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Perforin-2 (P-2) is an antimicrobial protein with unique properties to kill intracellular
bacteria. Gamma delta (GD) T cells, as the major T cell population in epithelial tissues,
play a central role in protective and pathogenic immune responses in the skin. However,
the tissue-specific mechanisms that control the innate immune response and the
effector functions of GD T cells, especially the cross-talk with commensal organisms,
are not very well understood. We hypothesized that the most prevalent skin commensal
microorganism, Staphylococcus epidermidis, may play a role in regulating GD T cell-
mediated cutaneous responses. We analyzed antimicrobial protein P-2 expression in
human skin at a single cell resolution using an amplified fluorescence in situ hybridization
approach to detect P-2 mRNA in combination with immunophenotyping. We show that
S. epidermidis activates GD T cells and upregulates P-2 in human skin ex vivo in a
cell-specific manner. Furthermore, P-2 upregulation following S. epidermidis stimulation
correlates with increased ability of skin cells to kill intracellular Staphylococcus aureus.
Our findings are the first to reveal that skin commensal bacteria induce P-2 expression,
which may be utilized beneficially to modulate host innate immune responses and
protect from skin infections.

Keywords: perforin-2/mpeg-1, human skin, innate immunity, Staphylococcus epidermidis, gamma delta T cells,
cytotoxicity

INTRODUCTION

Skin, in the same fashion as all other epithelial barrier sites (gastrointestinal, reproductive, and
respiratory tracts) harbors a distinct community of commensal microbes that modulate the host
immune system (1–3). One of the most common members of the healthy cutaneous microbiome
is Staphylococcus epidermidis. S. epidermidis stimulates antimicrobial peptide production by skin
cells (4–11), which may provide protection against pathogenic bacteria (4, 5, 10–12). Recent studies
reported that colonization of mouse skin with S. epidermidis induced commensal-specific tissue
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(skin)-resident memory T cells that demonstrated
immunoregulatory and tissue repair properties. This was
proposed as a novel S. epidermidis mediated mechanism for
rapid immune response and tissue protection from invasive
pathogens (13–15).

Multiple lines of evidence have shown that gamma delta (GD)
T cells display strong activities against bacteria (16–20), parasites
(21), and viruses (22, 23). In marked contrast to αβ T lymphocytes
(24–29), GD T cells recognize antigens independently of peptide
processing and major histocompatibility complex (MHC)-
restricted antigen presentation. They are activated by signs of
tissue stress, including infected or transformed cells, and respond
by deploying an immediate and efficient killing response or by
regulating the immune response against them. Phosphoantigens
and several other molecules of microbial origin have been
proposed as GD T cell antigens accounting for the specific
recognition of infected cells. These candidates include the
Staphylococcus aureus superantigens Staphylococcal enterotoxin
A (SEA) (and to a lesser extent staphylococcal enterotoxin
E (SEE) (30, 31), which are recognized by the GD T cell
receptor (TCR) independently from antigen processing and
MHC presentation. Although GD T cells are one of the
predominant lymphocyte subsets in mouse and human skin (32)
that are essential for skin homeostatic and protective pathways
against S. aureus (33), the contribution of commensal-derived
antigens to the activation of GD T cells and their effector
function, particularly their cytotoxic potential, has not been
established. Furthermore, the extent to which GD T cells promote
cutaneous tissue physiology remains to be determined.

Perforin-2 (P-2)/MPEG1 is a highly conserved member
of the membrane attack complex (MAC)/perforin-like
(PF)/cholesterol-dependent cytolysin (MACPF/CDC)
superfamily (34–36). In contrast to all other MACPF/CDC
members, P-2 is a type-1 transmembrane protein that traffics
throughout the endosomal pathway to the late-endosome
and phagosome (37–39). Therefore, P-2 can form pores in
bacterial membranes and damage engulfed microbes within
the phagolysosome (37, 40). In the absence of P-2, the other
innate defense effectors including reactive oxygen species and
nitric oxide, were unable to prevent the replication and systemic
dissemination of intracellular pathogens (37, 41, 42). Dr. Eckhard
Podack’s group was the first to report about major P-2 functions
as an antibacterial effector protein of the innate immune system
in phagocytic and in tissue forming cells (37, 41). Although we
recently reported specific distribution of P-2 in normal human
skin (43), the mechanisms involved in the regulation of P-2
expression have not been well established. Moreover, the effect
of P-2 function within the complex system of host-microbe
interactions has important implication for our understanding of
skin immunity and diseases.

