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Abstract

Innovative tools are needed to alleviate the burden of mosquito-borne diseases, and strate-

gies that target the pathogen are being considered. A possible tactic is the use of Wolbachia,

a maternally inherited, endosymbiotic bacterium that can (but does not always) suppress

diverse pathogens when introduced to naive mosquito species. We investigated effects

of somatic Wolbachia (strain wAlbB) infection on Rift Valley fever virus (RVFV) in Culex tar-

salis mosquitoes. When compared to Wolbachia-uninfected mosquitoes, there was no sig-

nificant effect of Wolbachia infection on RVFV infection, dissemination, or transmission

frequencies, nor on viral body or saliva titers. Within Wolbachia-infected mosquitoes, there

was a modest negative correlation between RVFV body titers and Wolbachia density, sug-

gesting that Wolbachia may slightly suppress RVFV in a density-dependent manner in this

mosquito species. These results are contrary to previous work in the same mosquito spe-

cies, showing Wolbachia-induced enhancement of West Nile virus infection rates. Taken

together, these results highlight the importance of exploring the breadth of pathogen modu-

lations induced by Wolbachia.

Author summary

An integrated vector management program utilizes several practices, including pesticide

application and source reduction, to reduce mosquito populations. However, mosquitoes

are developing resistance to some of these methods and new control approaches are

needed. A novel technique involves the bacterium Wolbachia that lives naturally in many

insects. Wolbachia can be transferred to uninfected mosquitoes and can block pathogen

transmission to humans, although in some circumstances pathogen enhancement has

been observed. Additionally, Wolbachia is maternally inherited, allowing it to spread
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quickly through uninfected field populations of mosquitoes. We studied the impacts of

Wolbachia on Rift Valley fever virus (RVFV) in the naturally uninfected mosquito, Culex
tarsalis. Wolbachia had no effect on the frequencies at which Culex tarsalis became

infected with or transmitted RVFV. However, when we analyzed the relationship between

Wolbachia densities and RVFV titers, we determined that high densities of Wolbachia
were associated with no virus infection or low levels of virus, suggesting that Wolbachia
might suppress RVFV at high densities. These results contrast with our previous study

that showed Wolbachia enhances West Nile virus infection in Culex tarsalis. Together,

these studies highlight the importance of studying Wolbachia effects on a variety of patho-

gens so that control methods that use Wolbachia are not impeded by unintended or off-

target effects.

Introduction

Globally, mosquito-borne diseases are a major health burden. To decrease mosquito popula-

tions, control programs often use integrated vector management practices including adulticide

and larvicide application, source reduction, and biological control [1]. However, these mos-

quito control methods are losing efficacy due to increasing insecticide resistance and changes

in mosquito behavior [2–4]. With these concerns, novel and sustainable control methods are

under investigation, including strategies that target the pathogen [5,6]. Wolbachia is a mater-

nally-inherited endosymbiotic bacterium that infects a large number of insects and other

invertebrates [7]. Infection by Wolbachia can cause broad effects on host physiology. For

example, natural Wolbachia infections in fruit flies protect against pathogen-induced mortality

[8,9]. When experimentally transferred to uninfected mosquitoes, Wolbachia can suppress

infection or transmission of viruses, Plasmodium parasites, and filarial nematodes [10–13].

Wolbachia also manipulates host reproduction in ways that allow it to spread through and per-

sist in insect populations [14].

Investigations using Wolbachia-infected mosquitoes as a control method for dengue virus

are underway [15], and field trials in Australia have indicated that Wolbachia can spread to

near-fixation in naturally uninfected populations of Aedes aegypti mosquitoes [16,17]. These

Wolbachia-infected Ae. aegypti populations can persist years after release, and mosquitoes

retain the dengue virus-blocking phenotype [18]. Similar field experiments are being con-

ducted in several other countries, but not all have reported successful replacement of the unin-

fected population with Wolbachia-infected mosquitoes [19].

The effects of Wolbachia-induced pathogen interference may differ depending on mosquito

species, Wolbachia strain, pathogen type, and environment conditions [20–22]. For example,

in Anopheles gambiae, transient somatic infection of the Wolbachia strain wAlbB inhibits Plas-
modium falciparum but enhances Plasmodium berghei parasites [22,23]. Enhancement pheno-

types have been observed in Anopheles, Culex, and Aedes mosquitoes, and across several

malaria species and virus families [20,22,24–27]. Thus, it is important to examine the range of

Wolbachia-induced phenotypes so that efficacy of disease control efforts using Wolbachia-

induced pathogen interference are not impeded.

