as possible by means of coarse-graining. The

present CGGR models assumed the simplest type of environment,

namely a spatially and temporally constant environment that is

unlimited in resources. The models attempt to explain a series of

Figure 4. Initiation rate of a single rRNA operon (Vrrn) for
various crowding scenarios in the unconstrained CGGR model.
Solid lines are predictions for the case where the rRNA chain elongation
rate is assumed to be fixed at its WT value of 85 nuc/sec [17], while the
dashed lines take into account the observed effect of rRNA operon copy
number on rRNA elongation rates [54,65] (see text for further details).
Vrrn is given by Eq. 1. In each case considered, cribo was obtained by
fitting to the Squires data.
doi:10.1371/journal.pcbi.1000038.g004
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experiments performed by the Squires group [19] in which growth

rate and cell composition have been measured for seven E. coli

strains with varying rRNA operon copy numbers. The genome of

all seven strains has been coarse-grained, and their corresponding

cell state was calculated based on the CGGR models.

We considered two possible CGGR models, one in which the

macromolecular volume fraction is constrained to be fixed, and

one in which macromolecular volume fraction is unconstrained.

We have seen that the unconstrained CGGR model appears to

give an adequate fit to experimental data, while the fit for the

constrained CGGR model is rather poor (despite the latter having

an additional degree of freedom). Yet beyond the fit of the

unconstrained model to the Squires data, this model also appears

to be consistent with additional observations regarding strains with

altered rRNA operon copy numbers. For example, the uncon-

strained CGGR model predicts that growth rate decreases for

higher rrn copy numbers, as indicated by observation. For

comparison, the best fit of the constrained CGGR model actually

predicted that growth rate increases for rRNA operon copy

numbers greater than 7, contradicting observation. In addition,

both models predict that the concentration of ribosomes (and

ribosomes per cell) decreases with rRNA operon copy number

(Figure S5), as was shown in measurements of an earlier set of

inactivation strains engineered by the same group, with rRNA

operon copy number ranging from three to seven [54]. Below we

discuss further evidence in support of the unconstrained CGGR

model: observations regarding the nucleoid size in strains with

altered rRNA gene dosage appear to be consistent with the

crowding predictions of this model. Finally, the unconstrained

(diffusion limited) CGGR model is in agreement with the trend

associated with the feedback response, and appears to be in

qualitative agreement with measurements of this effect. The

proposed model is also consistent with the feedback model

proposed by Nomura and coworkers, as will be discussed further

below. The constrained CGGR model, on the other hand, in

addition to yielding an inferior fit to the Squires data, is also

problematic from a biological standpoint. This model should

predict that ppGpp levels rise due to a shortage in an essential

factor such as charged tRNAs [3,6,89]. However, ppGpp levels

were observed to be constant in similar rRNA inactivation strains

with up to four inactivations [54]. In addition, the constrained

model appears to be considerably more complicated than the

unconstrained model in that it necessitates some kind of

homeostasis mechanism for keeping the volume fraction fixed, to

which there is no experimental evidence as far as we know, while

the unconstrained model does not necessitate any additional

biological mechanisms (see below). In fact, evidence from

osmotically stressed cells indicates that the volume fraction of

macromolecules can change quite considerably [82]. Indeed, these

experiments indicate growth rate can be limited by crowding [82],

just as predicted by the unconstrained CGGR model (see below).

Since the macromolecular volume fraction in the unconstrained

CGGR model is not constant, we needed to consider crowding

effects on association reactions such as transcription initiation and

translation initiation. We investigated two possible crowding

scenarios: one in which all association reactions are diffusion

limited and one in which all association reactions are transition

state limited and have been evolutionally tuned to be maximal at

the WT volume fraction. Both crowding scenarios give an

adequate fit to the growth rate and rRNA to total protein ratio

data, thanks to the homeostasis mechanism involving free RNAp

and free ribosomes. However, the diffusion limited model seems to

give a slightly better fit when considering the feedback response

and ribosome efficiency data, possibly indicating a preference for

this model. Indeed, it has been proposed that the in vitro 30S-

mRNA association may be diffusion rate limited since in vitro

measured on rates are of the order of the diffusion limit [90]. In

addition we have proposed a simplified version of the uncon-

strained CGGR model, which is a three-variable model and is

included since it is an analytically solvable reduction of the more

complicated six state model. We have shown, however, that since

the simplified model does not take into account the physical effects

of crowding, its predictions for strains with increased rRNA

operon gene dosage is unrealistic. Hence the full unconstrained

CGGR model is the biophysical model that we propose to be

relevant for E. coli growing in balanced exponential steady-state

growth in a rich medium.

