
FMixFN: A Fast Big Data-Oriented
Genomic SelectionModel Based on an
Iterative Conditional Expectation
algorithm
Wenwu Xu, Xiaodong Liu, Mingfu Liao, Shijun Xiao, Min Zheng, Tianxiong Yao,
Zuoquan Chen, Lusheng Huang and Zhiyan Zhang*

State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China

Genomic selection is an approach to select elite breeding stock based on the use of dense
genetic markers and that has led to the development of various models to derive a
predictive equation. However, the current genomic selection software faces several issues
such as low prediction accuracy, low computational efficiency, or an inability to handle
large-scale sample data. We report the development of a genomic prediction model
named FMixFN with four zero-mean normal distributions as the prior distributions to
optimize the predictive ability and computing efficiency. The variance of the prior
distributions in our model is precisely determined based on an F2 population, and
genomic estimated breeding values (GEBV) can be obtained accurately and quickly in
combination with an iterative conditional expectation algorithm. We demonstrated that
FMixFN improves computational efficiency and predictive ability compared to other
methods, such as GBLUP, SSgblup, MIX, BayesR, BayesA, and BayesB. Most
importantly, FMixFN may handle large-scale sample data, and thus should be able to
meet the needs of large breeding companies or combined breeding schedules. Our study
developed a Bayes genomic selection model called FMixFN, which combines stable
predictive ability and high computational efficiency, and is a big data-oriented genomic
selection model that has potential in the future. The FMixFN method can be freely
accessed at https://zenodo.org/record/5560913 (DOI: 10.5281/zenodo.5560913).
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INTRODUCTION

Based on the use of genomic information and prediction of the genetic merit of animals, genomic
selection is changing breeding strategies and approaches in livestock (Goddard and Hayes, 2009).
Among many agricultural animals and plants, estimated breeding values (EBV) predicted from
genomic information are now widely used (Duchemin et al., 2012; Pollak et al., 2012; Preisinger,
2012; Ibáñez-Escriche et al., 2014; Samorè and Fontanesi, 2016; Mrode et al., 2018). Comparative
studies on both simulated and real data have shown that genomic EBV (GEBV) tends to have higher
accuracy than breeding values estimated using pedigree relationships. The accuracy of GEBV is
mainly impacted by the nature of the single nucleotide polymorphism (SNP) panel used, the size of
the training data, the population structure, the relationships between individuals in the training and
validation population, and the genetic architecture of the trait, in particular, the number of loci
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affecting the trait and the distribution of their effects (Daetwyler
et al., 2008; Goddard, 2009; Meuwissen, 2009). Usually, the most
accurate method to predict genetic value or phenotype based on
the SNP genotypes is to fit all SNPs simultaneously, treating the
SNP effects as they are drawn from a prior distribution that
matches as closely as possible the true distribution of SNP effects
(Goddard, 2009; Chatterjee et al., 2013). The assumption that, in
the SNP-best linear unbiased prediction (BLUP) or genomic
BLUP (GBLUP) model, each of the SNPs explains equal
variance, i.e., that the more complex traits are controlled by
very many quantitative trait loci (QTL), each with a tiny effect,
could be imprecise if a trait is affected by a small number of QTL,
each with a large effect (Meuwissen et al., 2001; VanRaden, 2008).
In other models, the distribution of SNP effects is allowed to
depart from a pseudo-infinitesimal distribution. BayesA extended
the SNP-BLUP model by estimating the variance of each marker
separately, and an inverse chi-square prior was used to estimate
these variances (Meuwissen et al., 2001). In BayesB, it was
assumed that most of the markers have a zero effect on the
targeted trait, and the prior distribution of the variances is a
mixture of a distribution with zero variance and an inverse chi-
squared distribution, with some SNPs having a zero effect, and
some SNPs having a large effect on the trait (Meuwissen et al.,
2001). The true distribution of the effect sizes is not known, but a
mixture of normal distributions can approximate a wide variety
of distributions by varying the mixing proportions (Mclachlan
Basford. et al., 1988; Silverman, 1996; Luan et al., 2009; Moser
et al., 2015; Goddard et al., 2016). Kemper et al. and Erbe et al.
presented and extended a model named “BayesR,” which used a
mixture of four normal distributions as prior, each with a zero
mean but with variances of 0, 0.0001 δ2g, 0.001 δ

2
g, and 0.01 δ2g for

genomic prediction (Erbe et al., 2012; Kemper et al., 2015). In the
applications of this model, it has been assumed that the mixing
proportions are drawn from a Dirichlet distribution with
parameters (1, 1, 1, 1). In a simulation study in which the
genetic model included a finite number of loci with
exponentially distributed effects, the Bayes-based model
provided more accurate prediction of genetic value than GBLUP.

