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Context-dependent prediction of protein complexes by
SiComPre
Simone Rizzetto 1,2, Petros Moyseos1, Bianca Baldacci1, Corrado Priami1,3 and Attila Csikász-Nagy 4,5

Most cellular processes are regulated by groups of proteins interacting together to form protein complexes. Protein compositions
vary between different tissues or disease conditions enabling or preventing certain protein−protein interactions and resulting in
variations in the complexome. Quantitative and qualitative characterization of context-specific protein complexes will help to better
understand context-dependent variations in the physiological behavior of cells. Here, we present SiComPre 1.0, a computational
tool that predicts context-specific protein complexes by integrating multi-omics sources. SiComPre outperforms other protein
complex prediction tools in qualitative predictions and is unique in giving quantitative predictions on the complexome depending
on the specific interactions and protein abundances defined by the user. We provide tutorials and examples on the complexome
prediction of common model organisms, various human tissues and how the complexome is affected by drug treatment.
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INTRODUCTION
Most proteins are biologically active only when they serve as part
of a protein complex and their identification is important to
understand cellular functions. Protein complex assembly is limited
by multiple constraints that need to be considered for protein
complex predictions. A pair of interacting proteins has to be
expressed in the same cell, within the same subcellular compart-
ment at the same time. Moreover, high abundance of a protein
can titrate away some or all of its binding partners, which will not
be capable of interacting with other molecules. Binding sites are
also a finite resource of a protein, limiting the number of possible
simultaneous interactions. Even when multiple binding sites are
available, it is not always possible for a protein to have many
simultaneous interactions, since a bounded protein might make
other binding sites inaccessible due to its size. Furthermore,
cellular functions are dependent on the quantities of protein
complexes,1 for instance, the number of ribosomes can affect cell
growth rate.2 Unfortunately, we have very limited data on these. In
order to study protein complexes, new experimental assays have
been recently developed to reconstruct protein−protein interac-
tions, protein complex composition, and stoichiometry coeffi-
cients within HeLa cell line.3 On the other hand, computational
methods can now identify protein complexes from interaction
networks.4 However, these methods cannot provide quantitative
prediction of protein complexes yet. Solving this task for the
whole proteome is complicated by the large scale of this system
and requires high computational power. Computational
approaches that aims to predict such information requires finding
the right abstraction level to model protein complex formation.
High resolution simulations can provide detailed information of a
limited set of protein complexes,5,6 but cannot be applied to large-
scale scenarios. To solve these issues, we previously designed
SiComPre, a method to perform stochastic simulations of protein

complexation and decomplexation reactions.1 Models were
generated from a priori information: protein−protein interactions,
domain−domain interactions, GO functional terms, and protein
abundances. In a stochastic simulation (inspired by Gillespie
MultiParticle algorithm7) we follow each individual molecule and
track its binding and unbinding reactions as it diffuses through
well-mixed subvolumes, where these reactions can occur.
Domains were used as binding sites for a protein and in the case
of a PPI the proteins that do not have any interacting domains, we
added a pair of interacting fictitious domains only if the two
proteins have a common “biological function” according to Gene
Ontology (GO).8 Space is modeled as a two-dimensional grid
where each lattice is a subvolume and proteins can diffuse across
them at each timepoint according the Flick’s law. Between two
timepoints an instance of Gillespie’s algorithm is executed for
each subvolume which simulates complexation and decomplexa-
tion reactions between proteins present in the same subvolume.
This approach allows us to simulate the competitive binding to a
protein binding site and predict protein complexes specific for a
condition corresponding to the protein abundance data used as
input of the model. Finally, simulation results are postprocessed to
obtain qualitative and quantitative prediction of protein
complexes.
In the first version of the method, the simulation space was not

corresponding to any biological meaning, each protein could have
unlimited simultaneous binding partners and we could not
provide a software tool for users without advanced computational
skills. Here we present SiComPre 1.0, a software tool based on an
updated version of our previously defined method. SiComPre 1.0
has an easy-to-use graphical user interface allowing the customi-
zation of all parameters and setting of the simulations. Further-
more, it provides a tool to compare complexomes simulated with
various settings, enabling context-dependent prediction of
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protein complexes. Finally, we optimized the core simulation
algorithm to increase computational performance on GPU.

