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Abstract

Gentiana macrophylla, a medicinal plant with significant pharmacological properties, con-

tains the bioactive compound gentiopicroside. Methyl jasmonate (MeJA) is an effective elici-

tor for enhancing the production of such compounds. However, little is known about MeJA-

mediated biosynthesis of gentiopicroside. We investigated this phenomenon as well as

gene expression profiles to determine the molecular mechanisms for MeJA-mediated gen-

tiopicroside biosynthesis and regulation in G. macrophylla. Our HPLC results showed that

Gentiana macrophylla seedlings exposed to MeJA had significantly higher concentrations of

gentiopicroside when compared with control plants. We used RNA sequencing to compare

transcriptional profiles in seedlings treated for 5 d with either 0 μmol L-1 MeJA (C) or

250 μmol L-1 MeJA (M5) and detected differentially expressed genes (DEGs). In total,

77,482 unique sequences were obtained from approximately 34 million reads. Of these,

48,466 (57.46%) sequences were annotated based on BLASTs performed against public

databases. We identified 5,206 DEGs between the C and M5 samples, including genes

related to the α-lenolenic acid degradation pathway, JA signaling pathway, and gentiopicro-

side biosynthesis. Expression of numerous enzyme genes in the glycolysis pathway was

significantly up-regulated. Many genes encoding transcription factors (e.g. ERF, bHLH,

MYB, and WRKY) also responded to MeJA elicitation. Rapid acceleration of the glycolysis

pathway that supplies precursors for IPP biosynthesis and up-regulates the expression of

enzyme genes in that IPP pathway are probably most responsible for MeJA stimulation of

gentiopicroside synthesis. Our qRT-PCR results showed that the expression profiles of 12

gentiopicroside biosynthesis genes were consistent with the RNA-Seq data. These results

increase our understanding about how the gentiopicroside biosynthesis pathway in G.

macrophylla responds to MeJA.
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Introduction

The plant hormone methyl jasmonate (MeJA) is an efficient elicitor of secondary metabolite

production [1]. Those metabolites include flavonoids, phenolic and polyphenolic compounds,

terpenoids, and alkaloids. Such bioactive compounds in plants represent valuable and unique

resources for food additives, cosmetics, and pharmaceutical drugs [2]. Treating plants with

MeJA can trigger the biosynthesis of terpenoids, alkaloids, phenylpropanoids, and phytoalex-

ins through extensive transcriptional reprogramming of their metabolism [1, 3–7].

Gentiana macrophylla Pall (family Gentianaceae) is a perennial medicinal plant prescribed

in China since ancient times to treat arthralgia, stroke, hemiplegia, pain, jaundice, infantile

malnutrition, and osteoarthritis [8]. Its dried roots are officially listed in the Chinese Pharma-
copoeia under the name Radix Gentianae Macrophyllae (Qin-jiao in Chinese) and are fre-

quently used to dispel rheumatism and ease pain [9]. Gentiopicroside, an abundant and

indicative ingredient in Qin-jiao, is the most important active component of total secoiridoid

glycosides and has significant anti-inflammatory, analgesic, and antibacterial properties, as

well as biological activity for treating osteoarthritis and strengthening gastric motility [10,11].

Although levels of gentiopicroside in Qin-jiao are influenced by soil elements and fertilization

[12,13], the effect of MeJA in regulating those concentration has not been investigated.

Gentiopicroside is synthesized via the secoiridoid pathway. This pathway has been well

studied and reviewed in Catharanthus roseus [14,15], and most steps have been identified. In

the first step within higher plants, isopentenyl diphosphate (IPP), a precursor of terpenoids, is

formed through either the plastidial 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway or

the cytosolic mevalonic acid (MVA) pathway. The allylic isomer of IPP, dimethylallyl diphos-

phate, reacts with one IPP in a head-to-tail fashion to form geranyl diphosphate, which is then

catalyzed and converted into geraniol. The secoiridoid pathway starts with geraniol and pro-

ceeds through a series of reaction steps leading to the formation of secologanin [15]. Ulti-

mately, secologanin is converted into gentiopicroside and other secoiridoids through several

currently unknown steps [16].

In contrast to conventional methods, such as single gene cloning and DNA microarrays,

that yield a limited amount of genetic information, RNA-seq is powerful tool for analyzing dif-

ferential gene expression with high resolution at the whole-genome level [17,18]. In particular,

transcriptome analysis can reveal relationships between plant gene expression and phenotype

[19–21]. No previous regulatory mechanisms for gentiopicroside biosynthesis have been

reported for G. macrophylla. However, de novo analysis using next-generation sequencing

technologies can provide a robust platform for elucidating the mechanisms that might influ-

ence the accumulation of gentiopicroside in that species.