Previous work has demonstrated that somatic Wolbachia (strain wAlbB) infections in Culex
tarsalis (Yolo strain) enhanced West Nile virus (WNV) infection rates [24]. To better under-

stand the range of Wolbachia-induced phenotypes, we investigated the effects of wAlbB on Rift

Valley fever virus (RVFV) infection in Cx. tarsalis. RVFV is a member of the genus Phlebovirus
in the family Bunyaviridae and predominately affects domestic ruminants, causing severe

Wolbachia and RVFV in Culex tarsalis
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economic losses in the livestock industry and human morbidity in Africa and the Middle East

[28–30]. Additionally, models and laboratory studies have suggested the United States may

have environmental conditions and mosquito vectors that would permit RVFV introduction

and invasion [31–34]. Cx. tarsalis are abundant in the western U.S. and are highly competent

laboratory vectors for RVFV [33–35]. We assessed the ability of Wolbachia to affect RVFV

infection, dissemination, and transmission within Cx. tarsalis at two time points and evaluated

relationships between viral titer and Wolbachia density in mosquitoes.

Materials and methods

Ethics statement

Mosquitoes were maintained on commercially obtained anonymous human blood using a

membrane feeder (Biological Specialty Corporation, Colmar, PA). RVFV experiments were per-

formed under biosafety-level 3 (BSL-3) and arthropod-containment level 3 (ACL3) conditions.

Research at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID)

was conducted under an Institutional Animal Care and Use Committee (IACUC) approved

protocol in compliance with the Animal Welfare Act, PHS Policy, and other federal statutes

and regulations relating to animals and experiments involving animals. The facility where this

research was conducted is accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care, International and adheres to the principles stated in the Guide for the
Care and Use of Laboratory Animals, National Research Council, 2011. The USAMRIID

IACUC specifically approved this study.

Mosquitoes and Wolbachia

The Culex tarsalis colony used for all experiments was derived from field mosquitoes collected

in Yolo County, CA in 2009. Mosquitoes were reared and maintained at 27˚C ± 1˚C, 12:12 hr

light:dark diurnal cycle at 80% relative humidity in 30×30×30 cm cages. The wAlbB Wolbachia
strain was purified from An. gambiae Sua5B cells according to published protocols [36]. Wol-
bachia viability and density was assessed using the LIVE/DEAD BacLight Bacterial Viability

Kit (Invitrogen, Carlsbad, CA) and a hemocytometer. The RVFV vector competence experi-

ment was replicated three times with different hamsters, and wAlbB concentrations for those

replicates as follows: replicate one, 2.5 × 109 bacteria/ml; replicate two, 2.5 × 109 bacteria/ml;

replicate three, 5.0 × 109 bacteria/ml.

Two- to 4-day-old adult female Cx. tarsalis were anesthetized with CO2 and intrathoraci-

cally injected with approximately 0.1 μl of either suspended wAlbB or Schneider’s insect media

(Sigma Aldrich, Saint Louis, MO) as a control. Mosquitoes were provided with 10% sucrose ad
libitum and maintained at 27˚C in a growth chamber.

Vector competence for RVFV

RVFV strain ZH501 was isolated from the blood of a fatal human case in Egypt in 1977 [37].

Adult female Syrian hamsters were inoculated intraperitoneally with 0.2 ml of a suspension

containing RVFV in diluent (10% heat-inactivated fetal bovine serum in Medium 199 with

Earle’s salts [Invitrogen], sodium bicarbonate, and antibiotics) containing approximately 105

plaque-forming units (PFU) per ml of RVFV. Approximately 28–30 hr post-inoculation,

infected hamsters were anesthetized with a suspension of ketamine, acepromazine, and xyla-

zine. A single viremic hamster was placed across two 3.8-liter cardboard cages containing

either Wolbachia-infected Cx. tarsalis or control-injected Cx. tarsalis, treatments to which the

experimenter was blinded. Mosquitoes were allowed to feed for one hour. After this period,

Wolbachia and RVFV in Culex tarsalis
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hamsters were removed, a blood sample taken to determine viremia, and hamsters were

euthanized.