SICOMPRE 1.0
The goals of SiComPre 1.0 are to provide an accessible interface to
all its features, provide the capability to compare results to
investigate the effects of context-specific proteomics data on
predictions and to improve the scores in predicting protein
complexes.

New processing pipeline
Like in our previous method,1 the SiComPre 1.0 simulate
stochastic complexation, decomplexation and diffusion of pro-
teins in a 2D space, dynamically generating a list of complexes
(called Simulated Complexes, SCs), which show quite robust
distribution of the various complexes, independent of initial
condition and simulated time (after a transient period). To obtain
both a qualitative and quantitative prediction, the software refines
the prediction in order to generate a list of refined complexes
(RCs) together with their abundances (Fig. 1a). SiComPre 1.0 first
splits complexes where single edges link strongly connected
subnetworks by applying Markov Clustering9 on the network
representing protein complex structures generated from the
simulation. We observed that with a low threshold we can split
protein complexes that are connected only through a few

interactions (Fig. 1b), which might be art-facts due to the lack of
data on sterical inhibition of binding events on some molecules
involved in multiple complexes. Next, similar SCs that differ only in
a few proteins are merged together (Fig. 1c). For this purpose, we
built a similarity matrix where each element represents the
overlap score between two complexes, then a hierarchical
clustering can be applied to the matrix and an iterative process
to merge pairs of complexes starting from the most similar ones
(Supplementary Text 1). The process stops when there are no
couples of complexes with an overlap score greater than the
default similarity score (overlap > 0.5) (Supplementary Text 1). The
result is a list of RCs that serve as qualitative predictions of protein
complexes. These can be compared to lists of experimentally
identified real protein complexes.10–15 Afterwards, SiComPre
assigns SCs, obtained after the splitting step, to the RC with the
highest overlapping score. The amount of SCs matching an RC
constitute defines the quantitative prediction for each protein
complex. We note that this process does not always merge all the
simulated protein complexes that correspond to the same real
complex to a single RC. Even with this approach we find some RCs
that cannot be merged because their similarity is below the
threshold, but both of their similarities to a common real protein
complex are above the cutoff. These RCs can be considered as
alternative forms of the same protein complex and their
respective quantities (number of SCs assigned to them) could
give a prediction of the distribution of the various alternative
forms.

Fig. 1 Overview of the pipeline. a The steps used by SiComPre 1.0 to predict protein complexes. b An example of how Markov Clustering
(MCL) can split bounded protein complexes. c Example of how the merging step combines two highly similar simulated complexes into a
refined complex
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User-friendly implementation
The implementation of the above described pipeline and
additional features to elaborate and visualize the results are
accessible through a graphical user interface. More specifically,
users can import data on PPI, DDI, GO Functions and various other
protein attributes (diffusion rate, abundance, localization and
available binding surfaces) as well as select parameters for model
generation and simulation (Supplementary Text 1). Users can draw
their custom compartmentalized cell or select a default compart-
mental model to define the spatial simulation environment, they
can also decide the number of simulation threads and if to run a
hybrid computation (GPU+ CPU) or CPU-only computation. For
proteome-wide simulations we recommend the use of hybrid
computation. Additionally, we provide scripts to convert some of
the most common database formats8,16,17 into a format directly
used as input for SiComPre 1.0 (Supplementary Text 1). Windows
and Linux compatible versions of SiComPre tool can be down-
loaded from https://bitbucket.org/sicompre/sicompre or https://
www.cosbi.eu/research/prototypes/sicompre. Hardware require-
ments for toy models are minimal, but for proteome-wide
simulations a machine with large memory and GPU acceleration
is preferred. Details on software preformances are presented in
the Supplementary Text 1, where we also explain how example
simulations can be performed.
Once the simulation is finished the graphical user interface

enables the user to track and visualize the diffusion of a selected
list of proteins during the simulation. It is also possible to export
information about the predicted complexes (their abundances, list
of constitutive proteins, and a GO enrichment on them) and the
score of the given predicted complex against a reference
database, with the best-matching known complex.
We also added a functionality to automatically compare results

