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Abstract
Successful treatment of cancer patients requires balancing of the

dose, timing, and typeof therapeutic regimen.Detectionof increased

cell death may serve as a predictor of the eventual therapeutic

success. Imaging of cell death may thus lead to early identifica-

tion of treatment responders and nonresponders, and to “patient-

tailored therapy.” Cell death in organs and tissues of the human body

can be visualized, using positron emission tomography or single-

photon emission computed tomography, although unsolved prob-

lems remain concerning target selection, tracer pharmacokinetics,

target-to-nontarget ratio, and spatial and temporal resolution of the

scans. Phosphatidylserine exposure by dying cells has been themost

extensively studied imaging target. However, visualization of this

process with radiolabeled Annexin A5 has not become routine in

the clinical setting. Classification of death modes is no longer based

only on cell morphology but also on biochemistry, and apoptosis is

no longer found to be the preponderant mechanism of cell death

after antitumor therapy, as was earlier believed. These conceptual

changes have affected radiochemical efforts. Novel probes target-

ing changes in membrane permeability, cytoplasmic pH, mitochon-

drial membrane potential, or caspase activation have recently been
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explored. In this review, we discuss molecular changes in tumors

which can be targeted to visualize cell death andwe propose promis-

ing biomarkers for future exploration.

K EYWORD S

apoptosis, early treatment response, necrosis, positron emission

tomography (PET), single photon emission computed tomography

(SPECT)

1 INTRODUCTION

A living organism can be considered as a complicated machine, which requires constant maintenance, modernization,

and restructuring or reconstruction. Subunits of the organism, such as cells, are continuously produced, exploited,

altered, utilized and exchanged. Billions of cells die daily as a part of natural processes in the adult human body, and

even more cells die during embryonic development. Under physiological conditions, superfluous, dangerous, or dam-

aged cells are killed and dismantled in a discrete and highly orchestrated manner. For instance, squamous epithelial

cells are removed via cornification,1 Müllerian duct in males orWolffian duct in females via apoptosis, and pronephric

kidney tubes also via apoptosis.2,3 A mainstay of the body's homeostasis is a proper decision on cellular fate: death or

survival.

It is thus not surprising that perturbations of cell death processes are an underlying factor of many pathologic

conditions. Cell death is enhanced in ischemia,4 sepsis,5 type-1 diabetes,6 transplant rejection,7 neurodegenerative

disorders,8 and autoimmunity (e.g., AIDS).9 In contrast, reduced cell death is observed in persistent inflammation (as

occurs in chronic obstructive pulmonary disease and asthma),10,11 autoimmunity (e.g., rheumatoid arthritis),12 and

cancer.13 With nondestructive and minimally invasive medical imaging techniques like PET (positron emission tomog-

raphy) and SPECT (single photon emission computed tomography), cell death in organs and tissues of the human body

can be visualized and quantified. Such quantification may be important in cancer treatment, since monitoring of the

increase in cell death early after the onset of antitumor therapy can serve as a predictor of the eventual therapeutic

outcome.

In the following review, we describe molecular changes in tumors related to cell death and we provide an overview

of the wide range of PET and SPECT tracers which have been developed to monitor these changes. We discuss the

potential and the limitations of the existing tracers and we propose some promising biomarkers of dying cells which

deserve to be explored in future imaging research.

1.1 Canonical classification of cell deathmodes

There are many ways for a cell to die. In recent years our concepts of cell death have changed. In this chapter, we first

describe the canonical classificationof cell deathmodes andwe subsequently summarize newobservationswhichhave

led to a revised classification.

The classical concept of cell death (proposed in 1973) is based on morphologic features of dying cells and makes

a distinction between three death types: apoptosis (type I), autophagic cell death (type II), and necrosis (type III) (see

Table 1).14 Even nowadays, cell death is still frequently classified in these three subroutines. Apoptosis and autophagy

are considered as “regulated” and necrosis as “accidental” cell death.15

1.1.1 Apoptosis

Apoptosis was considered to be a noninflammatory, highly orchestrated, and inherently controlled process. Since its

identification in 1972,16 apoptosis has been the most investigated type of cell death. Apoptosis can be activated by

intra- or extracellular stimuli and is then coined as “intrinsic” or “extrinsic” apoptosis. Both these apoptotic scenarios
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TABLE 1 Morphological classification of cell death