Here we established a human skin ex vivo model to
study the effect of S. epidermidis on the skin innate immune
response and on the novel antimicrobial protein P-2. We
report that S. epidermidis activates skin GD T cells, specifically
through P-2 induction, which has demonstrated antibacterial
effects in other cell subsets (macrophages and fibroblasts) (37,
42). Importantly, S. epidermidis mediated induction of P-2

correlated with an enhanced ability of the skin cells to eliminate
intracellular S. aureus.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
Staphylococcus epidermidis CCN021 and CCN0024, human
commensal S. epidermidis strains, were obtained from GP
(University of Miami). S. epidermidis ATCC 12228 was a gift
from Prof. Davis (University of Miami). S. epidermidis CCN021
and CCN0024 were isolated from a healthy volunteer and
characterized by phenotypic and qPCR identification techniques
(44, 45). Staphylococci were routinely grown aerobically with
agitation, at 37◦C, in Luria-Bertani (LB) broth. For pre-
treatment, bacteria were diluted in fresh LB and grown to mid-log
growth phase. Before application on ex vivo human skin or
single cell suspension, bacteria were harvested by centrifugation
and washed with phosphate buffered saline (PBS). The bacterial
density and the absence of contamination were controlled by
numeration of colony forming units (CFU).

The GFP containing USA300 Methicillin resistant
Staphylococcus aureus (MRSA) strain AH1726 [MRSA LAC
(AH1263) + pCM29 (CmR)] (46) was obtained from GP
(University of Miami). MRSA was grown aerobically with
agitation overnight at 37◦C in LB supplemented with 10 µg/mL
chloramphenicol to retain the GFP plasmid.

Ex vivo Human Skin Explant System
Discarded human skin tissue was obtained from voluntary
reduction surgeries (n = 6) at the University of Miami (UM)
Hospital and as such were found to be exempt from human
subject research under CFR46.101.2 by the Institutional Review
Board at the UM Miller School of Medicine.

Skin samples were processed to remove subcutaneous fat
and washed with PBS. Multiple 8 mm punch biopsies were
obtained from each specimen and placed individually into
0.4 µm PET-membrane trans-wells (Millipore) in a 12 well plate
containing 1 ml media per well (RPMI, 10% FBS, 1% HEPES).
Skin specimens were maintained at the air-liquid interface as
previously described (43, 47–50).

Human Skin Single Cell Suspension
Cells were isolated from healthy human skin using the
MACS Whole Skin Dissociation Kit (Miltenyi 130-101-540).
Briefly, subcutaneous fat was removed, and sterilization of
human skin was optimized to remove any commensal or
pathogenic microorganisms. Skin was washed with Gibco R©

Antibiotic-Antimycotic (ABAM) (Life Technologies) to prevent
bacterial and fungal contamination. This solution contains
10,000 units/mL of penicillin, 10,000 µg/mL of streptomycin,
and 25 µg/mL of Gibco Amphotericin B. After washings with
ABAM, skin was washed in PBS (46). Three 4 mm diameter
punches were digested overnight at 37◦C using enzymes from
a whole-skin dissociation kit (Miltenyi, Bergisch Gladbach,
Germany). The resulting cell suspension was filtered through a
70 µm cell strainer and centrifuged at 1,500 r.p.m. for 10 min
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at 4
◦

C. The supernatant was removed, and the pellet was
washed once with PBS. Obtained cell suspensions were washed
with IMDM (Gibco-Thermo Fisher Scientific) supplemented
with 10% heat-inactivated FBS, 2 mM L-glutamine, 0.15%
sodium hydrogencarbonate, 1 mM sodium pyruvate, and non-
essential amino acids.