of multiple sets of simulations. This process identifies clusters of
structurally similar complexes across multiple simulation results
(e.g. generated from different inputs) and report variations in their
abundances (Supplementary Text 1). These results can be used to
evaluate qualitative and quantitative differences between protein
complexes predicted from models generated from different input
data (e.g. protein abundances retrieved from data on liver against
protein abundances in pancreas).
Another key feature of SiComPre 1.0 is the possibility to analyze

the specificity of proteins constituting protein complexes. Users
can export a list of protein complexes, together with the
abundance of each protein within a given complex and their
total abundance. The combination of these abundances gives a
specificity measure (the fraction of proteins in the whole cell that
are found in simulated complexes matching the selected RC) of
each protein to each protein complex, which can be used to
design the best baits for any protein complex (Supplementary
Figure S1). Using the option “export to network” (in a format that
can be imported into Cystoscape18), users can generate networks
of the predicted protein complexes containing info on the
abundance of proteins participating in a given complex (how
many times a protein appears in a simulated complex that has the
selected RC as best matching), with some proteins appearing in
multiple copies in a given complex. The exported file also gives
information on the specificity of proteins in a complex as defined
above.

RESULTS
We assessed the new features introduced in SiComPre 1.0 to
predict the characterized complexome of Saccharomyces cerevisiae
to measure the qualitative prediction performance of SiComPre
1.0 against a large set of validated data. To highlight the unique
features of SiComPre 1.0, we also investigated the qualitative and
quantitative variation in the complexome of the mouse liver

before and after Metformin treatment. Finally, we ran SiComPre
1.0 with input data on tissue-specific protein abundances of
human cells19 to investigate variations in the complexome
between tissue types.
In all the experiments, predicted complexes were compared to

a reference dataset using the composite score of recall, maximum
matching ratio (MMR) and accuracy.20 Yeast complexes were
compared against the CYC08 dataset,21 human and mouse results
were compared to the CORUM dataset.22 These predictions
against a reference dataset can be replicated and extended by
users of SiComPre 1.0.

Test case 1: Yeast complexome
As an example, SiComPre 1.0 was tested with the following input
data on yeast: PPIs from Collins et al.23 protein localization and
molecular function from MIPS24 and protein abundances from
Ghaemmaghami et al.25 Protein domains association are retrieved
from SMART26 and IDDI27 was used as DDI dataset. We first tested
new features of SiComPre 1.0 on the limit of the total possible
binding to each protein and the effects of incorporating
compartmental localization data on each protein (Supplementary
Text 1). We considered each predicted complex as a match to a
real complex (based on CYC0821) when there was an overlap score
>0.25. According to the optimal composite score values,28 we
found that 4096 subvolumes and a binding limit of 10 simulta-
neous partners give the best results (Supplementary Text 1 and
Supplementary Table S1). Of course, some scaffolding proteins
could have more binding partners, while small proteins could
have less. This is the optimized value what we could use for all in a
proteome-wide simulation, but the input files of SiComPre 1.0
enable users to define this limit for each individual protein.
Next, we ran SiComPre 1.0, with and without compartments,

with the above identified settings. Without using data on
compartmental localizations, SiComPre 1.0 achieves a better
composite score (0.1 higher) than with data on compartments
(Supplementary Text 1 and Supplementary Table 2). However, an
important consideration to predict protein complexes is to
generate a prediction that is consistent with the localization of
proteins. For this, we evaluated our prediction after filtering out
complexes which contained proteins that has been previously
shown to be localized in separate compartments.8 Following
filtration SiComPre 1.0 with compartmental information provided
a better prediction (Fig. 2a). A detailed comparison of SiComPre
against other existing methods was previously performed.1 Here,
we compared the location-consistent protein complexes with the
predictions obtained from SiComPre 1.0, SiComPre with the same
parameters as defined in the first version of the method1 and
ClusterOne.20 The latter is a successful clustering algorithm to
detect overlapping communities in PPI networks. As opposed to
SiComPre, ClusterOne only needs a PPI dataset as input; however,
it cannot provide quantitative prediction of protein complexes
and it does not consider protein localization. For this analysis we
also filtered out reference complexes that were not in the original
PPI,23 to ensure that we measure the quality of the method rather
than the quality of the PPI input data. SiComPre 1.0 outperforms
both ClusterOne and the older SiComPre pipeline (Fig. 2a and
Supplementary Figure S2A). Interesting to note that the perfor-
mance scores are reduced with the consideration of compart-
mental localization of proteins. This is due to the fact that
reference protein complex databases contain a large number of
complexes (79 in yeast, 131 in mouse and 227 in human) that are
composed of proteins that are not localized at the same
compartment, based on various localization resources.8,24