Apoptosis (Type I) Autophagic cell death (Type II) Necrosis (Type III)

Affects an individual cell Affects an individual cell Affects a group of cells

Cell rounding, shrinkage and
detachment

Cytoplasmic vacuolization Increased cell volume (oncosis),
translucent and vacuolized cytoplasm

Cell membrane blebbing and
shedding of apoptotic bodies,
but membrane intact

Cell membrane intact Cell membrane breakdown

Maintained organelles and
cytoplasm condensation

Degradation of Golgi,
polyribosomes and ER

Swollen organelles and cytoplasm

Chromatin condensation
(pyknosis)

No/partial chromatin
condensation

Chromatin condensation into small,
irregular patches (karyolysis)

Nuclear fragmentation
(karyorrhexis)

Appearance of autophagosomes
and autolysosomes

Dilatation of the nuclear membrane

DNA fragmentation Late DNA fragmentation Late DNA fragmentation (after cell lysis)

Presence of phagocytosis,
generally anti-inflammatory

No/little phagocytosis Generally absence of phagocytosis,
often pro-inflammatory

include extensive cellular remodeling by activated cysteine–aspartic proteases, called “caspases” (for more informa-

tion, see 2.4.).

In intrinsic apoptosis, stimuli such asDNAdamageandhypoxia lead to swelling or permeabilizationof themitochon-

drial outer membrane, dissipation of the mitochondrial membrane potential (MMP), and release of various apoptotic

effectors. Apoptotic effectors serve either as activators of the proapoptotic cascade or inhibitors of the pro-survival

cascade. Apoptosome complex forming compounds, such as caspase-9, cytochrome c (CytC), apoptotic peptidase-

activating factor 1, deoxy-adenosine 5′-triphosphate (deoxy-ATP), and second mitochondria-derived activator of cas-

pases (second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low Iso-

electric point (pI)) belong to the activator category, whereas B-cell lymphoma 2 (Bcl-2) family members and inhibitors

of apoptosis proteins are in the inhibitor class.17–19

Extrinsic apoptosis is activatedby theappearanceofmultiplemembersof a tumornecrosis factor (TNF) family of lig-

ands via death receptors, or by the disappearance of specific ligands for dependence receptors. Death receptor ligands

include TNF𝛼, first apoptosis signal ligand which binds to the Fas receptor, and TNF-related apoptosis inducing ligand

(TRAIL), which interacts with the TRAIL receptors.20,21 An example of a ligand for a dependence receptor is netrin-1,

which binds to the uncoordinated movement receptor gene 5B (mutations in this gene result in uncoordinated move-

ment of Caenorhabditis elegans) receptor.22 Main effectors activating the proapoptotic cascade are death-inducing

signaling complex-forming: Fas-associated proteinwith death domain, caspase-8 and caspase-10, whereasmain effec-

tors inhibiting the proapoptotic cascade are cellular Fas-associated protein with death domain-like IL-1𝛽-converting

enzyme-inhibitory protein and x-linked inhibitor of apoptosis protein.23–25 Extrinsic apoptosis is frequently linked to

the response of the immune system to abnormalities.

Under certain circumstances (e.g., high x-linked inhibitor of apoptosis protein expression levels), components of the

intrinsic apoptosis machinery can also become activated during extrinsic apoptosis. This interrelation of extrinsic and

intrinsic signaling is mediated by a proapoptotic Bcl-2 member, Bcl-2 homology domain 3 interacting-domain death

agonist, and serves for amplification of an apoptotic signal downstream death receptors.26 Furthermore, intrinsic and

extrinsic apoptosis converge through caspase-9 and caspase-8, which leads to activation of caspase-3 and cellular dis-

assembly fromwithin. Activation of caspase-3 is followed by cleavage of cytosolic and nuclear proteins, DNA fragmen-

tation, cross-linking of proteins, formation of apoptotic bodies, expression of ligands for phagocytic cell receptors, and

removal of apoptotic cells by phagocytosis.27

Evasion of cell death is considered to play an important role in oncogenesis and in development of treatment resis-

tance in cancer.28 One example of apoptosis evasion is a decrease in p53 signaling. P53 is a tumor suppressor protein,

which can regulate the cell cycle and can induce cancer cell apoptosis in response to diverse stressful stimuli. Frequent
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mutations in the TP53 gene and/or defects in the p53 signaling pathway (e.g., upregulation of the p53 inhibitor mouse

doubleminute 2,mouse doubleminute 2 homolog [E3 ubiquitin-protein ligase]) result in uncontrolled proliferation and

a brake on apoptosis. This may have a subsequent impact on both initiation of oncogenesis and development of treat-

ment resistance. Although apoptosis is the best-characterized cell deathmechanism, inmany cancers it is not themain

cause of cell loss induced by DNA damaging agents.28

1.1.2 Autophagic cell death

Autophagy is a natural, regulatedprocess for disassembly of dysfunctional or damaged cellular organelles andproteins.