Because data are lacking for the means by which gentiopicroside production in G. macro-
phylla is modulated by MeJA, we monitored concentrations of that compound in MeJA-

treated seedlings. Methyl jasmonate stimulates gentiopicroside biosynthesis. Therefore, RNA-

seq can be used to analyze differential gene expression over time in MeJA-treated plants versus

the control. In general, applications of MeJA trigger profound transcriptional reprogramming

in plant cells to manipulate the machinery that controls a wide range of metabolite biosynthe-

sis via interplay of both positive and negative regulators [22]. Improving our understanding of

the events between MeJA application and gentiopicroside accumulation will be useful for

developing strategies to enhance production in G. macrophylla. Therefore, our objective here

was to identify the relevant metabolic pathways for major MeJA-responsive genes and deci-

pher the molecular mechanism by which MeJA stimulates yields.
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Materials and Methods

Plant growth conditions and treatments

Seeds of Gentiana macrophylla were collected from the cultivation base of our lab, which is

located in Taibai county, Shaanxi province, China. They were surface-sterilized with 2%

sodium hypochlorite for 9 min, followed by five rinses with distilled water. After being kept in

the dark for 2 d, they were germinated on culture dishes containing an MS solid medium

(16-h photoperiod, 20˚C). One-month-old seedlings were transferred to either a fresh MS

solid medium (control; 0 μmol L-1 MeJA) or an MS medium supplemented with 250 μmol L-1

MeJA. Whole seedling samples were collected after 1, 3, 5, 7, 9, and 11 d of treatment and

dried to constant weight at 40˚C for the determination of gentiopicroside contents. The exper-

iments were performed in three individual biological replications and every treatment con-

tained more than 30 seedlings.

Measurements of gentiopicroside

Gentiopicroside concentrations were determined via High Performance Liquid Chromatogra-

phy (HPLC). All sample solutions and stock solutions of gentiopicroside were prepared as we

have described before [23]. Chromatographic separations were conducted with a C18 column

(250 × 4.6 mm, 5 μm particle size; Agilent Technologies Inc., USA) on an Agilent 1260 Infinity

LC system, using a solvent system comprising 70% ddH2O (A) and 30% methanol (B). The

flow rate was adjusted to 0.8 mL min-1 and the detection wavelength was 245 nm. All separa-

tions were performed at 25˚C.

RNA isolation

Total RNA was isolated using TRIzol1 Reagent (Invitrogen, USA) according to the manufactur-

er’s protocol. Quality of the RNA was assessed on agarose gels and the concentration was deter-

mined with a NanoDrop ND2000 Spectrophotometer (NanoDrop Technologies Inc., USA).

cDNA library construction and sequencing

Two cDNA libraries—C (control) and M5 (MeJA treatment for 5 d)—were generated using

mRNA-Seq Sample Prep Kits (Illumina, USA) according to the manufacturer’s instructions.

Magnetic beads containing poly-T molecules were used to isolate the poly(A) mRNA from

20 μg of total RNA. Following purification, the samples were fragmented into small pieces

using divalent cations at 94˚C for 5 min, then converted into first- and second-strand cDNA

with a SuperScript double-stranded cDNA synthesis kit (Invitrogen). The synthesized cDNA

was subject to end repair and adenylation of the 3’ ends and purified using a QIAquick PCR

Purification Kit (QIAGEN, Germany). Afterward, Illumina paired-end adapters were ligated

to the resulting cDNA fragments. Each cDNA library was constructed with an insert size of

200 bp. After quality was verified on an Agilent 2100 Bioanalyzer, deep-sequencing was per-

formed with an Illumina HiSeq4000. In all, 150 bp paired-end reads were generated.

De novo assembly and gene annotation

Raw reads were filtered by the Illumina pipeline prior to assembly. We removed any reads that

showed adapter contamination or for which more than 20% of the bases had quality values

�10 or more than 5% were unknown nucleotides. The high quality clean reads were then ran-

domly clipped into overlapping K-mers with default K = 25 for assembly with the Trinity, a

short-reads assembling program [24]. The resulting sequences, termed unigenes, from each

sample’s assembly were further processed for sequence-splicing and removal of all redundancy
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to acquire non-redundant unigenes that were as long as possible. Finally, Blast X alignments

were made (E-values <0.00001) between the unigenes and protein databases NR, SwissProt,

Pfam, KEGG, KOG, and COG. Sequence directions were decided and functional annotations

were assigned for the unigenes based on the best alignment results. Combining NR annotation

with the Blast2GO program (v2.5.0; release 20120801) [25], we obtained GO annotations for

the unigenes. All GO functional classifications was produced by WEGO software [26] and

pathway assignments were performed in conjunction with the KEGG database [27].

Analysis of differentially expressed genes (DEGs)

Normalized expression levels for the unigenes were calculated per the FPKM method [28].

The significance of differential transcript abundance was valued according to the false discov-

ery rate (FDR) [29]. Only those differentially expressed genes (DEGs) with FDRs�0.001 and

absolute fold-changes�2 were reserved. For examining pathway enrichment, all DEGs were

mapped to terms in the KEGG database to identify significantly over-represented metabolic

pathways or signal transduction pathways. We primarily focused on differentially regulated

pathways closely related to the biosynthesis of gentiopicroside.

Validation of gene expression by qRT-PCR

We selected 12 unigenes involved in gentiopicroside production for qRT-PCR experiments.