Nucleoid Compaction in the Inactivation Strains
Further support for the reduction of macromolecular volume

fraction in the rRNA inactivation strains may perhaps be found in

fluorescence images of the WT Squires strain vs. the D6 strain in

which six rRNA operons have been inactivated (Figure 4 in [19]).

The nucleoid in the WT cells is seen to be much more compact

than in the D6 strain, suggestive of lower entropic forces in the

latter strain due to a lower degree of crowding [48]. Recent

observations in strains in which six rRNA operons were entirely

deleted from the genome (and not just inactivated as in [19]) show

similar results, and also indicate that the compact structure of the

nucleoid was recovered in strains in which rRNA is expressed

solely from a high copy number plasmid with all other rrn operons

entirely deleted from the genome (S. Quan and C. L Squires,

personal communication). These results are consistent with

crowding effects [48] predicted by the unconstrained CGGR

model, effects that are absent in the constrained CGGR model.

The Feedback Response of the rRNA Operons
While both unconstrained CGGR models exhibited a decrease

in the expression of a single rRNA operon as rRNA gene dosage

was increased, as is observed in the feedback response, in the case

of the inactivation strains, the diffusion limited model appeared to

be in better agreement with the feedback response than the

transition state model (Figure 4). In the former model, rRNA

expression from a single rRNA operon increased as rRNA operon

copy number was decreased from 19 copies per chromosome to 3

copies per chromosome. The transition state model exhibited this

dependence only up to an rRNA operon copy number of 5. The

increase in the rRNA operon expression is due to an increase in

the ratio of free RNAp concentration and the rRNA operon

binding affinity (Figure S4). It is interesting to note that in the

diffusion limited scenario, it is actually the changes in binding

affinities, and not free RNAp, which correct for the observed trend

of the feedback response, as free RNAp concentration is actually

predicted to increase when the number or rRNA operons per

chromosome is increased (Figure S4B). Furthermore, we found

that a model in which the rRNA chain elongation rate increases

when inactivating rRNA operons, as observed experimentally

[54], exhibits a slightly stronger feedback response when

inactivating rRNA operons than a model that assumes that this

parameter is constant.

Quantitatively, in the case of the diffusion limited scenario with

variable rRNA chain elongation rate, the rRNA expression from a

single operon increased from 0.6 of the WT expression for 19

chromosomal rRNA operons to about 1.1 of the WT expression

for 3 chromosomal rRNA operons. Although rRNA operon

synthesis rate was not measured for the inactivation strains

considered here, we can qualitatively compare these predictions to

experiments with other strains. Strains in which four rRNA
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operons were inactivated exhibited a 1.4 to 1.5 increase rRNA

operon expression relative to a WT background, where expression

was measured as b-galactosidase activity from WT P1 promoter

fragments fused to a lacZ reporter gene and normalized to

expression from a WT background [64] (we are not aware of

measurements for lower copy numbers). In a similar manner

rRNA expression was shown to decrease by a factor of 0.65 to 0.8

with respect to the WT background in strains in which rRNA gene

dosage increased by using plasmids expressing rRNA (the plasmid

copy number was not specified) [64]. In a different study by the

same group, the initiation rate in strains with increased rRNA

operon copy number was obtained based on counting the number

of RNAp bound to rRNA operons using electron microscopy and

measurement of the rRNA elongation rate, and yielded 0.66 of the

WT initiation rate [65]. Although the predicted feedback response

for the inactivated strains is somewhat weaker than the response

observed experimentally, the overall trend appears to be in

qualitative agreement with the feedback response, i.e. as the rRNA

operon copy number is increased, the transcription from a single

rRNA operon decreases. We note however that the genetic

makeup of the inactivated strains tested above differed from the

inactivated strains of Asai et al. [91], especially in the respect that

in the former strains, each inactivated rRNA operon expressed

antibiotic resistance, which may have had adverse effects on the

cell. The fact that the elicited feedback response is not as strong as

the one observed experimentally in the inactivation strains may

also possibly be a consequence of some of the simplifying

assumptions made in this model (e.g. ideal RNAp autoregulation

or the somewhat naı̈ve crowding models assumed) or perhaps

indicate the presence of an additional mediator (see below).