After feeding, mosquitoes were anesthetized with CO2 and examined for feeding status;

partially or non-blood fed females were discarded. For all replicates, one blood fed mosquito

from each treatment was sampled to test for input viral titers. Mosquitoes were sampled at 7

and 14 days post-blood feeding. On day 7, mosquitoes were anesthetized with CO2 and had

their legs removed; each set of legs was placed into one 2-ml microcentrifuge tube containing

1 ml of mosquito diluent (20% heat-inactivated fetal bovine serum [FBS] in Dulbecco’s phos-

phate-buffered saline, 50 μg/ml penicillin streptomycin, and 2.5 μg/ml fungizone). Bodies

were placed separately into 2-ml microcentrifuge tubes (Eppendorf, Hauppauge, NY) contain-

ing 1 ml of mosquito diluent. On day 14, bodies and legs were collected in the same manner as

day 7, except that prior to placing bodies into microcentrifuge tubes, saliva was collected from

mosquitoes by positioning the proboscis of each mosquito into a capillary tube containing

approximately 10 μl of a 1:1 solution of 50% sucrose and FBS. After 30 minutes, the contents

were expelled in individual microcentrifuge tubes containing 0.3 ml of mosquito diluent. A 5

mm stainless steel bead (Qiagen, Valencia, CA) was placed into all microcentrifuge tubes that

contained mosquito bodies and legs, homogenized in a mixer mill (Retsch, Haan, Germany)

for 30 seconds at 24 cycles per second, and centrifuged for 1 minute at 8000 rpm. All mosquito

bodies, legs, and saliva were stored at -80˚C until assayed.

Samples were tested for RVFV infectious particles by plaque assay on Vero cells according

to previous published protocols [38]. Serial dilutions were prepared for all mosquito body, leg,

and saliva samples. One hundred microliters of each dilution was inoculated onto Vero cell

culture monolayers. Inoculated plates were incubated at 37˚C for 1 hr and an agar overlay was

added (1X EBME, 0.75% agarose, 7% FBS, 1% penicillin streptomycin, and 1% nystatin). Plates

were incubated at 37˚C for 3 days and then a second overlay (1X EBME, 0.75% agarose, and

4% neutral red) was added. Plaques were counted 24 hr after application of the second overlay

and titers calculated.

Quantitative real-time PCR of Wolbachia density

To evaluate relationships between Wolbachia density and RVFV titer, we measured wAlbB levels

in individual mosquitoes. DNA was extracted from 200 μl of mosquito body homogenate using

the DNeasy blood and tissue kit (Qiagen) and used as template for qPCR on a Rotor-Gene Q

(Qiagen) with the PerfeCta SYBR FastMix kit (Quanta Biosciences, Beverly, MA) or on ABI 7500

with Power SYBR green master mix (Applied Biosystems, Foster City, CA). The qPCR assays

were performed in 10μl reactions and amplification was carried out using a standardized program

at 95˚C for 5 min, 40 cycles of 95˚C for 10 sec, 60˚C for 15 sec, and 72˚C for 10 sec. Wolbachia
DNA was amplified with primers Alb-GF and Alb-GR [39] and was normalized to the Cx. tarsalis
actin gene by using qGene software [24,40]. qPCRs were performed in duplicate.

Statistical analyses

Infection, dissemination, and transmission rates were compared between Wolbachia-infected

and control Cx. tarsalis, and between replicates with Fisher’s exact tests. Due to violations of

assumptions needed for parametric tests, Mann-Whitney U was used to compare the following

data sets: RVFV body titers between Wolbachia-infected and control mosquitoes, RVFV body

titers between RVFV-positive saliva and RVFV-negative saliva, RVFV body titers over time,

and Wolbachia density over time. Unpaired t-tests were used to analyze data that passed nor-

mality tests, including the comparison of RVFV saliva titers between Wolbachia-infected and

control mosquitoes. To determine relationships between Wolbachia density and RVFV body

Wolbachia and RVFV in Culex tarsalis
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titer, the Spearman rank correlation test was used, as assumptions for Pearson correlation

were violated. All statistical analyses were performed in GraphPad Prism version 7 for Win-

dows (GraphPad Software, San Diego, CA).

Results

Vector competence for RVFV

After all hamster feeds (i.e., replicates), one blood fed mosquito from each treatment was tested

for input RVFV titers on the day of blood feeding. These day 0 RVFV titer results for Wolba-
chia-infected Cx. tarsalis were as follows: replicate 1, 2.50 × 102 PFU/ml; replicate 2, 7.00 × 106

PFU/ml; replicate 3, 1.00 × 102 PFU/ml. Day 0 results for control Cx. tarsalis were as follows:

replicate 1, 5.00 × 102 PFU/ml; replicate 2, 1.05 × 107 PFU/ml; replicate 3, 1.00 ×102 PFU/ml.

Viremias in the three hamsters were 104, 109, and 103 PFU/ml, respectively.