Ex vivo and in vitro Skin Stimulation With
S. epidermidis
Staphylococcus epidermidis CCN021 was prepared for stimulation
experiments as described above and 20 µL of the bacteria solution
(approx. 6 Log CFU) was added centrally onto the epidermis
while control samples were treated with PBS. After 24, 48, 72,
and 96 h of incubation at 37◦C in a 5% CO2 atmosphere, tissue
samples were either digested with collagenase for further cell
viability and FISH/Flow analysis (Supplementary Figure S2),
preserved in RNA-later for RNA isolation, or used for CFU
enumeration. CFU count was determined after overnight colony
growth and expressed as CFU/ml.

Skin cell suspension obtained after whole-skin dissociation
was used for in vitro stimulation with S. epidermidis CCN021,
CCN0024, and ATCC 12228. Cells were plated on 24 well plates
with 1 million cells per well and treated with S. epidermidis at a
multiplicity of infection (MOI) of 20 for 24 h. The control cells
were exposed to media only.

Intracellular MRSA Killing Assay
After 24 h stimulation with S. epidermidis, skin cells were
washed twice with warmed plain IMDM and infected with
MRSA at an MOI of 20 for 1 h. Cells were washed twice with
IMDM after infection and fresh media containing gentamicin
(50 µg/mL) was added for 30 min to eliminate extracellular
bacteria. Samples were collected 30 and 90 min after intracellular
infection for enumeration of intracellular colony forming units
(CFU) and for FISH flow analysis as described before (43).
To release intracellular bacterial load, cells were subjected to
hypotonic lysis with 0.1% Triton X in PBS. Lysates were plated
on agar plates containing 10 µg/mL chloramphenicol for CFU
quantification (43).

FISH-Flow P-2 RNA Assay and Flow
Cytometric Analysis
Single cell suspensions obtained from full thickness samples or
after stimulation with S. epidermidis and MRSA were first labeled
with live/dead detection kit (Yellow Amine, Thermo Fisher
Scientific) and then with the following fluorescently labeled
antibodies: CD45-Alexa Fluor 700, TCR GD-PE-Cy7, CD31-
PacBlue, CD104-FITC, CD325-PerCPCy5.5, and CCRL1-PE
(Biolegend, San Diego, CA, United States). We also stained cells
with fluorescently labeled antibodies for TLR1-BV570, TLR2-
PE, TLR6-BV605, and TCR GD 1 FITC (Biolegend, San Diego,
CA, United States). P-2 mRNA was detected using an amplified
signal FISH technique (PrimeFlow; Affymetrix/eBioscience-
Thermo Fisher Scientific). For mRNA detection, target probe
hybridization was performed using type 1 (AlexaFluor647)
probes for P-2 as described (43). Approximately 20,000 cell events

were acquired from each sample on flow cytometer equipped with
405 nm, 488 nm, 642 nm, and 785 nm (SSC) lasers (Fortessa X-
50, BD Immunocytometry Systems, San Jose, CA, United States).
Spectral compensation was completed using single color control
samples and antibody capture beads (BD Biosciences). Data were
analyzed using FlowJo version 10.2 (TreeStar).

GD T Cell Sorting and Real-Time PCR
Two-way sorting was performed to obtain purified GD T
cells by sterile sorting on a SONY SH800S cell sorter (SONY
Biotechnology, San Jose, CA, United States). Briefly, single
cell suspensions were labeled with Live/Dead Violet, CD45,
CD3, and TCR GD. GD T cells were sorted as Live/Dead-
CD45+ CD3+ TCR GD+ cell population. 5,000–10,000 sorted
cells were collected from three donors. Purity of sorted GD T
population was >97%.