The unconstrained CGGR model also predicts that bulk

mRNA transcription would be affected by the change in rRNA

gene dosage since in the current model bulk RNAp binding

affinity has the same response to changes in macromolecular

crowding as the rRNA binding affinity. The effect may be,

however, somewhat alleviated by the fact that bulk mRNA binding

affinity is proposed to be about 3 times stronger than the P1 rRNA

promoter (which is the major site for the feedback response [92]) at

this growth rate (Table S4), thus closer to saturation, and can even

be ,30 times stronger in poor medium (Table 2 in [28]), although

is has also been suggested that RNAp promoters may require the

same or less RNAp than other RNA promoters for transcription

[93]. Also, in principle rRNA and bulk promoters could respond

differently to crowding. When measured experimentally, mRNA

promoters did in fact exhibit some reduction when the feedback

response was induced using increased rRNA gene dosage: while

expression of a P1-lacZ fusion decreased by 0.45 relative to a

control with WT rRNA gene dosage, spc or lacUV5 promoters

fused to lacZ decreased by ,0.8 relative to the same control [92].

Nevertheless, these results may also indicate that there is an

additional mediator involved, which interacts specifically with the

P1 rRNA promoter [92]. If this turns out to be the case, the

influence of such an effector could be incorporated into the

proposed model.

No molecule, however, has yet been implicated in the feedback

response to a change in the rRNA gene dosage. In addition,

experiments indicate that ribosomes appear not to be directly

responsible for this feedback response (see Introduction). There-

fore, it may be possible that for the type of perturbation considered

here, the feedback response results, at least in part, from internal

feedbacks inherent in the system. Various models have suggested

that free RNAp is in one way or another limiting (e.g. [28] and

also discussion in [3,5]), yet it is not certain that changes in RNAp

alone can account for the observed changes in rRNA expression

due to changed rRNA gene dosage [1,5,65]. In the present work,

we are only concerned with the response of the cell to changed

rRNA operon copy number in a constant rich environment, where

ppGpp concentration is constant. Therefore we do not attempt to

explain how ppGpp modulates rRNA expression. In addition, we

found that the model that best fits experimental data is one where

both the concentration of free RNAp and the binding affinities of

RNAp to its promoters are altered in response to changes in rRNA

gene dosage. Therefore, according to this model, it is not the

concentration of free RNAp which affects the transcription, as has

been proposed in the past, but rather the ratio of the concentration

of free RNAp to its binding affinity that determines transcription.

In fact, we have seen that in the diffusion limited scenario, free

RNAp concentration actually decreases as rRNA operon copy

number is reduced, and it is the increase in the rRNA operon

binding affinity that is responsible for the increased transcription of

the rRNA operon (e.g. Figure S4B).

The notion that crowding can be an effector modulating

transcription of the rRNA operons is consistent with the feedback

model of Nomura and coworkers [1,63] since only functional

rRNA gets assembled into ribosomes, and together with

supporting bulk proteins crowd the cell, thus contributing to the

feedback response. Nonfunctional rRNA would be degraded away

and hardly contribute to crowding or the feedback response.

Finally, the notion that the feedback arises from the inherent

internal feedbacks in the cell is consistent with the indirect aspect

of the feedback response proposed by Nomura and coworkers

[62].

Effect of Increased rRNA Operon Copy Number on
Growth Rate

Extrapolating to higher copy numbers suggests that the WT

growth rate in a constant and rich environment is nearly maximal.

In an experiment with increased rRNA gene dosage, where

ppGpp concentration was shown to be constant, the growth rate of

a strain carrying extra rRNA operons on a plasmid indeed

decreased by 22% relative to a WT strain carrying a control

plasmid expressing nonfunctional rRNA [20], in agreement with

the trend predicted by the model. In another experiment with

increased rRNA gene dosage, growth rate decreased relative to

WT cells containing a control plasmid, and rRNA to total protein

ratio was more or less constant (thus appearing to favor the

unconstrained CGGR model) although the authors argue that

there may be tRNA imbalance in these strains [94]. In addition,

the unconstrained CGGR model predicted that ribosome and

bulk protein concentration increase with rRNA operon copy

number (Figure S5) thus leading to an increase in the

macromolecular volume fraction (Figure 3, insert). This increase

is due to the cost criterion hypothesis (Eq. 5), which correlated the

concentration of bulk protein in the cell with the concentration of

ribosomes.