To determine RVFV vector competence of Wolbachia-infected and Wolbachia-uninfected

Cx. tarsalis, we examined frequencies of RVFV-positive bodies (Fig 1A), legs (Fig 1B), and

saliva (Fig 1C). Infection rate is the proportion of mosquito bodies that contained infectious

RVFV. Dissemination and transmission rates are the proportion of infected mosquitoes with

RVFV positive legs and saliva, respectively. Three replicate experiments were performed, and

individual data from those experiments are available in S1 Table. Hamster viremia in replicate

three was low and resulted in low mosquito infection rates. Replicate two infection frequencies

were significantly higher than replicate one for both treatments and at both day 7 and day 14

(P< 0.0001) (S1 Table). However, Fig 1 and S1 Table show that across replicates and time

points, Wolbachia-infected Cx. tarsalis infection, dissemination, and transmission rates did

not differ significantly from Wolbachia-uninfected Cx. tarsalis. Thus, the data were pooled for

further analysis.

RVFV body (Fig 2A) and saliva titers (Fig 2B) were determined for Wolbachia-infected and

control Cx. tarsalis. There were no significant differences in RVFV body titer or saliva titer

between Wolbachia-infected and control Cx. tarsalis at either day 7 (Fig 2A) or day 14 (Fig

2B). Additionally, when replicate data were pooled, both Wolbachia-infected and uninfected

Cx. tarsalis that had higher RVFV body titers were more likely to have RVFV-positive saliva

(S1 Fig).

Quantitative real-time PCR of Wolbachia (wAlbB) density

We performed qPCR from the DNA of each mosquito and determined Wolbachia density

as an expression normalized to a reference gene, actin [40]. We used all samples that were

positive for Wolbachia to analyze relationships between Wolbachia density and RVFV body

titer; we combined data from all replicate experiments (Fig 3). Overall, there was a moderate,

negative correlation between Wolbachia density and RVFV body titer at both day 7 and 14

(Fig 3A and 3B). Replicate two, the replicate with the highest infection rates, did not have

significant correlations between Wolbachia density and RVFV body titer at either day 7 (n =

14, r = 0.0516, p = 0.062) or day 14 (n = 27, r = 0.112, p = 0.577) (raw data available S2 Table).

Wolbachia density was also compared across time; Wolbachia concentration at day 14 was

significantly higher than at day 7, consistent with Wolbachia replication in mosquitoes

(S3 Fig).

Discussion

Wolbachia infection can have varied effects on viruses and parasites transmitted by mosqui-

toes. These effects can include moderate to complete pathogen inhibition, as well as pathogen

Wolbachia and RVFV in Culex tarsalis
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enhancement [17,22,24,41,42]. In a previous study, we found that Wolbachia strain wAlbB

enhanced WNV infection frequency in Cx. tarsalis [24], although in that study, viral infection

titers were not measured. To understand how widespread the Wolbachia-induced enhance-

ment phenotype is in Cx. tarsalis, we studied wAlbB effects on RVFV, an important arthro-

pod-borne virus with potential to invade the United States [43,44]. In contrast to our previous

results, we found that wAlbB did not affect RVFV body or saliva titers, nor RVFV infection,

dissemination, or transmission frequencies in Cx. tarsalis.
Wolbachia-mediated effects on pathogens may depend on Wolbachia density. Several studies

have reported that high densities of Wolbachia are more likely than low densities to block

viruses in Drosophila spp. and mosquitoes [45–48]. Similarly, we found a moderate, negative

correlation between RVFV body titer and Wolbachia density. High Wolbachia levels were asso-

ciated with RVFV negative mosquitoes or those with low RVFV body titers. The low numbers

of mosquitoes at the high Wolbachia densities may explain why we did not see a Wolbachia
effect on population level vector competence measures. However, our correlation data suggests

that in this system, Wolbachia may suppress RVFV in a density-dependent manner.

In this Cx. tarsalis-wAlbB system, we have reported different effects of Wolbachia on vector

competence for WNV and RVFV [24]. Other studies have found similar differences in Wolba-
chia phenotypes and suggested they may depend on various factors including environmental

conditions, and pathogen type [20,49]. RVFV and WNV belong to different virus families and

could interact with the mosquito host environment and Wolbachia in different ways. For

example, a recent study suggested that the mosquito JAK/STAT pathway may not have the

Fig 1. Effects of Wolbachia infection on RVFV vector competence frequencies in Cx. tarsalis. RVFV

infection 7 and 14 days post-feeding (A), dissemination 7 and 14 days post-feeding (B), and transmission

rates 14 days post-feeding (C) were compared between Wolbachia-infected and control Cx. tarsalis. Bars

represent data pooled from three replicates. Error bars denote binomial confidence intervals. See S1 Table for

replicate-specific analyses.