Such damaged components are contained inside a double-membrane vesicle called an autophagosome. After fusion of

an autophagosome and a lysosome to an autolysosome, the contents of the organelle are digested by acidic lysosomal

hydrolases.29

Even today, there is much controversy on the question whether in vivo autophagy is a type of cell death or fulfills

a pro-survival function, for example, by limiting cell constituents during nutrient starvation. This question is raised

becausemost inhibitors of autophagy accelerate (and not retard) cell death.30–34 For this reason, autophagic cell death

has now been defined as cell death inhibited by inactivation of autophagy genes or by autophagy inhibitors, such

as 3MA, rather than cell death judged by simple morphological classification.35 This definition is based on studies

which have elucidated molecular mechanisms of autophagic cell death.36,37 Tissue-specific knockout models of genes

controlling autophagy in mice have provided much information about the role of autophagy in the development and

differentiation of mammalian tissues and organs.38 In some tissues (e.g., mouse liver) autophagy seems to suppress

tumorigenesis,39 but in most cases, autophagy facilitates the formation of tumors and increases tumor growth and

aggressiveness.40 Autophagy seems to be particularly induced when cancers progress to metastasis.41 Inhibitors of

autophagymay thus be useful as adjuvants in cancer therapy.

1.1.3 Necrosis

Necrosis is the consequence of irreversible damage to cells caused by factors such as mechanical trauma, infections,

toxins, and shortage of oxygen and nutrients. Necrosis is traditionally thought to be an uncontrollable and accidental

type of cell death, which is highly immunogenic and elicits an inflammatory response due to leakage of cytosolic con-

tents. It was considered the deathmode of cells which displayed no characteristics of apoptosis. Inmost cases necrosis

affects not a single cell but spreads over a group of cells, as in gangrene or ischemia. Morphologic features of necro-

sis are listed in Table 1. At the biochemical level, necrosis is accompanied by a massive production of reactive oxygen

species and reactive nitrogen species, besides amarked drop of cellular ATP.35

About10years ago, studiesongenes that could control necrosis led to the conclusion that a regulated formofnecro-

sis must exist. Regulated necrosis (“necroptosis”) can occur as the result of activation of death receptors, for exam-

ple, by TNF, first apoptosis signal ligand, or TRAIL,42 and is controlled by two key regulators:TNF receptor-associated

factor 2 and receptor-interacting protein kinases 1 and 3.35,43 Besides the activation of death receptors, necropto-

sis requires inhibition of the apoptotic signaling.44 This type of necrosis occurs not only in disease (e.g., in systemic

inflammatory response syndrome), but also in normal physiology (e.g., in immunologically silent maintenance of T-cell

homeostasis).45,46 In cancer, necrosis occurs when rapid tumor growth is accompanied by insufficient vascularization

or the cancer cell population becomes very dense.47 It can also be a consequence of successful immunotherapy, for

example, with oncolytic viruses.48 The triggering of nonapoptotic cell death modes, such as regulated necrosis, is cur-

rently explored for treatment of apoptosis-resistant cancer cells.49 However, clinical application of regulated necrosis

in cancer treatment has not yet been achieved.