Although Bayes-based models have the potential for the
development of more faithful genetic models and seem to be
the best choice for estimating GEBV, they require long computing
times since they use computer-intensive MCMC techniques
(Meuwissen et al., 2001; Xu, 2003; Verbyla et al., 2010; Habier
et al., 2011; Cheng et al., 2015). For practical applications and for
computer simulations of genomic selection breeding schemes,
which need many selection rounds and replications, it would be
useful to have a much faster algorithm for the calculation of
Bayes-based GEBV. Several non-MCMC algorithms have been
proposed to improve computational efficiency for linear models
with differential shrinkage of SNP effects or with variable
selection. Methods BL and BhGLM were developed by Xu
et al. and Yi et al., respectively, which used Expectation-
Maximization (EM) algorithms (Yi and Banerjee, 2009; Xu,
2010). VanRaden et al. (2009) presented two non-linear
predictions A and B that are analogous to the BayesA and
BayesB, respectively. Meuwissen et al. (2009) presented a fast
heuristic iterative conditional expectation (Zhao et al.) algorithm,

where the posterior expectation of SNP effects was calculated
analytically, assuming a fixed known double exponential (DE)
parameter and dispersion parameters. Dong et al. (2017)
formulated an algorithm based on the same model as the
ICE algorithm, which uses a product of univariate densities
instead of the multivariate normal density to estimate SNP
effects, but the a priori hypothesis on the size of the SNP effects
is based on the Pareto principle, which was proposed by the
economist Vilfredo Pareto at the beginning of the 20th
century. This principle states that approximately 20% of the
population possesses 80% of the wealth in a country. Similar
theories have been further applied in various fields, such as in
genomic prediction by Yu and Meuwissen (2011). In their
study, the a priori distribution of the genomic prediction
model was a mixture of two normal distributions, which
assumes that x% of the SNPs explain (100 − x)% of the
genetic variance, and the remaining (100 − x)% of SNPs
explain the remaining x% of genetic variance (Grosfeld-Nir
et al., 2007). Using this economic principle to assume the a
priori distribution of the marker effect is not very convincing,
leading to only a general predictive accuracy in Dong’s
research.

For genomic selection, most of the focus has been on
prediction accuracy and computational efficiency, but the
computing limits are an increasingly important aspect that
needs to be taken into account. The direct method of genomic
selection can provide GEBV in a short computing time when the
number of individuals in the population is small, but some studies
have shown that when the dimensions of the kinship matrix
exceed hundreds of thousands or even millions, the process to
inverse the matrix inverse becomes very difficult due to the
limitations in computer memory and computational time
(Misztal, 2016). According to the Council on Dairy Cattle
Breeding (https://queries.uscdcb.com/Genotype/cur_freq.html),
more than 5,000,000 Holstein cows have been genotyped as of
July 2021. With the accumulation of breeding data, there is an
urgent need for a genomic selection model that can handle large-
scale sample data.

In our study, we presented an ICE-based prediction model
with four zero-mean normal distributions as the prior
distribution and the variance of which have been obtained
accurately based on the 374 standardized phenotypes in an F2
population. This model with four normal distributions and
variances classified into four categories was referred to as
FMixFN, where MixFN refers to the prior distribution of
FMixFN was a mixture of four normal distributions, and the
first “F” refers to “Fast.” As a test, the predictive ability and
computation time obtained with GBLUP, SSgblup, Bayesian
mixture regression (MIX), BayesR, BayesA, BayesB, and
FMixFN were compared first based on six traits with different
heritabilities and different genetic architectures by using cross-
validation. Then FMixFN was evaluated by using data from
Duroc and Asian rice experiments, respectively (Zhao et al.,
2011; Ding et al., 2019). This study also evaluated the
efficiency of FMixFN and its ability to handle large-scale
sample data with 20 sets of sample data simulated by the
QMsim software.
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MATERIALS AND METHODS

All procedures including experimental animals established and tissue
collection were performed in accordance with the guidelines approved
by the Ministry of Agriculture of China. This study was approved by
the ethics committee of Jiangxi Agricultural University.

Data
An F2 design resource population was developed between 2000 and
2006 (Guo et al., 2009) as follows: two White Duroc sires and 17
Erhualian damsweremated to produce F1 animals, fromwhich 9 F1
boars and 59 F1 sows were intercrossed (avoiding full-sib mating) to
produce 967 F2 males and 945 F2 females (in total n � 1,912) in six
batches. All the F2 animals were kept under standard indoor
conditions at the experimental farm of Jiangxi Agricultural
University (China). Then the F2 piglets were weaned at 46 days,
and males were castrated at 90 days. At 240 ± 6 days of age, 1,030 F2
animals including 549 gilts and 481 barrows were slaughtered at
70–120 kg live weight.

Genomic DNA was isolated from ear tissue with a standard
phenol/chloroform extraction method. All DNA samples were
diluted to a final concentration of 50 ng/μl in 96-well plates. In
total, 933 F2 were genotyped with the Illumina PorcineSNP60
BeadChip on an iScan System (Illumina, United States) following
the manufacturer’s protocol (Ramos et al., 2009). Quality control
procedures were implemented by PLINK (version 1.07) (Chang et al.,
2015). Briefly, SNPs with unspecific positions on the genome build
10.2, a call rate lower than 90%, and a minor allele frequency (MAF)
lower than 1% were eliminated, and animals with a missing typing
rate higher than 10% were also removed. In total, 374 phenotypes
were measured on the individuals of the F2 population, including
carcass traits, reproductive traits, immune traits, meat traits, growth
traits, and epigenetic traits (see Additional file 1: Supplementary
Table S1). These 374 traits were then divided into three groups
according to their heritability, i.e., 68 traits with high heritability
(h2 > 0.4), 148 traits with amoderate heritability (0.2< h2 < 0.4), and
158 with low heritability (h2 < 0.2).