https://doi.org/10.1371/journal.pntd.0006050.g001

Fig 2. Comparison of RVFV body and saliva titers between Wolbachia-infected and control Cx. tarsalis. At both 7 and 14 days post-

blood meal, there were no significant differences in RVFV body titers (A) or saliva titers (B) of Wolbachia-infected Cx. tarsalis compared to

control Cx. tarsalis. All replicates are combined in this figure; separate replicates are provided in supplementary materials (S2 Fig). Bars

represent medians and bolded numbers above the data points denote sample sizes.

https://doi.org/10.1371/journal.pntd.0006050.g002

Wolbachia and RVFV in Culex tarsalis
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same antiviral effects on closely related viruses [50]. Although the mosquitoes in our two stud-

ies have the same genetic background, they were reared in separate facilities and may have dif-

ferent microbiomes that may explain differences in vector competence [51].

While artificial feeding methods such as membrane feeders or pledgets allow one to easily

standardize viral titers, previous studies on mosquito RVFV and other virus infections demon-

strated significantly reduced mosquito infectivity using an artificial feeding system compared

to a live infected animal [52, 53]. We therefore decided to use live hamsters infected with a

highly virulent and epidemiologically relevant viral strain in our experiments. However, this

more biologically relevant choice comes with a trade-off; it is impossible to standardize the

viral titer in a live animal infection model. While all hamsters were infected with approxi-

mately the same amount of virus, they varied in their response to the infection, resulting in sig-

nificant variation in final viral blood titers across experimental replicates that reduced

statistical power.

Our study was performed with an adult microinjection model that generates mosquitoes

transiently infected with Wolbachia. It remains to be seen whether this model reflects relation-

ships between Wolbachia and viruses in Cx. tarsalis in a stable infection system. However, a

recent study showed that both stable and transient wAlbB infections in Ae. aegypti produced

similar results [45]. This suggests that our transient infection model may correlate with a stable

infection in Cx. tarsalis.
Despite relatively modest measurable effects in these experiments, our results underscore

the necessity of studying diverse Wolbachia-host-pathogen systems. It is becoming increas-

ingly clear that one cannot extrapolate results of one system of interactions across all systems;

every Wolbachia-host-pathogen system must be individually examined. Future studies should

seek to understand the mechanisms underlying variation of Wolbachia protective effects across

diverse mosquito species, viral/pathogen species, and Wolbachia strains.

Supporting information

S1 Table. Vector competence of Cx. tarsalis following a RVFV blood meal. RVFV infection,

dissemination, and transmission frequencies were compared between Wolbachia-infected and

Fig 3. Correlation between RVFV body titer and Wolbachia levels in Cx. tarsalis. Wolbachia levels were normalized to the host gene actin.

Normalized Wolbachia levels and RVFV body titer for each mosquito were plotted and analyzed with the Spearman rank correlation test to determine

relationships. There was a moderate, negative correlation between RVFV body titer and Wolbachia levels at both day 7 (n = 46) (A) and day 14

(n = 54) (B) post-blood feeding (Fig 3). Data for all replicates were combined; see S2 Table for replicate-specific raw data.

https://doi.org/10.1371/journal.pntd.0006050.g003
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control mosquitoes. Replicates are displayed individually.

(XLSX)

S2 Table. Raw data for manuscript.

(XLSX)

S1 Fig. Comparison of RVFV body titers in Cx. tarsalis with virus present or absent in the

saliva. RVFV body titers were compared between mosquitoes that tested positive or negative

for RVFV in their saliva. For both Wolbachia-infected and control Cx. tarsalis, mosquitoes

positive for RVFV in the saliva had significantly higher RVFV body titers compared to mos-

quitoes negative for virus in the saliva There was no significant difference in RVFV body titer

of transmitters between Wolbachia-infected and control mosquitoes (p = 0.7692). Data from

three replicates were pooled and analyzed with Mann-Whitney U, and the bars represent

medians.

(TIF)

S2 Fig. Comparison of RVFV body titers between treatments by replicate. RVFV body titers

were compared between Wolbachia-infected and control mosquitoes for replicates 1 (A), 2 (B),

and 3 (C). In all replicates, there were no significant differences in RVFV body titer between Wol-
bachia-infected and control mosquitoes. Data did not pass assumptions for normality and were

analyzed with Mann-Whitney U, and sample sizes are denoted above data points.

(TIF)

S3 Fig. Wolbachia density over time. Wolbachia levels for each mosquito, determined by

qPCR, were combined across all three replicates. Wolbachia levels were significantly higher at

day 14 compared to day 7. Due to violations of normality, Mann-Whitney U was used for

comparisons, bars are medians, and numbers above data points are sample sizes.

(TIF)
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