In the generated SiComPre 1.0 model, we observed that
SiComPre 1.0 added at least one fictitious domain (i.e. there is
no information on known interacting domains associated to the
interacting proteins) to 1036 proteins. As expected, a large portion
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(n= 360) of them were associated to ribosomal proteins in GO,
suggesting that ribosomal proteins do not interact with each
other directly, rather they interact through ribosomal RNAs
(rRNAs). Therefore, we added protein−rRNA binding information29

to the simulation (Supplementary Text S1). This further increased
the composite score achieved by SiComPre 1.0 to 2.15, from 2.13
obtained without rRNAs and their interactions (Supplementary
Figure S2A).
With SiComPre 1.0 it is possible to predict the abundance of

protein complexes in a cell by merging similar SCs into RCs and
count the overlapping SCs for each RC. These results can be
exported as CSV file together with other features (e.g. list of
constitutive proteins, complex size, GO enrichment). Separately,
we validated our quantitative predictions against the limited
protein complex abundance data from the literature.10–15 We
found quantitative data on the abundance of nine protein
complexes; SiComPre 1.0 predictions show a Pearson’s correlation
of 0.77 with a p value of 0.015, against this data (Supplementary
Table S3). SiComPre 1.0 also outperforms the trivial method of
predicting protein abundances by averaging the abundance of
the proteins in the reference complex, which did not significantly
improve the random prediction obtaining a Pearson’s correlation
of 0.28 with a p value of 0.47 (Supplementary Table S3), and earlier
SiComPre prediction (Pearson’s correlation= 0.41, p value 0.31).1

Since there are limited data on protein abundances after
various perturbations, it is often desired to use gene expression
data as a proxy for protein abundances. To assess SiComPre 1.0
prediction with gene expression instead of protein expression, we
tested SiComPre 1.0 using mRNA abundances instead of

proteins.30 Although expression of many proteins is post-
transcriptionally regulated, this is helpful to extend the applic-
ability of SiComPre 1.0 to a larger spectrum of conditions.
Nowadays gene expression quantification is available for multiple
cell types and organisms obtained from different experimental
conditions and also at the single-cell level.31 Furthermore, these
data have typically a larger coverage compared to proteomics
data. This method of using mRNA abundances instead of protein
abundances led to a decrement in the qualitative matching
composite score to 2.0, but at the same time the quantitative
predictions increase to a Pearson’s correlation of 0.94 (Supple-
mentary Table S3). This result suggests that when proteomics data
are unavailable then mRNA abundances can also be used as a
reliable input of SiComPre 1.0, since the qualitative scores are still
reasonable. The quantitative prediction seems to improve with
mRNA data used, but this was evaluated based on a limited set of
complexes with known abundances, most of which are essential
(e.g. ribosomes). These complexes might be less controlled on the
post–transcriptional level, so this good quantitative prediction
might not extend to other protein complexes under various
controls.
To test how well SiComPre 1.0 can be used to predict the best

baits to pull down each protein complex in yeast, we calculated
the specificity, abundance, and degree of proteins within each
complex and compared these with the list of baits used in Gavin’s
experiment.32 The ROC curves of the three measures show that
the specificity and to some extent the abundance of proteins in
individual protein complexes can be used as best predictors of
good baits (Supplementary Figure S3). These measures can help to

Fig. 2 Composite score of protein complex prediction in yeast and human cells. a For yeast, both SiComPre versions and ClusterOne20

predictions were evaluated, based on the CYC08 reference dataset21 and Collins PPI23 as an input. b For human data we tested the tools on
two different PPIs (Havigiumana and Hippie),40,54 with the CORUM as a reference dataset.22 Abundances for SiComPre models were retrieved
from U2OS cell line55 and various other tissues and cell types.19 Additional combinations of used input datasets are available in
Supplementary Figures S2 and S4
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design coimmunoprecipitation or tandem affinity purification
experiments by identifying highly specific proteins in the
complexes. Furthermore, the predicted baits could also be used
as drug targets to interfere with the activity of each protein
complex. To further emphasize the robustness of the simulation, it
is important to note that we got these results without the need of
training our algorithm as usually done for classifiers; we just relied
simply on SiComPre 1.0 simulation results.
The whole in silico experiment on the yeast proteome can be