After sorting, cells were stimulated with S. epidermidis at an
MOI of 20 for 1 h, washed with PBS, spun down, and kept
on ice briefly prior to performing one-step reverse transcription
and cDNA amplification of specific targets using a pool of
TaqmanTM gene expression assays (Thermo Fisher Scientific).
Resulting cDNA was loaded onto BioMark IFC 96 × 96 chip
(Fluidigm) according to the manufacturer’s protocol. Raw data
underwent “cellular detection rate” (CDR) filtering to remove
outlier samples and genes based on dataset distribution (51,
52). CD74 (also known as HLADG) was used as a surrogate
for the presence of a cell (i.e., loading control) due to its
stable expression in lymphocytes. Cells that had low or absent
CD74 expression exhibited reduced gene expression globally
and were removed from analysis. Differential gene expression
analysis was subsequently performed to contrast transcriptional
profiles of GD T cells between unstimulated and S. epidermidis
stimulated samples.

RT-PCR for Antimicrobial Peptides and
Pro-inflammatory Cytokines
Total RNA from human skin was extracted using the miRNeasy
kit (QIAGEN, Valencia, CA, United States) per manufacturer’s
instructions as previously described (49). cDNA was made with
qScriptTM Synthesis kit (Quanta BioSciences Inc.,Gaithersburg,
MD, United States). ARPC2 was used as a reference gene for
normalization, forward 5′-TCCGGGACTACCTGCACTAC-3′,
reverse 5′-GGTTCAGCACCTTGAGGAAG-3′. All real-time
PCR (qPCR) reactions were performed in triplicate using
PerfeCTa R© SYBR R© Green SuperMix (Quanta BioSciences) and
quantified using the ddCT method. The primer sequences
were IL-1α forward 5′-AGATGCCTGAGATACCCAAAACC-3′
reverse 5′-CCAAGCACACCCAGTAGTCT-3′, defensin β4
(DefB4) forward 5′-GGTGGTATAGGCGATCCTGTT-3′ reverse
5′-AGGGCAAAAGACTGGATGACA-3′, and cathelicidin
(LL37) forward 5′-GGGCAAAAGACTGGATGACA-3′ reverse
5′-TCTTGAAGTCACAATCCTCTGGT-3′.

Statistical Analysis
All experiments were conducted independently at least three
times on different days. Comparisons of flow cytometry cell
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frequencies was measured by the two-way ANOVA test with
Holm-Sidak multiple-comparison test, ∗p < 0.05, ∗∗p < 0.01,
and ∗∗∗p < 0.001 or Student t-test using the Prism software
(GraphPad software). Comparisons of PCR array data were
performed using t-test (two tail distribution and equal variances
between the two groups) based on the triplicate 2ˆ(−1CT) values
for each gene in the S. epidermidis treated group and control
group. Error bars in all figures are reported as a SEM.

RESULTS

S. epidermidis Contributes to Increased
Number of Human GD T Cells
Staphylococcus epidermidis is an important skin commensal
organism and modulator of cutaneous innate immune responses
(9, 10). Here we established an ex vivo skin model of
S. epidermidis colonization to study the effect of this commensal
microorganism on skin innate immune responses including GD
T cell activity. S. epidermidis was topically applied onto the
epidermis. Tissue was collected at different time points during
colonization and then dissociated into single cell suspensions
(Figure 1). There were no statistical differences in viability
of S. epidermidis treated and control tissue (Supplementary
Figure S1). We analyzed the GD T cell subset in the control
and S. epidermidis colonized human skin by flow cytometry
and observed a statistically significant (p < 0.01) increase in
the frequency as well as in the total number of GD T cells
within live, CD45+ CD3+ skin cells after 72 h of S. epidermidis
stimulation compared to control tissue (Figures 1A,B). We
confirmed S. epidermidis colonization in human skin by CFU
quantification (Figure 1C).