Gene-specific primer pairs were designed by Primer Premier 5.0 software, and SAND1 served

as the reference gene [30]. Total RNA was isolated from the C and M5 samples using TRIzol1

Reagent (Invitrogen) according to the manufacturer’s protocol. After treatment with DNase I

(Tiangen, China), 1 μg of RNA was used in reverse-transcription with PrimeScript TM 1st

Strand cDNA Synthesis Kits (TaKaRa, Japan). Quantitative reactions were performed on a

LightCycler1 96 real-time PCR detection system (Roche, Switzerland), using SYBR_ Premix

Ex Taq™ (TaKaRa, Japan). Reaction conditions included an initial 95˚C for 10 min, then 40

cycles of 95˚C for 15 s, followed by 60˚C for 25 s. Relative expression levels for each unigene

were compared between the two sample types and were calculated by the 2-ΔΔCt method [31].

All data were expressed as means ± SD after normalization. Primer sequences used for

qRT-PCR are listed in S8 Table.

Availability of supporting data

The data set supporting the results presented in this paper is available from the NCBI Sequence

Read Archive repository (http://www.ncbi.nlm.nih.gov/sra/) under Accession Number

SRP078971.

Results

Effects of MeJA on gentiopicroside biosynthesis in Gentiana

macrophylla seedlings

Induction of gentiopicroside biosynthesis in response to MeJA has not been previously

described. Here, gentiopicroside production was stimulated in one-month-old G. macrophylla
seedlings treated with 250 μmol L-1 MeJA (Fig 1). Our HPLC results showed that levels of gen-

tiopicroside increased to 1.23, 1.76, 2.58, 2.16, and 2.07 mg g-1, concentrations that were 19.3,

59.9, 123.3, 75.9, and 64.4% higher than those measured in corresponding control plants (C;

0 μmol L-1 MeJA) on Days 1, 3, 5, 7, and 9, respectively, of this experiment. This is the first

report to demonstrate that MeJA treatment influences gentiopicroside biosynthesis in this spe-

cies. We utilized G. macrophylla seedlings exposed to MeJA for 5 d for RNA-seq analysis
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because this span of time is associated with the greatest contrast in gentiopicroside concentra-

tions between control (untreated) plants and those to which MeJA has been applied.

Sequencing and de novo assembly

Two cDNA libraries from G. macrophylla seedlings—C (control) and M5 (MeJA treatment for

5 d)—were sequenced by Illumina deep sequencing to obtain approximately 18.16 and 15.74

million high-quality clean reads for C and M5, respectively. Each read averaged 298 bp long.

The Q30 value (percentage of sequences with a sequencing error rate<0.1%) was 94.93% for

C and 94.28% for M5. Read lengths were 150 bp×2. Assembling all trimmed reads produced

14,952,699 contigs from the two libraries, which were then joined into unigenes based on the

paired-end information. This generated 54,841 (C) and 62,179 (M5) unigenes (total of 77,482

unigenes, including overlaps between C and M5). These had an average length of 764 bp and

an N50 of 1,169 bp (i.e., 50% of the assembled bases were incorporated into unigenes at least

1,169 nt long) (Table 1). All unigenes were longer than 200 bp, 46.55% were more than 500 bp

long, and 14.56% (12,559) were longer than 1,000 bp.

Functional annotation and classification

We performed function annotation of the generated unigenes by using BLASTX to search ref-

erence sequences against results from the NCBI non-redundant protein databases (NR),

Fig 1. Effects of MeJA application (250 μmol L-1) on gentiopicroside biosynthesis in Gentiana

macrophylla seedlings. (A). Chromatogram of extraction from seedlings not exposed to MeJA. (B).

Chromatogram of extraction from seedlings after 5 d of MeJA treatment. (C). Chromatogram of

gentiopicroside standard. (D). Changes over time in gentiopicroside concentrations in treated seedlings

relative to levels in untreated control (C) plants.

doi:10.1371/journal.pone.0166493.g001
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SwissProt, Protein family (Pfam), euKaryotic Orthologous Groups (KOG), Kyoto Encyclope-

dia of Genes and Genomes (KEGG), Gene Ontology (GO), and Cluster of Orthologous

Groups (COG). A total of 48,466 significant BLAST hits (57.46% of all unigenes) were

returned. Among them, 47,172 (97.33%) were found in NR, 31,261 (64.50%) in Swiss-Prot,

31,705 (65.42%) in Pfam, 28,899 (59.63%) in KOG, 18,720 (38.63%) in KEGG, 27,499 (56.74%)

in GO, and 15,178 (31.32%) in COG (S1 Table).

The COG classifications showed that 20,770 assembled unigenes were clustered into 25

functional categories (Fig 2). The largest category was “General function prediction only”

(3,744 unigenes; 18.03% of the total), followed by “Replication, recombination and repair”

(1,848; 8.90%), “Transcription” (1,716; 8.26%), “Posttranslational modification, protein turn-

over, chaperones” (1,615; 7.78%), and “Signal transduction mechanisms” (1,498; 7.21%). With

only one unigene, “Extracellular structures” was the smallest group while 460 (2.21%) unigenes

were annotated as “Function unknown”.

We also used GO assignments to classify the predicted functions of 166,401 unigenes into

three main categories: “cellular component” (55,286; 33.22%), “molecular function” (33,694;

20.25%), and “biological process” (77,421; 46.53%) (Fig 3). The largest groups within

Table 1. Overview of sequencing and assembly.