performed in 1 day on a regular PC with a GPU (core i7 and NVidia
Geforce GTX 760M), with the reduction of protein abundances to
the square root of measured values.25 Use of real protein
abundances can be considered only on high performance
computing clusters. In the supplementary information, we show
how the performance of SiComPre 1.0 depends on the actual
protein abundances (Supplementary Text 1 and Supplementary
Table S4). A good qualitative fit can be achieved even with greatly
reduced abundance values at a much shorter computing time. A
step-by-step protocol to execute the pipeline is explained in
Supplementary Text 1.

Test case 2: Metformin in mouse liver
Metformin is a drug used to treat type II diabetes, but its molecular
mechanism is still unclear. It does not affect insulin production in
the pancreas, but is more likely to reduce hyperglycemia, by
activation of AMP-activated protein kinase (AMPK). The primary
action, according to Drugbank,33 is to induce prkaa1, scaffold
protein for the formation of AMPK complex, whose functions are
to regulate cellular energy, metabolism and it acts as a regulator of
cell polarity by remodeling actin cytoskeleton. To exploit the
potential of SiComPre 1.0 in predicting variation in the complex-
ome upon perturbation, we compare protein complexes predicted
from protein abundance data on mouse liver before and after
metformin treatment. SiComPre 1.0 cannot model post-
translational modifications, but it can give an insight about which
protein complexes might be affected upon perturbation by
introducing a new molecule into the system. We ran a set of
three simulations with a total of six timepoints for each of the
following protein abundance setups: (i) normal liver protein
abundances, (ii) post metformin treatment liver protein abun-
dances and (iii) normal liver protein abundances, plus metformin
with its molecular bindings, retrieved from STITCH.34 We
compared these simulations in two different ways to test how
well SiComPre can predict the effect of metformin on the liver
complexome. We compared the simulated complexome of the
normal liver (i) to the experimentally perturbed system (without
adding metformin to the simulations, but considering abundance
changes as an effect of metformin), and (ii) to the system, where in
silico we added only metformin with its interactions to the normal
complexome. Protein abundances data came from MOPED,17 PPI
from Biorgrid,35 DDI from IDDI,27 protein domain from SMART,26

protein localization and protein function from GO.8 We used
different input resources to highlight that SiComPre 1.0 can
handle various input formats. In the supplement we provide a
series of scripts that can help users to transform downloaded data
from various online resources into a format readable by SiComPre
1.0 (Supplementary Text 1). For the in silico addition of the drug
we integrated protein−drug interaction from STITCH34 with
protein abundances retrieved before drug administration. Protein
binding sites interacting with Metformin were selected perform-
ing a domain enrichment with DAVID36 on the list of proteins
interacting with Metformin. Using the option “compare condi-
tions” of SiComPre 1.0, we generated a table reporting all the
protein complex abundances and structural differences detected
between the different sets of simulations. Next, we ranked protein
complex variations according to their coefficient of variation
between the two compared conditions. In Fig. 3a we list the GO

terms enriched for protein complexes with high variation between
compared experiments.
Heatmap of protein complex abundances show that the

experimental metformin treatment caused a large effect on the
abundance of proteins and as a result on the abundance of
protein complexes (Fig. 3b), while the in silico addition of
metformin had a much smaller effect. In the experimental case
this could reflect the downstream effects of the treatment, while
in the in silico, this might show the direct effects of metformin on
the complexome. The altered proteins of the complexes in both
cases were enriched in protein folding processes and chromatin
and cytoskeleton. This inhibition of unfolded protein response by
metformin has been already reported.37 In addition, the observed
relationship between metformin and histone levels have been
identified earlier.38 Furthermore, SiComPre 1.0 also suggests that
metformin affects cell motility and the cytoskeleton, as shown in
PC3 and DU145 prostate cancer cells.39 The predicted complexes
responsible for this overlapping pattern can be matched to the
chaperonin containing TCP1 complex, p97-Ufd1-Npl4-IP3 receptor
complex, Smcb-Smcd-PW29 complex, Xin-Cdh2-Ctnnb1-Ctnnd1
complex, and Kif3-cadherin-catenin complex.