S. epidermidis Induces P-2 in Human GD
T Cells, Keratinocytes, and Papillary
Fibroblasts ex vivo
We have previously described an amplified fluorescence in situ
hybridization (FISH) technique for detection of mRNA in
combination with immune-phenotyping in human skin (43). We
and others found that P-2 is an antimicrobial protein crucial for
intracellular bacteria killing (37, 38, 40, 41). Here, we analyzed
P-2 expression in different skin cell subsets after stimulation
with S. epidermidis. First, we found that P-2 expression was
significantly upregulated (p < 0.05 and p < 0.01) in GD T cells
from human skin explants colonized with S. epidermidis at 24, 48,
and 72 h compared to the uncolonized control (Figures 2A,B).
Moreover, our analysis revealed that S. epidermidis stimulation
for 96 h upregulated P-2 in the basal layer keratinocytes after an
initial suppression observed at 24 h (CD45-CD31-CD104+ cells)
(Figure 3). Two major human skin fibroblast subsets, papillary
and reticular fibroblasts, based on their expression of CCRL1
and CD325, respectively (53, 54) were also tested. We found
that only papillary fibroblasts, CCRL1+ cells, upregulate P-2
96 h post S. epidermidis colonization. P-2 expression in reticular
fibroblasts was not affected at any time point and was lower
overall compared to other cell subtypes (Figure 3).

Antimicrobial Peptides Are Upregulated
in Human Skin by S. epidermidis
Staphylococcus epidermidis isolates from healthy adults have been
reported to show widespread production of bacteriocins (55)
and in addition they can stimulate keratinocytes to produce
antimicrobial peptides (4). We investigated if S. epidermidis
triggers expression of antimicrobial peptides in our ex vivo
skin model. We found that 24 h of S. epidermidis colonization
significantly induced expression of defensin β4 (Defβ4) and
cathelicidin (LL37) (p < 0.01) (Figure 4). Upregulation of LL37
was maintained 48 h post S. epidermidis colonization (p < 0.01)
in contrast to defensin Defβ4 that was downregulated (p < 0.05).
In addition, S. epidermidis colonization of human skin resulted
in downregulation of pro-inflammatory IL-1α after 24 and 96 h
(p < 0.05) (Figure 4).

Early Regulation of GD T Cell Gene
Expression by S. epidermidis
Human GD T cells in the skin exhibit both pro-inflammatory
and regulatory functions (32). Deciphering the underlying
mechanisms that contribute to induction of effector vs. regulatory
GD T cell functions, including expression of cytotoxic molecules,
is key to understanding skin homeostasis. To understand the
effect of S. epidermidis on skin GD T cells during initial phases of
colonization, we sorted GD T cells from normal skin (Figure 5A)
and stimulated them with S. epidermidis for 1 h. We evaluated
the expression of well-known genes previously described to play
a role in GD T cell cytotoxic functions. We found a 6-7-fold
induction in Fas ligand (FASLG) and Granulysin (GNLY) in
S. epidermidis treated cells compared to control, untreated GD T
cells (Figure 5B). Additionally, we observed increased expression
of the transcription factor PLZF, which is responsible for selection
of GD innate natural killer T cells (56), as well as CCL4,
a monokine with inflammatory and chemokinetic properties
(Figure 5B). Previous studies have observed increased CCL4
expression by GD T cells following engagement of the natural
cytotoxicity receptor NKp30 on the GD T cell surface (57).