C M5 Total

Total clean reads 18,163,693 15,744,104

Total clean nucleotides (nt) 5,409,889,330 4,697,111,888

Q30 percentage 94.93 94.28

Unigene

Total number 54,841 62,179 77,482

Total length (nt) 40,033,906 40,520,058 59,196,259

Mean length (nt) 692 652 764

N50 912 967 1,169

doi:10.1371/journal.pone.0166493.t001

Fig 2. COG classifications of assembled unigenes.

doi:10.1371/journal.pone.0166493.g002
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molecular function included unigenes with “catalytic activity” (14,705; 8.84%) and binding

activity (14,024; 8.43%). For biological process, the largest unigene groups were “metabolic

process” (19,348; 11.62%), “cellular process” (16,456; 9.89%), “single-organism process”

(13,653; 8.20%), “response to stimulus” (5,476; 3.29%), and “biological regulation” (4,803;

2.89%).

Analysis of KEGG pathways and differentially expressed genes (DEGs)

We conducted a KEGG pathway-based analysis to obtain a better understanding of the biolog-

ical functions of these unigenes. Among the 18,720 annotated transcripts mapped to 128

KEGG pathways, 20 of the most-represented pathways are shown in S2 Table. In all, 2,443 uni-

genes were assigned to 25 secondary-metabolite pathways (Table 2).

The Fragments Per Kb per Million reads (FPKM) method was used to calculate unigene

expression levels and, ultimately, identify DEGs. When M5 and C treatments were compared,

3,805 unigenes were up-regulated and 1401 were down-regulated in response to MeJA applica-

tions. All DEGs are shown in S3 Table while the 20 unigenes most up- or down-regulated

between M5 and C samples are presented in S4 Table.

Our KEGG analysis enabled us to identify 38 significantly enriched metabolic pathways or

signal transduction pathways for those DEGs (Fig 4). To examine the molecular basis for jas-

monate (JA) stimulation of gentiopicroside production in G. macrophylla, we focused on gly-

colysis, the IPP biosynthesis pathway, α-linolenic acid metabolism, plant hormone signal

transduction, and related transcription factors (TFs).

Fig 3. GO classification of assembled unigenes.

doi:10.1371/journal.pone.0166493.g003
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DEGs involved in JA biosynthesis and the JA signaling pathway

As an elicitor of the production of bioactive metabolites, JA triggers a transcriptional repro-

gramming of plant metabolism, resulting in a concerted upregulation of expression for genes

that encode enzymes involved in specific, specialized metabolic pathways [32]. We investigated

changes in the expression of genes closely associated with α-linolenic acid metabolism, which

finally leads to JA biosynthesis, and were interested to find 22 DEGs (Table 3; Fig 5). Of those,

19 DEGs encoding putative lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide

cyclase (AOC), 12-oxophytodienoic acid reductase (OPR), OPC-8:0 CoA ligase 1 (OPCL1),

acyl-CoA oxidase (ACOX), acetyl-CoA acyltransferase 1 (ACAA1), and jasmonate O-methyl-

transferase (JMT) showed increased transcript abundance (Table 3; Fig 5).

DEGs involved in gentiopicroside biosynthesis

Our RNA-seq data indicated that 243 unigenes, including 59 DEGs, are members of the gen-

tiopicroside biosynthesis pathway. Among them, 114 unigenes, including 23 DEGs, are

involved in the IPP pathway while 129 unigenes, including 36 DEGs, function in secoiridoid

biosynthesis (Table 4). Although we did not find here that the latter pathway was significantly

enriched, we did note that the former pathway is (Fig 6). Expression of 21 DEGs related to the

IPP pathway was up-regulated in plants treated with MeJA. Among the 36 DEGs involved in

iridoid biosynthesis, 18 were up-regulated and 18 were down-regulated. These results demon-

strated that applying MeJA could significantly increase gentiopicroside biosynthesis by up-

Table 2. Secondary metabolism pathways in Gentiana macrophylla sequencing.

Pathway Pathway ID Number of unigenes

Glycolysis / Gluconeogenesis ko00010 375

Phenylpropanoid biosynthesis ko00940 349

Amino sugar and nucleotide sugar metabolism ko00520 329

Purine metabolism ko00230 320

Citrate cycle (TCA cycle) ko00020 205

Pentose phosphate pathway ko00030 178

Terpenoid backbone biosynthesis ko00900 161

Steroid biosynthesis ko00100 81

Carotenoid biosynthesis ko00906 68

Flavonoid biosynthesis ko00941 58

Tropane, piperidine, and pyridine alkaloid biosynthesis ko00960 52

Sesquiterpenoid and triterpenoid biosynthesis ko00909 46

Isoquinoline alkaloid biosynthesis ko00950 41

Stilbenoid, diarylheptanoid, and gingerol biosynthesis ko00945 38

Diterpenoid biosynthesis ko00904 35

Zeatin biosynthesis ko00908 24

Limonene and pinene degradation ko00903 23

Brassinosteroid biosynthesis ko00905 20

Monoterpenoid biosynthesis ko00902 19

Caffeine metabolism ko00232 10

Anthocyanin biosynthesis ko00942 4

Flavone and flavonol biosynthesis ko00944 4

Carbapenem biosynthesis ko00332 1

Isoflavonoid biosynthesis ko00943 1

Betalain biosynthesis ko00965 1

doi:10.1371/journal.pone.0166493.t002
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regulating the expression of genes related to the IPP pathway, but not to the secoiridoid bio-

synthesis pathway.