Estimation of Substitution Effects
We used the GEMMA software to calculate the substitution
effects of 14,320,159 SNPs on the 374 traits included in the
standard linear model (Zhou and Stephens, 2012). Sex was
included as a fixed effect, and heritability was estimated by
using the −lmm procedure implemented in GEMMA.
Population stratification was adjusted by including a genomic
relationship matrix. Briefly, the model was as follows:

y � Wa +Xβ + u + e ; u ∼ MVNn(0, σ2
uK), e ∼ MVNn(0, σ2

eIn)
where y is an n element vector of phenotypic values, all the traits
were normalized before calculation so that the substitution effects
were comparable among all the phenotypes,W is a design matrix of
covariates, a is a vector of fixed effects,X is a vector of genotypes at
each locus, β is the effect size of SNPs, and u is the vector of random
effects following amultivariate normal distributionMVNn(0, σ2uK),
e is the vector of errors following MVNn(0, σ2eIn), σ2u and σ2e are
polygenic variance and residual variance, respectively, which are

estimated based on the REML average information (AI) algorithm.
K is a known kinship matrix estimated from genome sequence
variants, and In being an n × n identity matrix.

Distribution of Additive Genetic Variance
Three genotypes “AA,” “Aa,” and “aa” were assumed each locus
and were represented by 0, 1, and 2, respectively, with p and q the
frequencies of alleles “A” and “a,” respectively. Assuming that the
effect value of this locus is estimated as β (with no dominance), the
additive genetic variance can be expressed as 2pqβ2 (Park et al.,
2011). In the group of traits with high heritability, all the loci for
each phenotype were put together and ranked by additive genetic
variance from large to small. And all the ordered loci were equally
divided into four groups. For each group, the proportion of the sum
of the additive genetic variances of all loci to the total additive
genetic variance (or variance-ratio thereafter) was calculated, equal
to a1, b1, c1, and d1, respectively (Subsequently called variance
ratio). Similarly, the same method was used for the groups of
traits with a moderate heritability and a low heritability, resulting
in a2, b2, c2, d2, and a3, b3, c3, d3, respectively. Therefore, the
four expected variances in each of the three groups can be
expressed as:

Group of traits with high heritability:

δ21 �
a1Vg

cM
; δ22 �

b1Vg

cM
; δ23 �

c1Vg

cM
; δ24 �

d1Vg

cM

Group of traits with a moderate heritability:

δ21 �
a2Vg

cM
; δ22 �

b2Vg

cM
; δ23 �

c2Vg

cM
; δ24 �

d2Vg

cM

Group of traits with a low heritability:

δ21 �
a3Vg

cM
; δ22 �

b3Vg

cM
; δ23 �

c3Vg

cM
; δ24 �

d3Vg

cM

Where Vg and M is the additive variance and the number of
markers, respectively. c is set to 0.25.

Analytical Derivation for FMixFN
The linear model for genomic prediction was as follows:

y � Xb + Bg + e

Where n individuals and m SNPs were assumed. Thus, y is a n × 1
vector of phenotypes recorded; b is the vector of fixed effects; g is a
m × 1 vector of additive SNP effects; e is a vector of residual errors; X
is the design matrix for fixed effects; and B is standardized design
matrix for additive SNP effects (coded as 0 for genotype “AA,” 1 for
“Aa” and 2 for “aa,” respectively).

In this study, the prior distribution with four zero-mean
normal distributions was written as a function of prior
distributions of SNP variance as determined above:

π(gj) � cϕ(gj|0, δ21) + cϕ(gj|0, δ22) + cϕ(gj|0, δ23)
+cϕ(gj|0, δ24); c � 0.25

(1)

π(gj) is the univariate normal distribution, the effects of SNPs are
obtained by using the Iterative Conditional Expectation algorithm
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(Meuwissen et al., 2009). In brief, assume that E(gj|y−j) is
estimated, the current effects of all the other SNPs are used to
calculate the y−j as follows:

y−j � y −Xb − ∑
k≠ j

Bkgk

where Bk is a vector from the kth column of B, the expectation of
SNP effect, E(gj|y−j), is then estimated by a Bayesian model in
the next round:

E(gj|y−j) � ∫ +∞

−∞
gjf(gj|y−j)dgj

� ∫+∞−∞ gjf(y−j
∣∣∣∣∣Bjgj, Iδ

2
e)π(gj)dgj

f(y−j)
� ∫+∞−∞ gjf(y−j

∣∣∣∣∣Bjgj, Iδ
2
e)π(gj)dgj∫+∞−∞ f(y−j

∣∣∣∣∣Bjgj, Iδ
2
e)π(gj)dgj

(2)

f(y−j) is amarginal distribution function of y−j and can be calculated
using the law of total cumulance: ∫+∞−∞ f(y−j|Bjgj, Iδ

2
e)π(gj)dgj.