Test case 3: predicting the tissue-specific human complexome
The new SiComPre pipeline is designed to increase the
performance on the human proteome and allow prediction of
tissue-specific protein complexes. Therefore, after assessing the
quality of our prediction in yeast and showing how SiComPre 1.0
responds to perturbations such as addition of new molecules, we
applied our method to identify how complexes vary among seven
different adult tissues, six fetal tissues, and four different primary
hematopoietic cell types. The protein abundances in each of these
cell types were recently measured.19 Multiple PPI datasets were
tested and we found that the Human Integrated Protein−Protein
Interaction Reference, called Hippie40 was performing better than
any other dataset with both SiComPre 1.0 and ClusterOne
(Supplementary Text 1 and Supplementary Table S5). Using this
dataset as the PPI input dataset, SiComPre 1.0 was able to identify
a total of 56% of all the complexes collected in the CORUM
reference dataset.22 The tissue with the highest percentage of
matched complexes was the adult testis (29%), while the data
from adult heart tissue gave the lowest matching (15%) to protein
complexes in CORUM. In comparison, ClusterOne20 could predict
only 10% of these complexes, highlighting that SiComPre 1.0 and
the incorporation of protein abundance data could help better
predictions (Fig. 2b). Tests on another PPI dataset led to lower
prediction scores for all methods, but SiComPre 1.0 still had the
best performance of all investigated software (Fig. 2b and
Supplementary Figure S2B). We also compared SiComPre 1.0 with
other existing methods9,20,41–44 on the datasets from 16 cell types
and SiComPre gave a far higher recall and an elevated MMR
compared to any other methods leading to SiComPre reaching the
highest composite score (Supplementary Figure S4). Interestingly,
the average Pearson’s correlation between the abundances of
predicted complexes across different cell types is 0.68, compared
to 0.58 calculated directly from protein abundance correlations.
This suggests that complex formation might have a role in
reducing the heterogeneity caused by differences in protein
expression levels.
We could use again the predicted complexome comparison

feature of SiComPre 1.0 to investigate alteration in protein
complex abundances in different cell types. By ranking protein
complexes according to the coefficient of variations of their
abundances among different cell types, we identified desmosomal
cadherin-plakoglobin complex, proteasome and spliceosome as
the most highly variable complexes. It was already reported that
proteasome can perform tissue-specific functions;45 thus it was
interesting to notice that the subunit of the proteasome involved
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in transcriptional regulation (GO:0008134, GO:0003713) and DNA
binding (GO:0003677) was more abundant in B cells, frontal lobe
and adult monocytes, while the subunit involved in threonine-
type endopeptidase and peptidase activity (GO:0004298) was
more abundant in TH cells, testis, and adult ovary (Supplementary
Figure S5). Spliceosome also has been reported as highly
variable46 and we indeed found a complex partially matching
the spliceosome (12 proteins out of 16 belong to the spliceosome)
as the complex with the highest variability in its abundance. It was

highly abundant in adult B and TH cells and in fetal ovarian cells.
To investigate how the complexome of different cell types differ
from each other we performed a principal component analysis
based on SiComPre 1.0-predicted complex abundances (Supple-
mentary Figure S6). We were able to separate cells of the
reproductive organs through the first principal component,
immune system cells using the second principal component and
adult from fetal tissues with the third principal component. The
most influential complex of the first principal component was CKB

Fig. 3 Protein complex variations in mouse liver after Metformin treatment. a Complexome comparison between in vivo and in silico addition
of metformin and GO terms enriched in the most varied protein complexes. b Heatmap of protein complex variability between the three
conditions. Hierarchical clustering is based on the Euclidian distance between normalized protein complex abundances. Color scale
represents the estimated complex abundance, where red are the highest and blue the lowest abundance complexes
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+ ASB9 complex,47 for the second one the most important
complex was hemoglobin and for the third CST3+ C4A complex.
As a control, we repeated the same analysis generating a PCA with
original protein abundances19 as input. This way, it was possible to
separate reproductive organ and immune system cells, but adult
and fetal cells were mixed together (Supplementary Figure S7). In
another control, we considered only complexes defined in CORUM
database22 and we took the average of the protein abundances
found in a given complex as predicted protein complex
abundance. This analysis did not find any clustering that enabled
separation cell types (Supplementary Figure S8). As a further
validation, we investigated whether SiComPre 1.0 was able to
predict complexes that are not part of the reference CORUM
database. Among these SiComPre prediction we found multiple
variants of the SET/MLL complex family.48 SiComPre predicted
three variants of this complex, matching Set1A, Set1B, and MLL
protein complexes (Supplementary Figure S9A). Furthermore, our
quantitative prediction identified Set1A as the most abundant
proteins in its respective complex, highlighting the importance of
having a quantitative prediction of protein complex. ClusterOne,20