DEGs involved in glycolysis

Glucose is broken down by glycolysis to produce acetyl coenzyme A (acetyl-CoA) as the direct

precursor in the MVP pathway, as well as glyceraldehyde-3-phosphate and pyruvate, which

are precursors in the MEP pathway [33]. We found that the glycolysis pathway was signifi-

cantly enriched in M5 samples when compared with C samples (Fig 7) and 52 of 57 related

DEGs were up-regulated (S5 Table). For example, in that pathway, many putative genes

encoding hexokinase, fructose-bisphosphate aldolase, triosephosphate isomerase, glyceralde-

hyde 3-phosphate dehydrogenase, phosphoglycerate kinase, gpmI, enolase, pyruvate kinase,

phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase E1 component alpha subunit,

pyruvate decarboxylase, dihydrolipoamide acetyltransferase, L-lactate dehydrogenase, dihy-

drolipoamide dehydrogenase, and aldehyde dehydrogenase were significantly up-regulated by

MeJA treatment (Fig 7, S5 Table).

DEGs associated with hormone signaling components

We observed that treatment with MeJA triggered the enrichment of signal transduction path-

ways for GA, ET, SA, and ABA. In addition to MYC2 and JAZs in the JA signaling pathway,

transcripts of signaling components such as the gibberellin receptor GID1, DELLA, and phyto-

chrome-interacting factor 4 for GA; ethylene receptor ETR, ethylene-insensitive protein 3, and

Fig 4. KEGG pathway enrichment analysis of DEGs.

doi:10.1371/journal.pone.0166493.g004
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ethylene-responsive transcription factor 1 (ERF1) for ET; pathogenesis-related protein 1 (PR1)

for SA; and protein phosphatase 2C and serine/threonine-protein kinase for ABA were greatly

accumulated in response to MeJA (S6 Table). We were interested to find that expression of the

PR1 mRNA was increased by 576-fold.

DEGs associated with TFs

We identified 164 DEGs that responded to MeJA elicitation, including 131 that were up-regu-

lated and 33 that were down-regulated (S7 Table). They were largely represented by TF fami-

lies that influence secondary metabolism and stress responses, e.g., the ERF superfamily (32

members), bHLH superfamily (27 members), WRKY superfamily (19 members), and myelo-

blastosis (MYB) superfamily (15 members). Transcript levels of the five most up-regulated

genes increased by 105.3- to 212.1-fold in M5 samples, with three of them putatively encoding

members of the ERF superfamily. In contrast, transcript levels of the five most strongly down-

Table 3. DEGs up-regulated in JA biosynthesis and JA signaling pathway in M5 samples compared with expression in C samples.

Enzyme (ID) KEGG orthology Sequence ID log2FC Fold-change

LOX (EC:1.13.11.12) K00454 c63841.graph_c0 2.32 4.99

c70365.graph_c0 6.17 72.00

c75434.graph_c0 5.55 46.85

c82675.graph_c0 3.03 8.17

c82675.graph_c1 2.67 6.36

c82963.graph_c0 6.83 113.77

AOS (EC:4.2.1.92) K01723 c66622.graph_c0 4.02 16.22

AOC (EC:5.3.99.6) K10525 c62754.graph_c0 1.96 3.89

OPR (EC:1.3.1.42) K05894 c78466.graph_c2 1.96 3.89

OPCL1 (EC:6.2.1.-) K10526 c75067.graph_c0 2.10 4.29

c85214.graph_c0 6.01 64.45

c58704.graph_c0 -4.46 22.01

ACX (EC:1.3.3.6) K00232 c16978.graph_c0 4.02 16.22

c64688.graph_c0 5.70 51.98

ACAA1 (EC:2.3.1.16) K07513 c52442.graph_c0 4.02 16.221

c71568.graph_c0 5.80 55.72

c84427.graph_c0 7.80 222.86

JMT (EC:2.1.1.141) K08241 c49619.graph_c0 1.60 3.03

c55315.graph_c0 4.26 19.16

c82386.graph_c0 2.79 6.92

c69211.graph_c0 -3.03 8.17

c71815.graph_c0 -1.71 3.27

JAZ protein K13464 c37174.graph_c0 4.27 19.29

c38617.graph_c0 4.72 26.35

c48886.graph_c0 5.09 34.06

c63000.graph_c0 2.77 6.82

c65729.graph_c0 4.02 16.22

c66883.graph_c0 1.88 3.68

c71121.graph_c0 4.86 29.04

c86508.graph_c0 4.42 21.41

MYC2 K13422 c77634.graph_c0 2.11 4.32

c78484.graph_c0 1.75 3.36

doi:10.1371/journal.pone.0166493.t003
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regulated genes decreased by 23.2- to 60.9-fold in response to MeJA, with three of them puta-

tively encoding members of the bHLH superfamily.