Calculating f(y−j|Bjgj, Iδ
2
e) is computationally demanding

because it is a multivariate normal density, which involves
calculating the determinant and the inverse of the variance-
covariance matrix for the data y−j. Therefore, we simplified the
derivation by using a univariate normal densities f(Y|gj, δ

2) to replace
f(y−j|Bjgj, Iδ

2
e), where Y � (B’

jBj)−1B’
jy−j and δ2 � (B’

jBj)−1δ2e ;
details of the derivation process are as follows:

f(y−j|Bjgj,Iδ
2
e)∝exp⎡⎢⎣− (y−j −Bjgj),(y−j −Bjgj)

2δ2e
⎤⎥⎦

� exp(− y,
−jy−j −2B,

jy−jgj +B,
jBjg

2
j

2δ2e
)

� exp⎡⎢⎢⎢⎢⎣− g2
j −2(B,

jBj)−1B,
jy−jgj +(B,

jBj)−1y,
jy−j

2(B,
jBj)−1δ2e

⎤⎥⎥⎥⎥⎦

� exp
⎧⎪⎨⎪⎩−
[gj−(B,

jBj)−1B,
jy−j]2−[(B,

jBj)−1B,
jy−j]2 +(B,

jBj)−1y,
jy−j

2(B,
jBj)−1δ2e

⎫⎪⎬⎪⎭

∝exp
⎧⎪⎨⎪⎩ −

[gj −(B,
jBj)−1B,

jy−j]2
2(B,

jBj)−1δ2e
⎫⎪⎬⎪⎭∝exp⎡⎢⎢⎢⎣− (gj −Y)2

2δ2
⎤⎥⎥⎥⎦∝f(Y∣∣∣∣∣gj,δ

2)
Therefore, the equation E(gj|y−j) can be written as:

E(gj|y−j) � ∫
+∞
−∞ gjf(Y∣∣∣∣∣gj, δ

2)π(gj)dgj∫+∞−∞ f(Y∣∣∣∣∣gj, δ
2)π(gj)dgj

(3)

the numerator of Eq. 3 can be broken down into four terms
combined with Eq. 1 as follows:

c∫ +∞

−∞
gjf(Y|gj, δ

2)ϕ(gj|0, δ21)dgj

+c∫ +∞

−∞
gjf(Y|gj, δ

2)ϕ(gj|0, δ22)dgj

+c∫+∞

−∞
gjf(Y|gj, δ

2)ϕ(gj|0, δ23)dgj

+c∫+∞

−∞
gjf(Y|gj, δ

2)ϕ(gj|0, δ24)dgj (4)

The first term of Eq. 4 can be derived as follows:

c∫+∞

−∞
gjf(Y|gj,δ

2)ϕ(gj|0,δ21)dgj

� c∫+∞

−∞
gj

1
δ
���
2π

√ exp⎡⎢⎢⎢⎣− (Y−gj)2
2δ2

⎤⎥⎥⎥⎦ 1

δ1
���
2π

√ exp[− g2
j

2δ21
]dgj

� c���
2π

√ ∫+∞

−∞

gj

δδ1
���
2π

√ exp⎡⎢⎢⎢⎣− (Y−gj)2
2δ2

− g2
j

2δ21

⎤⎥⎥⎥⎦dgj

� c���
2π

√ ∫+∞

−∞

gj

δδ1
���
2π

√ exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(g2

j −
2Yδ21
δ2 +δ21

gj + Y2δ21
δ2 +δ21

)(δ2 + δ21)
2δ2δ21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dgj

� c���
2π

√ ∫+∞

−∞

gj

δδ1
���
2π

√ exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(gj − Yδ21

δ2 +δ21
)2(δ2 + δ21)

2δ2δ21
− Y2

2(δ2 + δ21)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dgj

� c���
2π

√ exp[− Y2

2(δ2 +δ21)]
1������

δ2 +δ21
√ ∫+∞

−∞

gj

δδ1������
δ2 +δ21
√ ���

2π
√

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(gj − Yδ21

δ2 +δ21
)2

2⎛⎜⎜⎜⎝ δδ1������
δ2 +δ21
√ ⎞⎟⎟⎟⎠2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dgj

Here, the last term of this formula equals Yδ21
δ2+δ21 as it can be taken

as calculating the expected value of gj in the normal distribution
with mean Yδ21