Intracellular MRSA Killing Is Enhanced
After Exposure to S. epidermidis
We have previously reported that MRSA, the most common
cutaneous pathogen, suppresses P-2 induction in skin cells
(43), revealing a novel mechanism by which S. aureus may
escape cutaneous immunity to cause persistent infections. Here,
we report that in contrast to MRSA (43), S. epidermidis up-
regulates P-2 expression in an ex vivo skin model (see Figure 1)
and in the single cell suspension culture model (Figure 6).
In order to further analyze S. epidermidis-mediated induction
of P-2 in ex vivo human skin, we isolated skin cells and
established a single cell type culture system. We found an increase
in the frequency of GD T cells after 24 h stimulation with
S. epidermidis (Figure 6A), which agrees with findings from the
ex vivo human skin model (Figure 1). Furthermore, expression
of P-2 was also increased in the GD T cells after 24 h of
S. epidermidis stimulation (Figure 6B). Most importantly, we
show that cells stimulated with S. epidermidis demonstrate an
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FIGURE 1 | Staphylococcus epidermidis increases the number of GD T cells in human skin ex vivo. Control, uncolonized, and S. epidermidis colonized skin was
maintained on air liquid interface and collected at indicated time points (0, 24, 48, 72, and 96 h). Single cell suspensions were obtained and labeled with live/dead
stain, CD45, CD3, and GD TCR. (A) Cells were analyzed using flow cytometry and gated on the CD45+ CD3+ GDT+ population. Bar graphs show SEM frequency
(%) and SEM number (#) of skin GD T cells (n = 5). (B) Representative contour plots showing frequency of GD TCR in control and S. epidermidis colonized skin.
(C) Number of S. epidermidis colony forming units (CFU) recovered from ex vivo skin explants colonized with S. epidermidis CCN021 on day 0 through day 4. Data
represent at least two technical replicates and five independent biological replicates per group. **p < 0.01 (two-way ANOVA with Holm-Sidak multiple-comparison
test).
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FIGURE 2 | Colonization of human skin with Staphylococcus epidermis induces P-2 in GD T cells. (A) Control and S. epidermidis colonized human skin was
collected at indicated time points (24, 48, 72, and 96 h) for FISH-Flow. Single cell suspensions were obtained using Collagenase D and labeled with live/dead stain.
Using FISH-Flow RNA assay, P-2 RNA levels were analyzed in the CD45+, CD3+ GD TCR+ cell population. (B) Representative dot plot graph showing expression of
mRNA P-2 in gated CD45+ CD3+ GD TCR+ T cells at 72 h in S. epidermidis colonized skin or non-colonized (control). FMO-fluorescence minus one. Bar graphs
show SEM of P-2 mRNA positive cells within skin GD T cells (n = 3). Data represent at least two technical replicates with three independent biological replicates per
group. *p < 0.05, **p < 0.01 as calculated using Student t-test.

increased capability to kill intracellular MRSA (Figure 6C). We
observed this same result after repeating stimulations with 2
additional S. epidermidis strains, S. epidermidis ATCC 12228
and commensal isolate S. epidermidis CCN0024 (Supplementary
Figure S2). In addition, we found that S. epidermidis CCN021
stimulated GD T cells upregulate expression of TLR2 and TLR1,
but not TLR6 (Figure 6D).

DISCUSSION

Pore-forming proteins permeabilize membranes of infected cells
targeted for immune elimination and together with antimicrobial
peptides represent the key effector molecules of the epithelial
barriers. GD T cells, as surveillance cells in the skin, constitutively

express mRNA for granzyme A and B and perforin and contain
significant esterase activity (58). We provided the first evidence
to show that human skin GD T cells constitutively express
antimicrobial protein P-2 (43). In contrast to other secreted
pore forming proteins, P-2 is a transmembrane protein that
efficiently kills intracellular bacteria. IFNγ, type I interferons,
and LPS have been implicated in the regulation of its expression
(37, 38). We have previously reported that MRSA, the most
common skin pathogen, suppresses P2-induction in skin cells
(43), revealing a novel mechanism by which S. aureus may
escape cutaneous immunity to cause persistent infections. Here
we show that, in contrast to MRSA, S. epidermidis up-regulates
P-2 expression in human skin and in single cell suspensions.
We also demonstrate that S. epidermidis upregulates P-2 mRNA
expression in multiple skin cell types including GD T cells,
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FIGURE 3 | Staphylococcus epidermidis colonization induces P-2 in human
keratinocytes and papillary fibroblasts. Control, non-colonized, and
S. epidermidis colonized human skin was maintained at air liquid interface and
collected at indicated time points (24, 48, 72, and 96 h) for FISH-Flow. Single
cell suspensions were labeled with live/dead stain. Using FISH-Flow RNA
assay, P-2 RNA levels were analyzed in (A) CD45-, CD31-, CD104+ cells
(keratinocytes), or (B) CD45-, CD31-, CCRL1+ (papillary fibroblasts), and
(C) CD45-, CD31-, CD325+ cells (reticular fibroblasts). Bar graphs show
percentage of P-2 mRNA positive cells within each CD45-CD31-skin cell
population. Data represent at least two experiments with three independent
biological replicates per group. *p < 0.05, **p < 0.01 (two-way ANOVA with
Holm-Sidak multiple-comparison test).

basal keratinocytes, and papillary fibroblasts. Most importantly,
we observed a decrease in number of intracellular MRSA
in skin stimulated by S. epidermidis, which correlates with
S. epidermidis-mediated P-2 induction. These data provide new
insights regarding mechanisms of P-2 expression and function
and elucidate novel approaches to protect skin from infections
caused by intracellular pathogens.