Validation of gene expression by qRT-PCR

We used qRT-PCR analysis to validate the important DEGs obtained from our assembled tran-

scriptome as well as from the expression profiles revealed by RNA-Seq data. This examination

entailed 12 unigenes involved in the biosynthesis of IPP (DXS, DXR, HDS, HDR, HDS,

HMGR, and MVD) and secoiridoids (GES, G10H, and 8/10HGO) (Fig 8). Our results sug-

gested that the assembled transcripts were reliable and that the designed primer pairs were

suitable for subsequent expression experiments. Based on the 2-ΔΔCt method [31], relative

expression levels of the selected unigenes were calculated and compared between M5 and C

samples. The expression patterns detected by qRT-PCR were consistent with those from the

Fig 5. DEGs involved in alpha-linolenic acid metabolism in M5 samples compared with C samples.

3.1.1.4, secretory phospholipase A2; 1.13.11.12, lipoxygenase; 4.2.1.92, allene oxide synthase; 1.1.1.1,

alcohol dehydrogenase; 5.3.99.6, allene oxide cyclase; 1.3.1.42, 12-oxophytodienoic acid reductase; OPCL1,

OPC-8:0 CoA ligase 1; ACX, acyl-CoA oxidase; 2.3.1.16, acetyl-CoA acyltransferase 1; 2.1.1.141, jasmonate

O-methyltransferase. Green box, putative encoding gene is down-regulated; red boxes, putative encoding

genes are up-regulated; blue boxes, some putative encoding genes are up-regulated while others are down-

regulated.

doi:10.1371/journal.pone.0166493.g005
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RNA-Seq data. Overall, the qRT-PCR analysis confirmed that the unigenes obtained from the

assembled transcriptome were trustworthy and the profiles were credible.

Discussion

Exogenous MeJA is believed to be a primary regulator of pathways for JA biosynthesis and sig-

naling in plants. This compound has been studied extensively in Solanum lycopersicum, Arabi-
dopsis thaliana, and Taxus chinensis [6,34,35]. Jasmonates are plant-specific signaling

molecules that activate several defense mechanisms, inducing a massive reprogramming of

gene expression [36]. The basic helix—loop—helix (bHLH) TF MYC2 is a central regulator in

JA signaling cascades, including those leading to the biosynthesis of several classes of special-

ized metabolites [37]. In the absence of JA, MYC2 action is repressed by jasmonate ZIM-

domain-containing (JAZ) proteins by forming repressor complexes with a group of other

Table 4. Putative genes that encode enzymes involved in gentiopicroside biosynthesis and DEGs for which expression is altered in response to

MeJA treatment.

Gene No.a Upb Downc

MEP pathway

1-deoxy-D-xylulose-5-phosphate synthase (DXS) 22 4 -

1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) 7 - -

2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (MCT) 3 - -

4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (CMK) 2 - -

2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (MCS) 4 - -

4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS) 17 4 -

4-hydroxy-3-methylbut-2-enyldiphosphate reductase (HDR) 5 3 -

MVA pathway

Acetyl-CoA acetyltransferase (AACT) 13 - -

Hydroxymethylglutaryl-CoA synthase (HMGS) 5 2 -

3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) 24 6 2

Mevalonate kinase (MK) 3 - -

Phosphomevalonate kinase (PMK) 7 - -

mevalonate-5-pyrophosphate decarboxylase (MVD) 2 2 -

Iridoid biosynthesis

Isopentenyl-diphosphate delta-isomerase (IDI) 6 - -

Geranyl diphosphate synthase (GPPS) 15 1 2

Geraniol synthase (GES) 4 1 1

Geraniol 8-oxidase/geraniol 10-hydroxylase (G10H) 16 2 1

8/10-hydroxygeraniol oxidoreductase (8/10HGO) 3 1 -

Iridoid synthase (IS) 2 - -

Iridoid oxidase (IO) 1 - -

7-deoxyloganetic acid glucosyltransferase (7-DLGT) 18 - 1

7-deoxyloganic acid hydroxylase (7-DLH) 9 4 3

loganic acid O-methyltransferase (LAMT) - - -

Secologanin synthase (SLS) 32 6 10

Cytochrome P450 reductase (CPR) 23 3 -

Total 243 39 20

a number of unique sequences encoding putative enzymes.
b number of up-regulated DEGs.
c number of down-regulated DEGs (false discovery rate, or FDR <0.001).

doi:10.1371/journal.pone.0166493.t004
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Fig 6. DEGs involved in gentiopicroside biosynthesis pathway in M5 samples compared with C

samples. DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, deoxylulose 5-phosphate

reductoisomerase; MCT, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; CMK, 4-(cytidine -5’-

diphospho)- 2-C-methyl-D- erythritol kinase; MCS, 2-C-methyl-D-erythritol-2,4- cyclodiphosphate synthase;

HDS, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase; HDR, 1-hydroxy-2-methyl -2-(E)-butenyl

4-diphosphate reductase; IDI, isopentenyl diphosphate isomerase; AACT, acetyl-CoA C-acetyltransferase;

HMGS, 3-hydroxy-3-methylglutaryl-coenzyme A synthase; HMGR, 3-hydroxy-3- methylglutaryl-coenzyme A

reductase; MK, mevalonate kinase; PMK, 5-phosphomevelonate kinase; MVD, mevalonate-5-pyrophosphate

decarboxylase; GPPS, geranyl diphosphate synthase; GES, geraniol synthase; G10H, geraniol 8-oxidase/
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proteins such as Novel Interactor of JAZ (NINJA) and TOPLESS [38,39]. This JA elicitation

leads to JAZ degradation by the SCFCOI1—ubiquitin—proteasome pathway, thereby releasing