The Optimum in Growth Rate
The biophysical origin of the predicted upper limit on growth

rate with respect to the rRNA operon copy number, suggested by

the unconstrained CGGR model, is overcrowding of the

cytoplasm with ribosomes and with bulk proteins supporting/

synthesized by those additional ribosomes via the cost criterion

relation (Eq. 5). As rRNA operon copy number is increased, the

concentration of ribosomes and bulk protein increases (Figure S5)

leading to an increase in macromolecular volume fraction in the

cell (Figure 3, insert). In vitro experiments suggest that in a crowded

environment diffusion times increase [47,51,87]. If in an

overcrowded environment, when all reactions are thought to be
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diffusion limited [44,51,83–85], increased diffusion times cause

binding affinities to weaken, then overcrowding will reduce the

efficiency of transcription initiation and translation initiation

(Figure 4 and Figure S4). This reduction in efficiency ultimately

causes the growth rate to decrease at high rRNA operon copy

numbers. In the scenario where binding affinities were assumed to

be independent of the level of crowding in the cell (the ‘no

crowding’ scenario in Figure 2A), growth rate continued to

increase as rRNA operon copy number increased, indicating that

the reduction in growth rate in the transition state and diffusion

limited crowding scenarios was due to crowding effects. See also

Figure S6 for a breakdown of the different contributions in the

ribosome synthesis equation, Eq. 2iii. Interestingly, a similar

phenomenon may be occurring in osmotically stressed cells. It has

been shown experimentally that the growth rate of osmotically

stressed cells is correlated with the amount of cytoplasmic water in

those cells [82] leading those authors to propose that increased

diffusion times of biopolymers due to crowding may be limiting

growth rate. This conclusion appears to be in accord with our

findings.

The fact that the maximum in growth rate is so shallow may

suggest that in a natural environment for E. coli there are

additional constraints in the system. In nature, E. coli is likely to

experience chronic starvation conditions like in water systems, as

well as fluctuating environments like in the host intestine [15,16].

Indeed, it has been shown that E. coli’s growth rate displays a more

pronounced dependence on the rRNA operon copy number in a

changing environment compared to a constant one [15], and that

a high rRNA operon copy number enables E. coli and other

bacteria to adapt more quickly to changing environments

[15,95,96].

Finally we wish to point out that the optimum we have shown is

only with respect to rrn copy number perturbations of a WT E. coli

genome, and therefore may possibly not be a global one. A higher

growth rate could perhaps be attained when considering

perturbations of all genetic parameters.

Efficiency and Decoupling of the Replication Initiation
Module

The unconstrained CGGR model suggests possible insights into

the design principles of E. coli. The model introduces the concept

of a cost per gene class, akin to a chemical potential. In the

absence of load genes for example, the cost criterion basically

measures the number of bulk proteins needed to support the

synthesis of ribosomes (or vice versa). This criterion implies that the

cell is efficient: bulk protein is utilized to its full potential and is not

stored as inventory for later use. This is true even for genetically

perturbed (i.e. suboptimal) cells. A similar notion of efficiency was

suggested by Ecker and Schaechter in the context of WT cells

growing in different environments [21]. How then is the cost

criterion realized by the cell? Perhaps the cost criterion is realized

simply by virtue of internal feedback. If, for example, the rRNA

operon copy number is slightly increased, resulting in a small

increase in ribosome concentration, Dnribo, the transient deficit in

bulk protein (2Dnbulk) will be compensated for, at steady-state, by

the extra ribosomes when Dnbulk ( = criboDnribo) bulk proteins are

synthesized. nbulk therefore increases to the minimum concentration

needed to sustain these excess ribosomes. Thus, the cost criterion

obviates the need for a homeostatic mechanism for keeping W
fixed. Nevertheless, direct experimental proof for the cost criterion

is currently lacking.