δ2+δ21 , and variance δ2δ21
δ2+δ21. Therefore, the first term of

Eq. 4 can be written as follows:

c���
2π

√ exp[ − Y2

2(δ2 + δ21)]
1������

δ2 + δ21

√ Yδ21
δ2 + δ21

Here, the derivation process for the remaining terms of Eq. 4
was the same as for this term, and therefore, the final form of the
numerator of Eq. 3 is:

c���
2π

√ exp[ − Y2

2(δ2 + δ21)]
1������

δ2 + δ21

√ Yδ21
δ2 + δ21

+ c���
2π

√ exp[ − Y2

2(δ2 + δ22)]
1������

δ2 + δ22

√ Yδ22
δ2 + δ22

+ c���
2π

√ exp[ − Y2

2(δ2 + δ23)]
1������

δ2 + δ23

√ Yδ23
δ2 + δ23

+ c���
2π

√ exp[ − Y2

2(δ2 + δ24)]
1������

δ2 + δ24

√ Yδ24
δ2 + δ24

(5)

there is no gj in the integrand of the denominator in Eq. 3
compared to that of the numerator. Therefore, it should calculate
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the cumulative probability from −∞ to +∞, but not calculate the
expected value, and this value is 1. Thus, the denominator in Eq. 3
can be written as:

c���
2π

√ exp[ − Y2

2(δ2 + δ21)]
1������

δ2 + δ21

√
+ c���

2π
√ exp[ − Y2

2(δ2 + δ22)]
1������

δ2 + δ22

√
+ c���

2π
√ exp[ − Y2

2(δ2 + δ23)]
1������

δ2 + δ23

√
+ c���

2π
√ exp[ − Y2

2(δ2 + δ24)]
1������

δ2 + δ24

√ (6)

thus, the final form for Eq. 3 is derived:

E(gjy−j) �
Y2

δ2+δ21 + exp[ Y2

2(δ2+δ21 ) −
Y2

2(δ2+δ22 )]
����
δ2+δ21

√����
δ2+δ22

√ Yδ22
δ2+δ22 + exp[ Y2

(δ2+δ21) −
Y2

(δ2+δ23 )]
����
δ2+δ21

√
δ2+δ23

Yδ23
δ2+δ23 + exp[ Y2

2(δ2+δ21) −
Y2

2(δ2+δ24 )]
����
δ2+δ21

√
δ2+δ24

Yδ24
δ2+δ24

1 + exp[ Y2

2(δ2+δ21 ) −
Y2

2(δ2+δ22)]
����
δ2+δ21

√
δ2+δ22 + exp[ Y2

2(δ2+δ21 ) −
Y2

2(δ2+δ23)]
����
δ2+δ21

√
δ2+δ23 + exp[ Y2

2(δ2+δ21 ) −
Y2

2(δ2+δ24)]
����
δ2+δ21

√
δ2+δ24

Here, the fixed effects are estimated at each iteration by the
formula: b̂ � (X′X)−1X′(y − Bĝ). Convergence of solutions at
the t th iteration was judged based on the formula
(Gt−Gt−1)′(Gt−Gt−1)

(Gt)′Gt < 10−8, where G � (b̂’ĝ′)′. It ends at the
iteration when all the SNPs have been calculated once.

Analytical Models
In the following analysis, we used GBLUP (Meuwissen et al.,
2001; VanRaden, 2008), SSgblup (Legarra et al., 2009;
Christensen and Lund, 2010), FMixFN, MIX (Xavier et al.,
2019), BayesR (Kemper et al., 2015), BayesA, and BayesB with
respective model fittings to compare their performance, the
variance components were pre-estimated using the mixed
model. The details of these analyses were as follows:

GBLUP: GBLUP was used to estimate the effects of the
markers by BLUP, assuming that each marker explains an
equal proportion of the total genetic variance. The software
GEMMA was used to implement the GBLUP calculation
process (Zhou and Stephens, 2012).

SSgblup: Single-step genomic BLUP (SSgblup), which was
developed by Aguilar et al. (2010) and Christensen and Lund
(2010), opened the way to perform genomic prediction using
phenotype, pedigree, and genomic information simultaneously
on both genotyped and non-genotyped individuals via a
combined relationship matrix (H). Implementation of SSgblup
is completed by the R package “Hiblup” (https://hiblup.github.
io/).

MIX: the MIXTURE model assumed that the marker effects
came from a mixture of two distributions: one distribution with
large variance (accommodating large marker effects) and one
with small variance (accommodating small marker effects). The
distribution to which the marker belongs is sampled from the
Bernoulli distribution. The variances of the two distributions
underlying the mixture are estimated using a noninformative chi-
square distribution. Implementation of MIX is completed by the
R package “VIGoR” (https://cran.r-project.org/web/packages/
VIGoR/index.html).

BayesR: BayesR starts the hierarchical model and poses a
mixture of four zero-mean normal distributions as a
conditional prior for a specific SNP effect. We use BayesR
software to implement the calculation process (https://
cnsgenomics.com/software.html).

BayesA: BayesA assumes that the distribution of SNP effects
follows a Student’s t-distribution. Mathematically, it is assumed
that each SNP effect comes from a normal distribution but σ2 can
be varied among the SNPs because the t-distribution is not easy to
incorporate into a prediction of the marker. A scaled inverted chi
distribution, X2(], S) is usually used as prior for the variance
components.