1.2 Revised classification of cell deathmodes

Canonical (morphologic) features of a particular cell deathmode can be inhibitedwhile death is only deferred.15 Under

certain circumstances, a dying cell can even switch betweendifferent cell death programs, for example, the response to

F

D

v

a

f

m

p

a

c

p

T

r

a

a

(f

in

t

a

t

c

s

a

f

2

A

o

2

T

c

f

a

b



L. RYBCZYNSKA ET AL. 31717

e

d

-

n

s.

f

al

s

d

h

h

s

s

d

s

d

f

s,

l

-

s

-

n

-

-

d

-

c

l

n

r

-

s

r

o

F IGURE 1 Physiologic, molecular, andmorphologic events during the time-course of cell death

DNA damage changes from apoptosis to mitotic catastrophe in p53-expressing ovarian cancer treated with cisplatin

versus cisplatin and checkpoint kinase 2 (required for checkpoint-mediated cell cycle arrest) inhibitor50–52 or from

apoptosis to (secondary) necrosis in conditions of insufficient phagocytosis. This suggests that an interplay and/or a

fluidic switch may exist between various types of cell death.53 Apparently, cell death may differ not only in its main

morphologic features but also in biochemical features, cell types involved, and activatingmechanisms.Moreover, mor-

phologic features are hardly quantifiable and do not take functional, biochemical, and immunological variables into

account. Therefore, scientists have shifted from a morphological to a biochemical classification of cell death.35 As a

consequence, the canonical distinction of three different cell death modes has been revised and expanded to com-

prise 14 subroutines (see Table 2), of which ten play a proven role in treatment-induced cancer cell death.15,35,54

These include: apoptosis (divided into: intrinsic caspase-dependent, intrinsic caspase-independent, extrinsic by death

receptors, extrinsic by dependence receptors), unregulated necrosis, regulated necrosis (necroptosis), pyroptosis,

autophagic cell death, mitotic catastrophe, and anoikis. It is still hotly debated whether some of these processes (e.g.,

autophagic cell death and mitotic catastrophe) are true subroutines or associated phenomena preceding cell death

(for more information, see).35,55 Furthermore, it is still not clear which of these subroutines predominates in cell death

induced by antitumor treatment and which route should be activated for the most effective treatment of a particular

type of cancer.28 Nevertheless, this new classification of cell death allows a better separation of molecular pathways

and the linking of pathways to functional consequences.

In order to properly classify cell death, several parameters should be determined sincemany biochemical processes

that were initially considered to be hallmarks of apoptosis appear also in other death modes (Table 2). Despite this

complexity, fivemain biochemical parameters appear to define dying cells: (1) changes ofmembrane asymmetry (expo-

sure of phosphatidylethanolamine [PE] and phosphatidylserine [PS]), (2) loss of transmembrane potential, (3) perme-

abilization of the mitochondrial membrane with associated potential changes, (4) increased proteolysis, and (5) DNA

fragmentation.Wewill discuss these in the following chapter.

2 HALLMARKS OF CELL DEATH

As listed in Table 2, each of the five characteristics of apoptosis occurs inmore than one cell deathmode. However, the

order of their appearance on the scenario of cell death is generally well preserved (see Figure 1).

2.1 Changes inmembrane asymmetry

The cell membrane is a highly specialized bilayer of asymmetrically distributed phospholipids. In the resting state,

cationic phospholipids prevail in the outer, and anionic phospholipids in the innermembrane leaflet. The cellmembrane

functions as: a barrier (allowing passage of only a selected set of molecules), an organizer (assembling, co-localizing,

and controlling activity of signaling components), and a sensor and communicator (processing and conducting signals

between the cell and its environment).56 Multiple cellular activities are accompanied by changes in morphology or
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composition of the cell membrane. These activities include the regulation of immunity, coagulation and bone forma-

tion, for example, by changing the conformation, interactions, localization, and destination of proteins.57–61

A hallmark of apoptosis is the disturbance of membrane asymmetry, and specifically, the translocation of phospho-

lipids, such as PE and PS, from the inner to the outer leaflet of the membrane. Under basal conditions, PE is predom-

inantly and PS is almost exclusively confined to the inner leaflet of the cell membrane (in erythrocytes, 80–85% and

>96%, respectively).62 Once on the cell surface, exposed PEmay regulate actin-dependent blebbing and the formation

of apoptotic bodies,63–65 whereas exposed PS serves as a recognition and docking site, for example, for phagocytes,

and facilitates the removal of apoptotic cells.66–68

Although disturbance of membrane asymmetry is a feature of apoptosis, disturbed asymmetry also appears early

after activation of other cell death modes, such as anoikis, autophagic cell death, pyroptosis and mitotic catastrophe