MYC2 from the repressor complex. In the present transcriptome pool, there are 7 putative uni-

genes encoding MYC2 and 18 putative genes encoding JAZs based on BLASTs performed

against public databases (S1 Table). We found that the expression of all DEGs encoding puta-

tive MYC2 and JAZ were up-regulated in MeJA-treated seedlings (Table 3). The JA signaling

mechanism also oscillates through a negative feedback loop involving MYC2 and JAZ pro-

teins, in which JAZ blocks MYC2 activity at the protein level while MYC2 transcriptionally

induces JAZ expression [34]. Our results clearly confirmed that exogenous application of

MeJA can regulate the pathways for JA biosynthesis and signaling in G. macrophylla.

The derivation of gentiopicroside from secologanin entails 10 enzymatic conversions, start-

ing from IPP (Fig 6). Catharanthus roseus has been used to investigate several genes that

encode key enzymes in those pathways [15,40]. Briefly, IPP is produced via the plastidial MEP

or cytosolic MVA pathway (Fig 6). However, the biosynthetic route from secologanin to gen-

tiopicroside has been entirely unknown to date. We previously identified 114 putative uni-

genes involved in secoiridoid biosynthesis in our transcriptome library [41]. In the present

database, 40 putative unigenes encoding iridoid synthase (IS), iridoid oxidase (IO), 7-deoxylo-

ganetic acid glucosyltransferase (7-DLGT), and 7-deoxyloganic acid hydroxylase (7-DLH)

were identified for the first time in G. macrophylla.

The glycolysis pathway (Fig 7) not only plays a crucial role in energy generation but also

provides carbon building blocks for the biosynthesis of gentiopicroside and other organic con-

stituents of secoiridoid [42,43]. In particular, glucose is broken down by glycolysis to produce

acetyl coenzyme A (acetyl-CoA) as the direct precursor in the MVP pathway, as well as glycer-

aldehyde-3-phosphate and pyruvate, which are precursors in the MEP pathway [33]. In the

present study we found that the glycolysis pathway was significantly enriched in M5 samples

when compared with C samples (Fig 7) and up-regulation of numerous enzyme genes led to

an elevated rate of flux and replenished the precursors consumed in IPP biosynthesis. Research

on the rubber tree (Hevea brasiliensis) has suggested that such rapid acceleration of the glycoly-

sis pathway in supplying precursors for the production of IPP and natural rubber, rather than

rubber biosynthesis per se, is responsible for ethylene (ET) stimulation of latex yields [44].

Here, we noted that the high expression of enzyme genes in both the glycolysis pathway and

the IPP biosynthesis pathway contributed to greatly increased gentiopicroside concentrations

in response to MeJA.

Hormone responses are generally the result of interactions and crosstalk among multiple

pathways [45]. For example, JA signaling may function by interacting with other major plant

hormones, such as ET, gibberellin (GA), alicylic acid (SA), abscisic acid (ABA), brassinosteroid,

auxin, and cytokinin. Signaling crosstalk between SA and JA results in complementary action

in mediating endophyte-induced accumulations of secondary metabolites [46,47]. Moreover,

under stress conditions, ABA interacts with the SA/JA pathways [48]. Although some plant

hormones, e.g., ABA, ET, and SA, induce the production of bioactive compounds [44,49], it is

unclear how JA interacts and coordinates with other hormones with regard to this stimulation.

Our results showed that treatment with MeJA triggered the enrichment of signal transduction

geraniol 10-hydroxylase; CPR, cytochrome P450 reductase; 8/10HGO, 8-hydroxygeraniol oxidoreductase;

IS, iridoid synthase; IO, iridoid oxidase; 7-DLGT, 7-deoxyloganetic acid glucosyl transferase; 7-DLH,

7-deoxyloganic acid hydroxylase; LAMT, loganic acid O-methyltransferase; SLS, secologanin synthase. Red

squares, putative encoding genes are up-regulated; blue squares, putative encoding genes are down-

regulated.

doi:10.1371/journal.pone.0166493.g006
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Fig 7. DEGs involved in glycolysis in M5 samples compared with C samples. 5.4.2.2,

phosphoglucomutase; 2.7.1.1, hexokinase; 5.1.3.15, glucose-6-phosphate 1-epimerase; 4.1.2.13, fructose-

bisphosphate aldolase; 5.3.1.1, triosephosphate isomerase; 1.2.1.12, glyceraldehyde 3-phosphate

dehydrogenase; 2.7.2.3, phosphoglycerate kinase; 5.4.2.12, 2,3-bisphosphoglycerate- independent

phosphoglycerate mutase; 4.2.1.11, enolase; 2.7.1.40, pyruvate kinase; 4.1.1.49, phosphoenolpyruvate

carboxykinase; 1.2.4.1, pyruvate dehydrogenase E1 component alpha subunit; 4.1.1.1, pyruvate

decarboxylase; 2.3.1.12, dihydrolipoamide acetyltransferase; 1.1.1.27, L-lactate dehydrogenase; 1.8.1.4,

dihydrolipoamide dehydrogenase; 1.2.1.3, aldehyde dehydrogenase; 1.1.1.1, alcohol dehydrogenase. Green

box, putative encoding gene is down-regulated; red boxes, putative encoding genes are up-regulated; blue

boxes, some putative encoding genes are up-regulated while others are down-regulated.