BayesB: The prior distribution of BayesB is a mixture
distribution with some SNPs with zero effects and the rest
with a t-distribution, and the prior hypothesis of the SNP with
non-zero effect is the same as BayesA. The implementation of
BayesA and BayesB is completed by the R package “BGLR” (Perez
and de los Campos, 2014). All MCMC sampling was run for
50,000 cycles, and the first 20,000 cycles were discarded as burn-
in for BayesR, BayesA, and BayesB.

The Verification of Predictive Ability and
Computing Time
To test the performance of FMixFN in terms of predictive ability
and calculation time, we did the following. Firstly, the variance
ratio of the prior distribution of FMixFN was assumed to be
random, then two traits were selected to verify the unbiasedness,
and the compatibility of the variance ratio estimated in the F2
population. The specific assumptions of the variance ratio are
shown in Additional file 1: Supplementary Table S2, the first one
is to average all variances, i.e. to set the classification with the
largest variance ratio at 50%, and the second was to centralize all
variances, i.e., the classification with the largest variance ratio is
assumed to be 90%. Secondly, we compared the predictive ability
and calculation time of FMixFN and other mainstream genomic
selection methods and selected two phenotypes with different
genetic structures and different heritabilities from each group for
cross-validation, one trait is controlled by numerous polygenic
genes and the other one is controlled by several loci with large
variances. Supplementary Figure S1 (see Additional file 2:
Supplementary Figure S1) shows that traits 1, 3, and 5 were
controlled by SNPs with large variances, and traits 2, 4, and 6 were
controlled by many SNPs, each with a very small effect. After
quality control, the remaining number of individuals with the six
traits were 839, 832, 834, 840, 784, and 838, respectively, with
33,901, 33,893, 33,891, 33,891, and 33,894 SNPs, respectively, the
heritability of each trait was 0.600, 0.560, 0.380, 0.369, 0.145, and
0.107, respectively. Details on the number of individuals, number
of SNPs, and heritability estimates are shown in Additional file 1:
Supplementary Table S3. In addition, we also evaluated the
stability of FMixFN by using data from the duroc experiment and
Asian rice experiments, respectively, more specific information
from this population is also shown in Additional file 1:
Supplementary Table S3. Finally, to demonstrate that
FMixFN can perform genomic prediction analysis based on
large-scale sample data with no data overflow error, our study
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simulated 20 sets of sample data using QMsim software
(Sargolzaei and Schenkel, 2009), which contains 10,000,
20,000, . . .. . ., 190,000, and 200,000 individuals, respectively.
Each set of data was obtained through eight generations of
mating, combining genotype and phenotype data from
generations 3–8, and determining the number of individuals
per generation by parameter setting. Genomic information of
each individual was set with 10 chromosomes, each chromosome
is set 100 cM long and including 101 markers and 100 QTLs,
respectively, with a marker mutation rate of 2.5 and QTL
mutation rate of 3. Genomic prediction by a replicated
training-testing method was used to evaluate the predictive
results. Cross-validation of nine replicates was performed. All
individuals were randomly and evenly divided into nine groups.
In each replicate, one of the groups was selected as the testing data
set while the remaining eight groups were used as the training
data set, and the results of each cross-validation are shown in
Additional file 1: Supplementary Table S4. Predictive ability is
defined as the correlation between GEBV and the phenotypes
adjusted for the covariates (y −Xû) (Meuwissen et al., 2001).

RESULTS

The Expected Variance Ratio
In this study, all traits of the F2 population were divided into three
groups based on the heritability of the traits: high, moderate, and
low. For the group of traits with high heritability, the calculated a1,
b1, c1, and d1 were equal to 0.8752, 0.0958, 0.0256, and 0.0032,
respectively. For the group of traits with a moderate heritability, the
calculated a2, b2, c2, and d2 were equal to 0.8367, 0.1246, 0.0342,
and 0.0043, respectively. And for the group of traits with low
heritability, the calculated a3, b3, c3, and d3 were equal to
0.8225, 0.1413, 0.0324, and 0.0036, respectively. Those parameters
were composed in the procedure of FMixFN, as FMixFN starts
running, the program determines which group of variances is
calculated based on the heritability of the experimental trait.

Verification of Unbiasedness
In this study, we selected phenotype 3 and phenotype 4 to verify the
unbiasedness of the variance ratio of the prior distribution.When the
variance ratio was assumed to be 0.5, 0.25, 0.125, and 0.125, the
predictive ability of phenotype 3 and phenotype 4 are 0.4773 and
0.4911, respectively. When the variance ratio is assumed to be 0.9,
0.005, 0.045, 0.005, the predictive ability of each of these phenotypes
are 0.4789 and 0.4911, respectively. In contrast, the predictive ability
of these two phenotypes estimated by using the original parameters
is 0.4787 and 0.4913, respectively.