FIGURE 4 | Antimicrobial and inflammatory responses mediated by
Staphylococcus epidermidis in human ex vivo model. Expression levels of
antimicrobial peptides Defβ4, LL-37, and pro-inflammatory cytokine IL-1α

were evaluated by qPCR from non-colonized and S. epidermidis colonized
skin at 24, 48, 72, and 96 h (n = 3 for each treatment group and time point).
*p < 0.05, **p < 0.01 as calculated using Student t-test.

Gamma delta T cells represent a major T cell subset involved
in the surveillance of epithelial surfaces (skin, gastrointestinal,
reproductive, and respiratory tracts). It is well establish that GD
T cells, upon recognition of pathogens, effectively proliferate,
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FIGURE 5 | Differential gene expression in human GD T cells as an early response to Staphylococcus epidermidis. Human skin cells were isolated using the Miltenyi
Whole Skin Dissociation kit (Miltenyi, Bergisch-Gladbach, Germany) and GD T cells were sorted from the skin cell suspension using fluorescence-activated cell
sorting. (A) Gating strategy for GD T cell sorting. (B) Cells were stimulated with S. epidermidis for 1 h and changes in gene expression between uninfected and
infected cells were measured using the BioMark IFC 96 × 96 chip (Fluidigm). Changes in gene expression are expressed as log2 of fold change (n = 3). P-values
were calculated using Student t-test.

secrete pro-inflammatory cytokines, and activate their cytolytic
machinery (perforin and granzymes) to kill the pathogen
(59). Clonally expanded GD T cells can establish long-lasting
immunity against recurrent S. aureus skin infections (33). In
contrast, GD T cell deficient mice develop large skin lesions
after infection with S. aureus (60). However, encounters with
commensal microbes by skin GD T cells and how such
interactions affect their response to pathogens remains poorly
understood. Here we provide the first evidence that the common
skin commensal, S. epidermidis, upregulates the frequency of GD
T cells and induces the expression of P-2, which is associated
with an increased capability to eliminate intracellular MRSA. Our
data on increased frequency of skin GD T cells after colonization
with S. epidermidis supports the hypothesis that under normal
conditions the presence of S. epidermidis on the skin surface
strengthens cutaneous innate defenses (9, 10).

We observed that during the early steps of colonization,
prior to P-2 induction, S. epidermidis upregulates the GD T cell
cytotoxic molecules Fas Ligand (FASLG) and granulysin (GNLY).

This may contribute to the GD T cell mediated antimicrobial
immune response, in addition to P-2 induction at later time
points. We are currently expanding these studies to in vivo
animal models. S. epidermidis, when topically applied to murine
skin, induces specific IL-17 producing T cells that persist as
tissue-resident memory T cells (13). However, to the best of our
knowledge, our study is the first report that shows specific effect
of S. epidermidis on induction of human skin GD T cell responses.