the tool with the highest accuracy measure (Supplementary Figure
S4), was not able to distinguish between these highly similar
complexes predicting only one complex that partially match all
SET variants (Supplementary Figure S9B). This piece of result
highlights one of the special features of SiComPre, that it is
capable of distinguishing complexes with high similarity.

DISCUSSION
Here we presented SiComPre 1.0, a user-friendly and cross-
platform software tool that enables qualitative and quantitative
predictions of protein complexes from data on protein−protein
interactions, protein abundances, and protein domains. Compared
to our earlier released method,1 the updated SiComPre can be
used to investigate context-dependent changes in the complex-
ome. The tool now allows the comparison of simulation results
from input data from two separate datasets (e.g.: before and after
treatment by drug (Fig. 3), between data from various tissue
types). It also allows direct comparison with data on known
protein complexes. Users can define compartments and the
simulation space uses this data to allow complex formation inside
a single compartment or between molecules present in adjacent
compartment (e.g.: cytoplasmic and ER proteins). We have
changed the complex refinement algorithm (Fig. 1), which leads
to much better performance (Fig. 2). We provide scripts to convert
output files of major databases into the form they could be loaded
into SiComPre. The simulations can now be performed also on
CPUs, not only on GPUs as before. Simulation parameters can be
manually tuned (number of runs, conversion factor, use of GO in
prediction); users can also define diffusion rates and maximum
binding partner numbers in the input files. These all are easily
accessible in a user-friendly graphical interface. Such software tool
is currently missing from most other protein complex prediction
methods, making SiComPre not only one of the best performing
tools, but also the most accessible.
We demonstrated the workflow of the pipeline using three test

cases and explained how the results of SiComPre 1.0 analyses
were validated with independent experimental results (Fig. 2,
Supplementary Figure S3, and Supplementary Table S3). By
incorporating data on compartmental localization of proteins,
we improved predictions for the human protein complexome,
almost doubling the number of successfully predicted complexes
compared to earlier work (Fig. 2b). To avoid overfitting, we
restricted our earlier pipeline to only biologically important steps
that were not aimed to improve the score. Our predictions based
on data on protein abundances before and after metformin
treatment17 allowed us to identify variations in protein complexes

related to unfolded protein response, which could not have been
reported by methods solely based on protein abundances.
There are many other potential utilizations of SiComPre 1.0. It is

possible to use the features of SiComPre 1.0 to get information
about protein complex compositions (e.g. network export) that
can be used to drive proteomic experiments and to reveal new
drug targets. To investigate competing binding events, the tool
allows users to investigate what complexes are formed in a limited
set of proteins and it also can predict the quantities of the
competing complexes. SiComPre 1.0 can be also used to test
changes in the complexome for perturbations where protein
abundances change within cells (siRNA, gene deletion, over-
expression, etc.).
The accuracy of qualitative and quantitative predictions is

interdependent. We cannot have a good quantitative prediction
with a wrong qualitative prediction (Fig. 2b). Furthermore, we
cannot predict good protein complex markers without a good
quantitative prediction. This is because in SiComPre 1.0 predic-
tions the specificity, abundance, and degree of the proteins
belonging to a complex are based on the qualitative and
quantitative structure of the predicted complex.
With the advent of new experimental techniques, novel

context-specific data are becoming available. These provide an
exciting opportunity for SiComPre 1.0 users to study how protein
complexes vary in different conditions. For instance, Schmidt et al.
recently quantified the absolute protein abundance in Escherichia
coli cells under 22 different growth conditions49 and data
generated on further tissue-dependent expressions in multiple
organisms.50,51 It was also shown how to quantify proteins at the
single-cell level.52 These data can be translated into single-cell
complexome prediction with SiComPre 1.0 to explore cell-to-cell
variability in terms of protein complexes. In general, SiComPre 1.0
allows users to quickly analyze quantitative proteomics data and
predict differences in the complexome. This could lead to useful
insights to design further functional experiments.
SiComPre 1.0 is still not able to dynamically capture the