Predictive Ability and Computing Time
The predictive ability of each of the six F2 traits under the six
predictive methods is shown in Figure 1. For phenotypes 1, 3, and
5, the predictive ability with BayesR, BayesA, and BayesB was,
respectively, 0.0377, 0.0308, and 0.0374 higher than that of
FMixFN, and the predictive ability of FMixFN was slightly
better than of GBLUP by 0.0045, 0.0013, and 0.0103,
respectively. For those three phenotypes, there is almost no

difference between SSgblup and FMixFN in predictive ability,
and FMixFN performs better than SSgblup for phenotype5. For
phenotypes 2, 4, and 6, FMixFN performed best for phenotype 4,
with a predictive ability 0.0129 higher that of BayesR, BayesA, and
BayesB. For phenotype 2, the predictive ability of the five software
was similar and was highest with BayesA but only 0.0053 higher
than that of FMixFN. For phenotype 6, FMixFN ranked second in
the predictive ability, just 0.0027 lower than that of SSgblup. It
was worth mentioning that the predictive ability of FMixFN was
slightly better than that of other ICE-based Bayesian mixture
regression (MIX) by 0.0221, 0.0116, 0.0801, and 0.0263 for
phenotype 1, 4, 5, and 6, respectively. The specific information
of the predictive ability was also shown in Table 1. Table 2
reports the predictive ability performances of FMixFN and other
methods using the Duroc and rice datasets. In the Duroc
population, the prediction accuracies were 0.3655, 0.3300,
0.3998, 0.3476, and 0.3589 for FMixFN, GBLUP, BayesR,
BayesA, and BayesB, respectively. From the mean value, we
found that FMixFN performed slightly worse than BayesR, but
outperformed GBLUP, BayesA, and BayesB. In general, the
MCMC-based Bayes genome selection algorithm showed some
advantages in the traits controlled by several major QTLs, which
explained a large proportion of phenotypic variance in some
SNPs, while FMixFN performs better than GBLUP. FMixFN is
slightly better than some other mainstream methods when traits
follow a polygenic model. In this study, we measured the
calculation speed of five methods as the average time
necessary for the first cross-validation of the six traits. As
shown in Figure 2A, the average calculation time was 0.54,
0.37, 0.29, 30.2, 42, and 50.5 min for FMixFN, GBLUP, MIX,
BayesR, BayesA, and BayesB, respectively.

FMixFN When Dealing With Large-Scale
Sample Data
The computational time per iteration of FMixFN increases almost
linearly as the number of individuals increases in the reference
group, as shown in Figure 2B. Data reading time also increased
linearly as the amount of sample data increased. Through
simulation studies, we also found that FMixFN can calculate
GEBV for 200,000 large samples without data overflow. Data
overflow usually occurred in exponential functions, where data
overflows or underflows could occur when the exponential
part of the exponential function was very large or very small.

The exponential part of Eq. 5 and Eq. 6 was exp[ − Y2

2(δ2+δ2i )],
in which Y � (B,

jBj)−1B,
jy−j, Bj was the j column of the

accompanying matrix of SNPs. When Bj growth unlimited,

the limit of exp[ − Y2

2(δ2+δ2i )] is negative infinity, and data

underflows will occur. In this study, we found FMixFN could
calculate GEBV for 200,000 samples without data overflow. So
FMixFN has the potential for use on large-scale sample data.

In conclusion, when there are fewer individuals in the
reference group, the computational speeds for ICE-based
FMixFN are on the same order of magnitude with GBLUP,
and they were much faster than the MCMC-based Bayesian
methods. When the number of individuals in the reference
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dimension of the kinship matrix exceeds hundreds of thousands
or even millions, the process to inverse the matrix becomes very
difficult for the direct method of genomic selection. FMixFN has
excellent computational efficiency and can handle large-scale
sample data.

DISCUSSION

Our results show that the accuracy of genomic selection is
affected by many factors, among which the a priori hypothesis
on the size of the QTL effect values for traits is crucial. Usually,
the most accurate method to predict genetic values or phenotypes
based on SNP genotypes is to fit all SNPs simultaneously, treating
the SNP effects as they are drawn from a prior distribution that
matches the true distribution of SNP effects as closely as possible
(Goddard and Hayes, 2009; Chatterjee et al., 2013). To date, the
genetic architecture of many traits is still not entirely understood,
which means that the prior hypothesis about the QTL effect
distribution of all genomic selection models is empirical. In
general, mixed normal distributions are more accurate than a
single distribution, because the mixture of normal distributions
can approximate a wide variety of distributions. It is important to
note that this does not imply the SNP effects are drawn from a
mixture of normal distributions, but it merely means that such a
mixed distribution can approximate almost any distribution that
might describe the distribution of effect sizes. BayesR provides an
estimate of the number of causal variants that affect a trait and of
the distribution of their effects by approximating the distribution

of effect sizes with amixture of normal distributions. In our study,
the prior distribution of the SNP effect was similar to BayesR,
which came from a mixture of four normal distributions with a
ratio of 1: 1: 1: 1. The difference with BayesR is that we used an
Iterative Conditional Expectation (Zhao et al.) algorithm.