An additional engineering principle suggested by the CGGR

models is related to the DNA replication mechanism. Replication

enters the model through the C period and the initiation volume

(Eq. 3), both of which are regulated to be roughly constant [23,41]

and thus in principle unaffected by genetic perturbations (Tadmor

and Tlusty, in preparation). Since this implies that gene

concentrations do not depend strongly on growth rate (see Figure

S7 and S2.2 in Text S1), this result suggests that the regulatory

mechanism of replication initiation may be designed to be

decoupled from the cell state. Such a scheme may simplify the

task of engineering global regulation mechanisms such as the one

responsible for rRNA regulation in different growth conditions or

growth phases.

Assumptions and Further Predictions
The CCGR models rely on many assumptions, the validity of

which should be questioned. One possibility is that the coarse-

graining has discarded ‘‘hidden variables’’. Such variables may

include, for example, the structure of the nucleoid and

transcription factors associated with it (which can affect global

transcription [97]), or the osmotic response of the cell [82]. In

addition, strong genetic perturbations may lead to ribosome

instability [98] and possibly induce a stress response with global

effects. Other concerns may be possible additional factors

regulating rRNA synthesis alluded to earlier, the validity of the

assumptions regarding the function of the bulk protein and the

existence of limiting resources even in a rich environment. In a

resource limited environment for example, state variables related

to the energy metabolism of the cell would probably come into

play. Although, regarding limitation of resources, as was pointed

out in the Introduction, it has been demonstrated experimentally

that the concentration of NTP is constant or changes by only a

small amount when altering the rRNA operon copy number

[20,64], and ppGpp is also constant in these strains [20,54]. The

latter observation suggests that the cell is not limited, for example,

by the availability of amino acid, charged tRNAs or carbon

[69,89] (see also [6]). Another concern may be that some portion

of the inactive RNAp, which was assumed to be inaccessible

because of pausing, is actually nonspecifically bound to DNA [28]

and might serve as an additional reservoir of RNAp for

transcription initiation. With all these difficulties in mind, the

advantage of the CGGR modeling approach is that it offers an

initial conceptual framework for thinking about E. coli while

making quantitative predictions. Such tests can be useful in

identifying factors that have been left out in this round of coarse-

graining and can be subsequently added. Examples of quantitative

predictions include: (i) non-constancy of the macromolecular

volume fraction in genetically perturbed cells (Figure 3, insert) (ii)

state variables and their relations, e.g. the cost criterion (Figure S5)

(iii) decay of binding affinities at high volume fractions (Figure 3

and Figure S8; raising the more general question of the nature of

crowding effects on equilibrium constants) (iv) increase in bulk

mRNA half-life with rRNA operon copy number. Yet another test

to this model may be to increase rRNA gene dosage beyond the

WT gene dosage, where the differences between the CGGR

models is much more pronounced [28] (Figure 2B). Although the

focus here was on altering the rRNA operon copy number, other

genetic perturbations can be considered, like adding non-native

proteins that only serve as a load on the cell. In such a case, in vivo

diffusion times are expected to be increased due to increased

crowding. Green fluorescent protein (GFP) diffusion coefficient did

in fact appear to decrease in E. coli cells overexpressing GFP,

however GFP dimerization may have contributed to this effect, as

noted by Elowitz et al. [99]. Finally, the proposed model may

suggest testable predictions for the effect of genetic noise on

protein expression and growth rate.
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Table S1 Genetic parameters for E. coli growing at 1 and

2.5 doub/h, 37uC.
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Figure S1 Mean square errors with respect to the Squires data.

(A) Unconstrained CGGR MSE. Square root of the mean square

error (MSE) as a function of cribo in estimation of the growth rate

and the rRNA to total protein ratio measured by Asai et al. [19].

This graph was computed as follows: for a given n0, optimal

Lm,bulk and cribo that minimize the square error between an

estimated WT cell state and the observed WT cell state were

obtained (see S1.1.1 in Text S1). Next, for those optimal Lm,bulk

and cribo values, the growth rate curve and the rRNA/total protein

curve were calculated for the various rrn inactivation strains (c.f.