(Table 2).69–72 In death modes such as necrosis, PE and PS may become accessible only at later time points, when cell

membrane integrity has been lost.73

2.1.1 Phosphatidylethanolamine exposure

PE is a neutral (zwitterionic) molecule which accounts for 40–50% of total membrane phospholipids.74 Most PE

molecules are cone-shaped and do not organize themselves into membrane bilayers in an artificial setting, but rather

formmonolayers,75 althoughPE is kept inbilayer configuration inbiologicalmembranesby interactionwithotherphos-

pholipids. This feature enables PE to “coat” lipophilic regions of membrane proteins and to participate in membrane

fusion and fission. In hepatocytes, the presence of PE in the bilayer was shown to result in a less tight packing of the

membrane lipids and increasedmembrane permeability.76

The dynamics of PE play a role in membrane reorganization during cytokinesis,77,78 stress and apoptosis,63,79 and

possibly also in hemostasis80 and the physiology of the mitochondrial inner membrane.81,82 The appearance of PE on

the surface may be a more sensitive biomarker of cell stress than PS, since PE is more abundant than PS and could

deliver a stronger signal.64,82 Moreover, PE is present on the luminal surface of tumor blood vessels. Exposed PE in the

vessel wall may represent a biomarker for imaging response to antivascular cancer therapy.64

2.1.2 Phosphatidylserine exposure

PS is an anionic molecule accounting for 2–10% of the total membrane phospholipids.83,84 It has a cylindrical shape,

which promotes formation of membrane bilayers. However, at elevated pH or [Ca2+], PS can adopt a conical shape to

form hexagonal membrane structures.85–87 PS is inhomogenously distributed in the plasmamembrane, forming 11 nm

clusters.88

As mentioned above, PS exposure is a hallmark of apoptosis and an “eat me” signal for phagocytosis of dying cells.

Manybiochemical assays (e.g., in vitro staining of cellswithAnnexinA5) usePSexposure as amarker of apoptosis. Since

annexin is not able to selectively identify apoptosis, Annexin A5 is then used in combination with propidium iodide to

identify necrotic cells from apoptotic cells. Early in apoptosis, 106–109 PSmolecules become accessible to Annexin A5

after translocation to the outer leaflet of the cell membrane.89,90

However, PS exposure also occurs in normal physiology. For example, binding of proteins to intracellular PS

can localize their signaling pathways to the proximity of the cell membrane (e.g., PS–PKC [protein kinase C]

interaction)91,92 and/or can promote membrane fusion and fission (e.g., PS-synaptotagmin-I interaction).93 PS expo-

sure plays a role in physiological processes such as cell activation (platelets in clotting cascade, lymphocytes in

immune response), membrane fusion in phagocytosis,94 release of membrane-encapsulated nuclei during maturation

of erythroblasts,95 and cellular stress responses.96,97 Up to 50% of blood vessels in untreated tumors are positive for

exposed PS, likely due to oxidative stress in their environment.98,99 This fraction generally increases after anticancer

treatment.100

In recent years it has become apparent that different forms of PS play unique and important signaling roles

in the cell. Oxidized PS was shown to promote recognition of apoptotic cells by macrophages via interaction with

CD36 (cluster of differentiation 36 [fatty acid translocase])101 or the bridging protein lactadherin (aka milk fat
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globule-epidermal growth factor 8 protein, MFGE8).102 Up to 20% of the PS in neutrophils is endogenously converted

to PSwith only a single acyl chain lyso-phosphatidylserine (lysoPS), in a 𝛽-nicotinamide adenine dinucleotide (reduced)

oxidase-dependent manner. LysoPS plays a role in the clearance of PS-expressing, nonapoptotic neutrophilic cells.103

1-Lyso-2-acyl-PS and 1-acyl-2-lyso-PS (PSwith deletions of the first or second acyl chain) performdifferent cellular

functions.104–106 1-Lyso-2-acyl-PS can signal platelet degranulation, mast cell activation, and T-cell growth suppres-

sion; and 1-acyl-2-lyso-PS may accompany histamine release from peritoneal mast cells and neuronal differentiation.

However, our understanding of the role of different forms of lysoPS in cancer cell death is still rudimentary.