doi:10.1371/journal.pone.0166493.g007

Gentiopicroside Biosynthesis and Methyl Jasmonate-Treated Gentiana macrophylla Seedlings

PLOS ONE | DOI:10.1371/journal.pone.0166493 November 16, 2016 15 / 20

http://www.kegg.jp/dbget-bin/www_bget?ec:5.4.2.2
http://www.kegg.jp/dbget-bin/www_bget?ec:2.7.1.1
http://www.kegg.jp/dbget-bin/www_bget?ec:5.1.3.15
http://www.kegg.jp/dbget-bin/www_bget?ec:4.1.2.13
http://www.kegg.jp/dbget-bin/www_bget?ec:5.3.1.1
http://www.kegg.jp/dbget-bin/www_bget?ec:1.2.1.12
http://www.kegg.jp/dbget-bin/www_bget?ec:2.7.2.3
http://www.kegg.jp/dbget-bin/www_bget?ec:5.4.2.12
http://www.kegg.jp/dbget-bin/www_bget?ec:4.2.1.11
http://www.kegg.jp/dbget-bin/www_bget?ec:2.7.1.40
http://www.kegg.jp/dbget-bin/www_bget?ec:4.1.1.49
http://www.kegg.jp/dbget-bin/www_bget?ec:1.2.4.1
http://www.kegg.jp/dbget-bin/www_bget?ec:4.1.1.1
http://www.kegg.jp/dbget-bin/www_bget?ec:2.3.1.12
http://www.kegg.jp/dbget-bin/www_bget?ec:1.1.1.27
http://www.kegg.jp/dbget-bin/www_bget?ec:1.8.1.4
http://www.kegg.jp/dbget-bin/www_bget?ec:1.2.1.3
http://www.kegg.jp/dbget-bin/www_bget?ec:1.1.1.1


pathways for GA, ET, SA, and ABA. One explanation for this crosstalk is that IPP is also the

precursor of GA and ABA biosynthesis and that MeJA also elicits a rise in IPP production.

Transcription factors play important roles in controlling many biological processes in a cell

or organism by modulating gene expression [50]. Many TFs help regulate the biosynthesis and

accumulation of secondary metabolites [51], and also have crucial roles in crosstalk between

hormone signalling pathways [52]. For example, CrWRKY1, a member of the WRKY family

from Catharanthus roseus, can positively regulate TIA biosynthesis [53]. The phenylpropanoid

pathway in different plant organs and tissues of higher plants is under the control of specific

R2R3-MYB TFs and bHLH families [54]. We identified many putative transcription factors

differentially expressed between C samples and M5 samples (S7 Table), including the ERF

superfamily, bHLH superfamily, WRKY superfamily, and myeloblastosis (MYB) superfamily.

Fig 8. qRT-PCR validation of 12 unigenes involved in gentiopicroside biosynthesis in G. macrophylla

seedlings. DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXR, deoxylulose 5-phosphate

reductoisomerase; GES, geraniol synthase; G10H, geraniol 8-oxidase/geraniol 10-hydroxylase; 8/10HGO, 8/

10-hydroxygeraniol oxidoreductase; HMGR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; HMGS,

3-hydroxy-3-methylglutaryl-coenzyme A synthase; MVD, mevalonate-5- pyrophosphate decarboxylase;

CPR, cytochrome P450 reductase; HDS, 1-hydroxy-2-methyl-2- (E)-butenyl 4-diphosphate synthase; HDR,

1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase.

doi:10.1371/journal.pone.0166493.g008
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Although it is still unknown how these genes function in parallel with MeJA applications to

enhance the production of gentiopicroside, our data provide a valuable resource for discover-

ing candidate genes related to the complex regulatory networks involved in that response.

Conclusion

Although MeJA is a ubiquitous and conserved elicitor of plant secondary metabolism, the

degree to which metabolic pathways are stimulated is species-specific. We verified here that

MeJA applications effectively enhance the production of gentiopicroside in Gentiana macro-
phylla. Our RNA-Seq analysis of MeJA-related transcriptional changes indicated that 5206

genes are differentially expressed. Transcriptome analysis revealed increased expression of

genes in the α-lenolenic acid degradation pathway that produces abundant JA and quickly

activates the holistic JA pathway in those seedlings. Rapid acceleration of the glycolysis path-

way that supplies precursors for IPP biosynthesis and up-regulates the expression of enzyme

genes in that IPP pathway are probably most responsible for MeJA stimulation of gentiopicro-

side synthesis. Furthermore, many genes encoding various TFs, e.g., ERF, bHLH, MYB, and

WRKY, also respond in plants exposed to MeJA.

The results from this research improve our understanding of how MeJA applications alter

the production of gentiopicroside in G. macrophylla seedlings. Our data will provide a massive

genetic resource for further investigation of gentiopicroside biosynthesis and will lay the founda-

tion for genetic engineering to boost yields of this compound in such a valuable medical plant.
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