S1.3 in Text S1) and the MSEs were calculated between these two

curves and the data points, yielding two errors for a given n0 (or

equivalently cribo). Next, n0 is increased and the process is

repeated. The minimum MSE for the rRNA to total protein ratio

(which displayed more sensitivity to cribo than the growth rate) was

obtained for cribo = 37.6 (n0 = 2.8?106 molec/WT cell). Circles

mark the cost for which W would be fixed in an unconstrained

CGGR model (i.e. when ci = 2vi/vbulk, which is equivalent to the

constrained CGGR model with h = 0). (B) Constrained CGGR

MSE. Square root of the MSE in estimation of the growth rate and

the rRNA to total protein ratio as a function of Mbulk and the Hill

coefficient h, for a model where W is assumed to be fixed, and

cp~cmax
p

.
1z Mbulk=nbulkð Þh
h i

. This graph was computed as

follows: for a given cmax
p and h, optimal Lm,bulk and Mbulk that

minimize the square error between the estimated WT cell state

and the observed WT cell state were obtained. Note that this

square error included the error between the estimated WT cp and

the observed WT value of cp at 2 doub/h (20 aa/sec). The error in

prediction of the WT cell state was on the order of a few percent

(data not shown). Next, for those optimal Lm,bulk and Mbulk values,

the growth rate curve and the rRNA/total protein curve were

calculated for the various rrn inactivation strains and the MSE was

calculated between these curves and the data points. Next, cmax
p is

increased and the process repeated. The minimum Hill coefficient

to yield a solution that did not diverge in growth rate for high rrn

copy numbers was h = 2 (see e.g. Figure S2 for fit with h = 1). For

h = 2, Mbulk was chosen to minimize the growth rate error

yielding: Mbulk = 7.4?106 molec/WT cell (cmax
p ~73 aa=sec).

Solutions that minimized the rRNA/total protein MSE (corre-

sponding to the minimum possible value for cmax
p , i.e. >21 aa/sec)

diverged in growth rate for copy numbers greater than 7 (see

Figure S3). In addition, the MSE did not improve for higher Hill

coefficients, as shown. Note that the minimization procedure in (A)

and (B) are equivalent if we map Mbulk«cribo, cmax
p <n0. (C)

Simplified 3-state model MSE. Square root of the MSE in

estimation of the growth rate and the rRNA to total protein ratio

as a function of cribo for the simplified model. Stars indicate

minima. Circles indicate the same as in (A). The minima almost

coincide and were obtained for cribo.38.262.8. In both (A) and

(B), as in Figure 2 to Figure 4, Umax
bulk was set to 80 ini/min and the

rRNA chain elongation rate, crrn, was assumed to be constant.

Found at: doi:10.1371/journal.pcbi.1000038.s009 (0.40 MB TIF)

Figure S2 Fit for the constrained CGGR model with Hill

coefficient h = 1. Comparison of the constrained CGGR model

with Hill coefficient h = 1 to (A) growth rate measurements and (B)

rRNA to total protein ratio measurements of Asai et al [19]. Mbulk

was chosen such that the product of growth rate error and rRNA

to total protein error was minimal, yielding Mbulk = 5.7?106

molec/WT cell (cmax
p ~45 aa=sec). For MSE see Figure S1B. Note

that for h = 1, growth rate diverges with copy number. rRNA

chain elongation rate, crrn, was assumed to be constant in this

simulation.

Found at: doi:10.1371/journal.pcbi.1000038.s010 (0.27 MB TIF)

Figure S3 Fit for the constrained CGGR model with higher Hill

coefficients. Comparison of the constrained CGGR model with

Hill coefficients of 2, 4, 6, 8, and 10 to (A) growth rate

measurements and (B) rRNA to total protein ratio measurements

of Asai et al [19]. We show the h = 2 case for both cmax
p ~73 aa=sec

(Mbulk = 7.4?106 molec/WT cell; as in Figure 2) and

cmax
p ~21 aa=sec. For all other cases, cmax

p was set to 21 aa/sec

and corresponds to the minimum possible value for Mbulk., a value

that according to Figure S1B minimizes the MSE for the rRNA to

total protein ratio. This figure demonstrates that all solutions with

cmax
p ~21 aa=sec diverge in growth rate for rrn copy numbers

greater that 7. Higher Hill coefficients (.10) appear to be

numerically unstable or insolvable for high copy numbers. Legend

to both figures is given in (A).