2.1.3 Mechanism of PE and PS exposure

Currently, there are two models describing PS exposure during apoptosis: a recently proposed model of increased

phospholipid vesicle trafficking (involving lysosomes,107 or bidirectional endosomes108) and a widely accepted model

of disturbed phospholipid transport.109–112

According to the firstmodel, PS externalization reflects phospholipid vesicle trafficking between plasmamembrane

and cytoplasm rather than an activity of phospholipid transporters.108 This model is supported by the finding that PS

externalization during apoptosis is derived fromanewly synthesized pool, and the rate of PS synthesis is then∼twofold
increased.113,114 Furthermore, altered lipid packing in shrinking cells can prompt PS exposure.115

According to the second model, localization of PE and PS is regulated by a common set of transporters, such as

scramblases,116,117 ATP-binding cassette (ABC) transporters,118 and aminophospholipid translocases.119 Scramblases

carry out Ca2+-dependent bidirectional and nonspecific transport of phospholipids, whereas ATP-dependent ABC

transporters (floppases) and aminophospholipid translocases (flippases) transport PS and PE appropriately between

the two leaflets of the cell membrane, that is, in outward or inward direction. The more specific localization of PS than

PE to the intracellular leaflet under baseline conditions may be attributed to the fact that aminophospholipid translo-

cases have a somewhat lower affinity for PE than for PS. It is generally accepted that apoptosis leads to deactivation

of aminophospholipid translocases and activation of scramblases and ABC transporters.109–112 Scramblases are acti-

vated by elevation of cytosolic Ca2+, an upstreamevent in, for example, apoptosis and blood coagulation. However, the

identity of the transporters that are activated during cancer cell apoptosis has been the subject of a long debate.

The speed, strength, persistence, and reversibility of the signal are the best-characterized features of PS exposure.

Exposure of PS to the outer leaflet has been shown to occur within a few hours after induction of apoptosis.120 In

human promyelocytic leukemia cells and Jurkat cells (immortalized line of human T lymphocytes) treated with various

apoptosis inducers (e.g., anti-Fas antibody or camptothecin), the content of PS in the outer leaflet increased 25–280-

fold (from <0.9 to >240 pmole/million cells).67,120 At least an eightfold increase in externalized PS had to be reached

to initiate phagocytosis of these cells, which is in line with the threshold model.120 In myocardial ischemia in mice, PS

exposure on apoptotic cardiomyocytes was shown to persist for about 6 hours (hr) after reperfusion.121

The upstream signaling cascade leading to PE and PS externalization in apoptosis has also been examined. PS expo-

sure is usually accompanied by other molecular events, such as caspase activation,121–123 cathepsin D activation,124

perturbed Ca2+ homeostasis,125–128 and PKC activation.129,130 Whether these processes may occur in parallel or are

required in combination to initiate PE and PS exposure is not yet clear.108 A direct role of caspases in PS exposure

during apoptosis has been suggested by the discovery of Kell blood group precursor-related protein 8, which requires

a caspase-3 cleavage site to support presentation of PS on the surface of a dying cell followed by phagocytosis.131

In the human myeloid leukemia cell line KBM7, the P4-ATPases ATPase phospholipid transporting, type 11C and cell

division cycle protein 50A were shown to act as flippases and to transport aminophospholipids from the outer to the

inner leaflet of the plasmamembrane.132 ATPase phospholipid transporting, type 11C is a caspase substrate. Caspase-

mediated apoptotic exposure of PS is irreversible and leads to cellular engulfment bymacrophages.

PS exposure is not under all circumstances closely related to cell death and phagocytic removal. PS can be

exposed by viable cells, but is then likely an insufficient trigger for phagocytosis.133 However, blocking PS on dying

cells can abrogate their clearance by phagocytosis. Therefore, phagocytes recognize cell surface PS on dying cells

most likely only within strongly curved membrane areas (i.e., in blebs). However, little is known about membrane



2 RYBCZYNSKA ET AL.1724 R

morphology surrounding exposed PE and PS and how these phospholipids are engaged by specific receptors, for

example, lactadherin.66,134,135 Furthermore, several tumor cell lines have been identified that lack PS exposure dur-

ing apoptosis108 and PS exposure can be reversible.97,121,136,137

2.2 Loss of cellular transmembrane potential

Scrambling processes in early apoptosis reduce the pH of the external membrane leaflet and cytoplasm (acidification),

and reduce the energy barrier of the cell membrane (depolarization).138,139 The mechanism of cytoplasm acidification

is not yet completely understood. A change in PS localization during apoptosis may affect the function of H+-ATPases,

increaseproton (H+) transport across the cellmembrane, and reducecytoplasmicpH.140,141 Underbasal conditions the