Previous reports indicate that a commensal strain of
S. epidermidis and non-commensal strain S. carnosus have
different modifications of the lipoprotein (Lpp) lipid moieties
(61). The essential receptor for recognition of bacterial Lpp is
TLR2. However, the degree of acylation at the lipid moiety can
be discriminated by additional TLRs, such as TLR1 and TLR6,
which form heterodimers with TLR2 (62–64). Importantly, these
lipoprotein modifications were implicated in the differential
immune responses where commensal staphylococcal species
dampened IFNγ, TNFα, and IL-12 production compared to
pathogenic staphylococcal species (61). We have found that
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FIGURE 6 | Pre-treatment of skin cells with Staphylococcus epidermidis increases frequency of GD T cells, stimulates P-2 expression, and limits survival of
intracellular MRSA. Single skin cells were exposed to S. epidermidis at MOI 1:20 or media control for 24 h. After washing to remove S. epidermidis, cells were
infected with MRSA (MOI 1:20) for 1 h to allow intracellular infection, and extracellular bacteria were subsequently removed by gentamicin treatment. (A) Frequency
of GDT cells and (B) P2 mRNA expression in CD45+ CD3+ GD TCR+ cells as determined by FISH-Flow (n = 3 biological replicates). (C) Bar graph showing the
number of intracellular MRSA (CFU/ml) upon hypotonic lysis of control and S. epidermidis pre-treated cells (n = 3 biological replicates). (D) Expression of TLR1,
TLR2, and TLR6 on gated CD45+ CD3+ TCR GD+ T cells. Data represent at least two experiments with three independent biological replicates per group.
*p < 0.05, **p < 0.01 as calculated using two-way ANOVA with Holm-Sidak multiple-comparison (A) and ***p < 0.001 as calculated using Student t-test (B).

a 24 h stimulation with S. epidermidis upregulates TLR2
and TLR1, but not TLR6 on GD T cells. We postulate that
S. epidermidis, through recognition of TLR2/TLR1 heterodimers
on cutaneous GD T cells, regulates not only Th1 responses
but also cytotoxic mediators such as P-2. The recognition
of TLR2/TLR1 heterodimers may even be strain specific (12)
warranting further studies on the mechanisms of P-2 induction
by S. epidermidis CCN021.

It has been shown that S. epidermidis colonization of skin
induces AMP production by keratinocytes (5, 7, 8, 65). Our

findings regarding induction of LL37 and Defβ4 during early
phases of human skin colonization with S. epidermidis are in line
with these results. Kinetics of P-2 induction upon S. epidermidis
colonization shows dynamic control and cell specificity that
integrates with the kinetics of AMP production. In GD T cells,
the induction of P-2 is rapid and maintained, persisting from 24
to 72 h post colonization whereas in keratinocytes and papillary
fibroblasts it shows complementary activation at 96 h. These data
suggest that the initial protective response derives from GD T
cells whereas in keratinocytes activation of P-2 follows initial
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activation of AMPs, cathelicidin, and β-defensin. The human skin
ex vivo model is comprised of the epidermis and dermis with
no circulation, thus limiting the studies on modulation of the
immune response by S. epidermidis to resident innate immune
cells, while the potential role of adaptive immunity would require
in vivo models.

The initial findings presented here also provide a functional
readout of S. epidermidis colonization and P-2 upregulation:
decrease of the intracellular pathogen S. aureus. We observed
suppression of the pro-inflammatory cytokine IL-1α after
colonization with S. epidermidis. Previously, we showed that
S. aureus induces IL-1α in non-healing diabetic foot ulcers (50),
suggesting that S. epidermidis may have additional mechanisms
to neutralize the damaging effects of pathogenic organisms. The
limitation of our study was sequential stimulation of human
skin and primary cells by S. epidermidis and S. aureus. Future
in vivo studies are required to confirm antimicrobial effects
of S. epidermidis in the presence of pathogenic S. aureus.
Additionally, future studies that block P-2 expression will be
necessary to confirm that enhanced S. aureus killing upon
S. epidermidis treatment is solely due to P-2 upregulation. Despite
these limitations, this work provides an intriguing possibility that
colonization of S. epidermidis may prevent and/or protect from
bacterial skin infections through modulation of P-2.

In summary, we confirmed that colonization with commensal
S. epidermidis in human ex vivo skin modulates the innate
immune system by activating GD T cells, promoting
antimicrobial peptide production, and upregulating the
antimicrobial protein P-2. Understanding how commensal
bacteria regulate P-2 expression represents the first step toward
identifying mechanisms by which P-2 contributes to cutaneous
homeostasis and host defense mechanisms and may reveal new
approaches for preventing and treating skin infections.
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comparisons test, which compared each S. epidermidis pre-treatment with
non-pretreated control cells.
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