Found at: doi:10.1371/journal.pcbi.1000038.s011 (0.22 MB TIF)

Figure S4 Free RNAp and free ribosomes with respect to

corresponding binding affinities for various crowding scenarios. (A)

Model prediction for nRNAp,free, nRNAp,free/Km,i and W for the

transition state limited and no crowding scenarios as a function of

the rrn operon copy number. In the no crowding scenario the plots

for nRNAp,free and nRNAp,free/Km,i coincide. (B) Same as (A) but for

the diffusion limited scenario. (C) Model prediction for nribo,free and

nribo,free/Lm,i for the transition state limited and no crowding

scenarios as a function of the rrn operon copy number. (D) Same as

(C) but for the diffusion limited scenario. All curves are normalized

to WT values at copy number 7. Note that in the diffusion limited

scenario, when rRNA operons are inactivated, free RNAp

concentration actually decreases. The reasons for this are that

first, although the rRNA operons are inactivated, they continue to

be partly transcribed (c.f. S1.3 in Text S1). Second, as rRNA

operons are inactivated, growth rate is reduced (Figure 2A), which

tends to slightly increase gene concentrations via Eq. 3 (c.f. Figure

S7B). Finally, there is the contribution of increased transcription

initiation. When rRNA operons are increased beyond seven copies

per chromosome, free RNAp concentration increases mainly

because transcription initiation is reduced due to diminished
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binding affinities. See main text and S1.6 in Text S1 for further

explanations.

Found at: doi:10.1371/journal.pcbi.1000038.s012 (0.39 MB TIF)

Figure S5 Predictions for bulk protein and ribosome concen-

trations as a function of the rrn operon copy number. (A) Total

concentration of ribosomes (ribosomes per unit volume) in the

constrained and unconstrained CGGR models as a function of the

rrn operon copy number. (B) Concentration of bulk protein

(proteins per unit volume) in the constrained and unconstrained

CGGR models as a function of the rrn operon copy number. Solid

lines are for fixed rrn chain elongation rate, crrn = const, and

dashed lines are for crrn?const, as described in the main text. All

curves are normalized to WT cell state values (at copy

number = 7).

Found at: doi:10.1371/journal.pcbi.1000038.s013 (0.22 MB TIF)

Figure S6 Breakdown of the ribosome synthesis equation to

components for the diffusion limited scenario. (A) Variables in

units of concentration. drrn - rrn gene concentration (total rRNA

operon copy number per unit volume); Vrrn - rrn initiation rate per

operon (init/min/operon); nribo - ribosome concentration (ribo-

somes per unit volume), and m - growth rate. These parameters are

tied by Eq. 2iii: a = drrn?Vrrn/nribo. (B) Variables in units of molec/

cell. Drrn - rrn gene dosage (total rRNA operon copy number per

cell); Nribo - number of ribosomes per cell. These parameters are

tied by Eq. 2iii: a = Drrn?Vrrn/Nribo. This simulation is for the

diffusion limited scenario assuming that the rRNA chain

elongation rate, crrn, is variable, as described in the main text.

All curves are normalized to WT cell state values (at copy

number = 7).

Found at: doi:10.1371/journal.pcbi.1000038.s014 (0.22 MB TIF)

Figure S7 Gene dosage and gene concentration as a function of

growth rate. (A) Gene dosage and (B) gene concentration for the

rrn gene class and bulk gene class. C and D periods were

interpolated based on data from table 2 of [17] as a second order

polynomial in m21. For this simulation we assumed that 66 evenly

distributed bulk genes are expressed (c.f. map locations in Table

S1). The initiation volume, Vini, was assumed to be fixed

[41,43,100]. See also main text and S2.2 in Text S1 for further

explanations.

Found at: doi:10.1371/journal.pcbi.1000038.s015 (0.48 MB TIF)

Figure S8 Dependence of binding affinities on the volume

fraction W for the various crowding scenarios. (A) Normalized

inverse equilibrium constants, Km
21 and Lm

21 (in units of 1/M),

for the RNAp holoenzyme (radius 5.57 nm) and the 30S ribosome

subunit (radius 6.92 nm), respectively, in the transition state

limited model. The water molecule radius was taken to be

0.138 nm [101] and the radius of the background crowding agent

was taken to be 3.06 nm [46]. (B) Normalized Km
21 and Lm

21 for

the diffusion limited model (curves overlap). All curves were

normalized to values at the WT volume fraction of W= 0.34. See

S2.4 in Text S1 for more details.

Found at: doi:10.1371/journal.pcbi.1000038.s016 (0.46 MB TIF)
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