expression and degradation of proteins over time as this will
require a more computationally intensive simulation, making the
analysis of human data nearly impossible. However, users with
time-dependent data can use such data as input of SiComPre 1.0
to obtain protein complex predictions for multiple time points and
compare how the complexome changes in time. Currently,
predictions are based on approximated, fixed parameters for all
proteins (binding, unbinding rates and diffusion constants), but as
these become available the software already allows to use
individually measured rates for each protein and interaction.

MATERIALS AND METHODS
Metrics for protein complex evaluation
Predicted protein complexes were compared to a reference dataset.21 We
considered a successful prediction on protein complexes with an overlap
>0.25, where the overlap score for a predicted complex p compared to a
reference complex r is defined as follows:

Overlap p; rð Þ ¼ jp\ rj2
jpj ´ jrj :

A combination of different measurement scores has been utilized to
assess SiComPre performance against other tools.
Recall: the fraction of successfully predicted protein complexes in the

reference dataset.

Recall ¼ bjb 2 B;9p 2 P;Overlap p; bð Þ>ωf g;j j
Bj j ;

ω is the threshold value, P is the set of simulated complexes and B of
reference complexes.
Sensitivity: the fraction of proteins in reference protein complex i which

are found in a predicted complex j, Sni;j ¼ Ti;j=Ni , Ti;j ¼ Vi \ Vj and
Ni ¼ Vij j. While, the real complex-wise sensitivity is the maximal fraction of
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proteins of complex i by its best-matching simulated complex
ncoi ¼ maxmj¼1 Sni;j . Finally, the general sensitivity or complex-wise sensitivity
is the weighted average of real complex-wise sensitivity over all complexes

Sn ¼
Pn

i¼1 NiSncoiPn
i¼1 Ni

:

Positive predictive value: the number of proteins in a predicted complex j
that belong to a real complex i over the total number of proteins of
predicted complex j assigned to all complexes, PPVi;j ¼ Ti;j=

Pn
i¼1 Ti;j . As

above there is also a complex-wise predictive value, PPVclj ¼ maxni¼1 PPVi;j .
While the general PPV is

Sn ¼
Pm

j¼1 T:jPPVcljPm
j¼1 T:j

where T:j ¼
Pn

i¼1 Ti;j .
Accuracy: geometric accuracy is the geometrical mean of Sn and PPV,

Accuracy ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn ´ PPV

p
MMR: is a measure proposed by Nepusz et al.20 which tries to find the

better correspondence between simulated complexes and reference
complexes. This value can be calculated as maximum bipartite matching
in weighted graph, where nodes corresponding to a predicted complex are
connected with an edge to a node representing a real complex where its
weight is the overlap value between the complexes.

Simulations
All the simulations have been performed with SiComPre 1.0 GUI. For all
simulations grid dimension was 64 × 64 SVs and SiComPre was executed
with default parameters. Only for human and mouse simulations, cell
volume was set to 1000, because protein abundances were expressed in
molecules/million. For yeast simulation, maximum concentration of protein
in one SV was set to 150, while in human the value used was 1500. Size of
compartments has been chosen according to the square root of the
volume reported for liver cells.53 Next, small adjustments were adopted to
better fit the size to the number of proteins in the relative compartment.
The input data used for the experiment is located and described in the
“Data” directory of SiComPre 1.0.

Definition of specificity of a protein in a given protein complex
The specificity for a protein i in a complex c is defined as Sci ¼ Aci =Ai , where
Aci denotes the abundance of protein i in a complex c, while Ai is the total
abundance of the protein i in the system.

Statistical analysis
Statistical analyses have been performed in R and Python. Function
enrichment analysis was performed with DAVID.36

DATA AND CODE AVAILABILITY
All data used for simulations were collected from public resources, the software is
freely downloadable from https://bitbucket.org/sicompre/sicompre or https://www.
cosbi.eu/research/prototypes/sicompre.
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