cytoplasm has a pH of about 7.2 which decreases by about 0.3 to 0.4 pH units in early apoptosis. This drop promotes

the activity of important enzymes involved in cell death, such as proteases and DNase II.142 A loss of plasma mem-

brane potential can be due to a change in cationic and anionic phospholipid distribution, an altered balance between

extracellular Na+ and intracellular K+ (e.g., impaired function of Na+/K+-ATPase) and export of intracellular Cl−. The

impairmentofNa+/K+ ATPase function in apoptotic cellswas shown tobecaspase-dependent andcoincidedwithmito-

chondrial depolarization.143

2.3 Change inmitochondrial transmembrane potential (𝚫𝝍m)

Ca2+ is a very powerful regulator of many biochemical processes. Therefore, its cellular concentration must be tightly

controlled. Increases in cytoplasmic Ca2+ (e.g., caused by calcium release from the endoplasmic reticulum [ER]) can be

resolvedbymitochondria.144 Mitochondria areoneof the largest storesof intracellularCa2+ (after theER), and centers

of cellular energy production by oxidative phosphorylation. The functioning electron transport chain facilitates the

creation of an electrochemical gradient (𝛿pH) across the inner mitochondrial membrane and the creation of an MMP

(Δ𝜓m). The highly negative charge generated at the inner mitochondrial membrane by oxidative phosphorylation is

strongly reduced when cells are energetically compromised and on their way to death. Certain apoptotic stimuli (e.g.,

ER stressors, death receptors, DNA damage) may cause a mitochondrial Ca2+ overload and spillage of Ca2+ into the

cytoplasm. Ca2+ efflux is regulated by the Na+/Ca2+ exchanger and the permeability transition pore complex formed

by proapoptotic Bcl-2 family members. A disturbance in Ca2+ homeostasis and transition pore formation was shown

to result in inhibition of oxidative phosphorylation and electron transport, dissipation of Δ𝜓m and/or generation of

mitochondrial outer membrane permeability, a decrease in cellular ATP, release of proteins from the mitochondrial

intermembrane space, and activation of cytoplasmic Ca2+-dependent endonucleases.145,146 Factors which are then

released from mitochondria include ATP, reactive oxygen species, and facilitators of caspase-9 activity, such as CytC,

apoptosis-inducing factor, and secondmitochondria-derived activator of caspase (see Section 1.1). The release of such

factors is thought to be “a point-of-no-return” in the apoptotic cascade.147,148

Changes inmitochondrial transmembranepotential can beboth the cause and a consequenceof apoptosis. They are

the cause if certain agents inducemitochondrial damageanddownstreamactivationof caspase-9, and a consequence if

mitochondria amplify theapoptotic cascadedownstreamdeath receptors andcaspase-8has alreadybecomeactivated.

Depolarization (or, in rare cases, hyperpolarization) of the mitochondrial membrane occurs in response to a cellular

insult.149,150

Changes in Δ𝜓m are frequently monitored as an indicator of cell viability. Almost each form of cell death results in

declined𝜓m, either at an earlier or a later stage, but an interesting study has shown that release of certain proapoptotic

molecules (such as CytC) may occur in the absence of changes in mitochondrial outer membrane potential.151

2.4 Increased caspase proteolysis

Cell death is frequently mediated by a proteolytic cascade, in which caspases play a pivotal role. Caspases have been

demonstrated to cleave as much as 5% of the cellular proteome during apoptosis.152,153 The caspases are a family of
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enzymeswith the ability to sever amyriad of peptides and proteins at residues C-terminally to aspartate (Asp, D). They

contain a catalytic Cys-His pairwithCys285 acting as the nucleophile andHis237 acting as the general base to abstract

the proton from the catalytic Cys and promote the nucleophile. Caspases recognize and cleave proteins after the tetra-

peptide motif Asp-x-x-Asp. The enzymes occur as dimers and are mostly present in the cytoplasmic compartment of

the cell.

To date, at least 11 caspases (14 according to ref. 154) and 11 caspase-encoding genes were identified in the

human genome and proteome. Although these proteases are generally known as executioners of apoptosis, nonapop-

totic activities have also been reported.155 Thus, they can be classified as apototic and nonapoptotic (inflammatory)

caspases. The apoptotic caspases comprise apoptosis initiators (caspase-2, -8, -9, and -10) and apoptosis executors

(caspase-3, -6, and -7). The executor caspases can cleave hundreds of substrates.156 Caspase-3 is the main executer of

apoptosis. Among its substrates are proteins participating in DNA repair (e.g., poly [ADP-ribose] polymerase 1, PARP-

1), cytoskeletal proteins (e.g., fodrin), remodeling proteins (e.g., Rho-associated, coiled-coil containing protein kinase

1), and nuclear proteins (e.g., lamin B1). (Primarily) nonapoptotic caspases include caspase-1, -4, -5, and -14.