Narrow-sense heritability is defined as the proportion of additive
variance to phenotype variance (Wray and Visscher, 2008), which
means that a trait with a high heritability is more under the control of
genes and is less affected by the environment. Therefore, we divided all
374 traits into three groups according to their heritability, and the
variance of the mixed distribution is then calculated in each group.
The phenotypes included in our study cover almost all the traits
measured in pigs and thus are representative, resulting in a high
unbiasedness and compatibility variance. This study randomly
assumed two sets of variance ratios and used two representative
phenotypes to verify the predictive ability but the results showed that
the predictive ability obtained using the original variance may not be
optimal. The distribution of marker effects for various traits was
different, and no one genomic selection model or a priori hypothesis
was optimal for all traits. The variance parameters (variance ratios)
obtained in our study were expected to be unbiased as the F2 resource
population contained a relatively sufficient number of individuals.

The results showed that the predictive ability of BayesR,
BayesA, and BayesB was similar in phenotype1, 3, and 5, and
was higher than that of the three other methods, which means the
MCMC based Bayes genomic selectionmodel has an advantage in
predicting genomic breeding values when the trait is affected by
large-effect QTL. This result confirms those reported by Chen
et al. (2014). For the three phenotypes, GBLUP resulted in the

FIGURE 1 | Comparison of predictive ability of BayesA, BayesB, BayesR, FMixFN, GBLUP, MIX, and SSgblup in all six traits. The predictive ability performance of
each method was measured by the correlation method, which is the average Pearson correlation between predicted values and phenotypic values.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7216007

Xu et al. Genomic Selection, FCF-MixP, Model

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


least prediction results because its prior assumption did not
match reality as it assumed that traits are controlled by many
SNPs, each with a small effect. FMixFN performed slightly better
than GBLUP for these three traits, but worse than the Bayes-
based methods. Although the prior distribution of FMixFN was a
mixture of normal distributions, the posterior variances of SNP
effects were not updated, which is a potential drawback for these
ICE-based methods. The predictive ability obtained with SSgblup
was similar to that with FMixFN because of the addition of
pedigree information. However, all the methods yielded almost

the same result for phenotypes 2, 4, and 6, a reasonable
explanation may be that when the traits are controlled by
many polymorphisms of very small effect, the prior hypothesis
of the Bayes-based method is closed to that of GBLUP.

In addition to resulting in stable predictive ability, two other
advantages of FMixFN are computational efficiency and its ability
to deal with large-scaled sample data. The level of the
computational efficiency of the direct method of genomic
selection was the same as that of FMixFN when the number
of individuals in the reference population was small, but if this
number increases, the direct method will not be efficient because
the process to invert the matrix will become very difficult due to
the limitations in computer memory and computational time.
Our study demonstrates the stability of FMixFN and its potential
for use on large-scale sample data.

CONCLUSION

We have developed a Bayes-based genomic selection model called
FMixFN, which combines stable predictive ability and
computational efficiency. Besides, when the number of
individuals in the reference population is large, FMixFN is one

TABLE 1 | Prediction performance in all six traits under the seven predictive methods.

Traits/COR Methods

GBLUP SSgblup FMixFN MIX BayesR BayesA BayesB

phe1 0.661 0.6658 0.6655 0.6434 0.7032 0.6962 0.6977
phe2 0.5637 0.5635 0.5591 0.5602 0.556 0.5564 0.561
phe3 0.4774 0.4803 0.4787 0.4833 0.5051 0.5096 0.509
phe4 0.4814 0.4861 0.4915 0.4799 0.4867 0.4786 0.48
phe5 0.2214 0.2232 0.2317 0.1516 0.2691 0.2485 0.2549
phe6 0.1524 0.1564 0.1537 0.1274 0.1512 0.1529 0.1541
Mean 0.4262 0.4292 0.4300 0.4076 0.4452 0.4403 0.4427

COR: The Pearson correlation coefficient between predicted values and phenotypic value.

TABLE 2 | Comparison of predictive ability performances of six methods by using
Duroc dataset and rice dataset.

Traits/COR Methods

GBLUP FMixFN MIX BayesR BayesA BayesB

Duroc 0.33 0.3655 0.3579 0.3998 0.3476 0.3589
FT 0.4347 0.4506 0.4381 0.4415 0.4295 0.4342
CH 0.6000 0.5696 0.5786 0.5830 0.5809 0.5737
Mean 0.4549 0.4619 0.4582 0.4747 0.4526 0.4556

COR: The Pearson correlation coefficient between predicted values and
phenotypic value.

FIGURE 2 | (A). Comparison of computing performances (in min) of FMixFN, GBLUP, MIX, BayesR, BayesA, and BayesB at first cross-validation of the six traits.
Computing performance tests were performed in a Red Hat Enterprise Linux server with 2.80 GHz Intel(R) Xeon(R) 20CPUs E5-2680 v4, and 66 GB memory. (B). The
computational time (in s) for per iteration of FMixFN according to the number of individuals increasing in the reference group. Computing performance tests were
performed on a Red Hat Enterprise Linux server with 2.10 GHz Intel(R) Xeon(R) 64 CPUs Gold 6130, and 131 GB memory.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7216008

Xu et al. Genomic Selection, FCF-MixP, Model

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


of the best choices for genomic selection. FMixFN is a stable, big
data-oriented genomic selection model, which could meet the needs
of large breeding companies or combined breeding schedules.
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