In the absence of a demand for proteolytic activity, caspases are present in an inactive zymogen form (procaspases).

Upon specific cellular insults, two procaspases are cleaved in a highly controlled manner into two small and two large

subunits, assembled into a heterotetramer and activated. By cleaving a specific range of assigned protein substrates,

caspases render a controlled loss, gain, functional change, or altered localization of client proteins. This in turn leads to

the appearance of typical apoptotic characteristics, such as disturbance of cell membrane lipid asymmetry, cell shrink-

age, nuclear chromatin condensation, and DNA fragmentation.

Synthetic caspase-3/7 substrates should consist of at least five amino acid residues. Caspase substrates are selected

based on protein primary, secondary, tertiary, and quaternary structure.152 The design of synthetic caspase substrates

is based on the preference of caspases for individual peptide sequences (subsite preference).157

2.5 DNA fragmentation

DNA fragmentation is a major step of cellular disassembly. The process may be induced by cell death-inducing fac-

tors (e.g., cytolytic T-cells) or by irreparable errors or damage to DNA (e.g., radiation damage). Genomic DNA can be

hydrolyzed either inside or outside a dying cell.158 DNA hydrolysis occurs at different time points and has a different

pattern in different cell deathmodes.

Cleavage of DNA is executed by certain enzymes, DNA endonucleases, which are also known as DNases. These

DNases are divided into three groups: (a) Ca2+/Mg2+ endonucleases (e.g., DNase I and DNAS1L3), (b) Mg2+ endonu-

cleases (e.g., endonuclease G and DFF40/caspase-activated DNase), and (c) cation-independent/acid endonucleases

(e.g., DNase II). The activity of these DNases is controlled by various means, such as protease activation (caspases or

serine proteases), poly(ADP ribosylation), phosphorylation, or ubiquitination, and by physicochemical conditions, such

as a change of cytoplasmic pH.142,159 Activation of various DNases results in different DNA fragmentation patterns.

(Inter)nucleosomal DNA fragmentation yielding low molecular weight (MW) DNA fragments (“laddering pattern”)

almost always accompanies apoptosis. Caspase-activated DNase (present in extrinsic and intrinsic apoptosis) and

endonuclease G (present in intrinsic apoptosis) produce various laddering patterns.160–164 The selection of a certain

DNase seems to be stimulus- and cell type-dependent. DNA is processed in two steps during apoptosis. In the early

stage, DNA is cleaved into highMW fragments (50–300 kb). Here DNA condensation takes place. Subsequently, these

molecules are further broken up into oligonucleosome-sized fragments (repeats of 180–200 bp).165 Free DNA termini

present as a consequence of apoptosis can be detected by a TdT-mediated-dUTP nick end labeling assay.166 However,

DNAbreaks detected by this assay need not to be a consequence of apoptosis. The TdT-mediated-dUTPnick end label-

ing assay cannot discriminate among apoptosis, necrosis, and autolytic cell death.

A more random form of DNA fragmentation, yielding a “smear pattern,” is observed in nonapoptotic cell death

modes, such as necrosis, or cellular disassembly after phagocytosis. This pattern results from the activity of lysosomal

DNases, for example, DNase II.
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3 CELL DEATH IMAGING

Since the mechanisms underlying cell death are complex, the question arises how treatment-induced cell death, for

example, in cancer, should be quantified with medical imaging. The majority of tracers monitoring cell death are

designed to probe: (1) disturbances in membrane asymmetry, (2) reductions in the membrane energetic barrier, (3)

changes in MMP, and (4) activation of apoptotic caspases. Although these phenomena were initially considered hall-

marks of apoptosis, similar processes occur in other forms of cell death. Thus, most imaging probes are not selective

for one particular form of cell death. Increased uptake of such probes may be the net result of cells dying by various

mechanisms.

3.1 Membrane asymmetry

3.1.1 Exposure of PE

Several imaging probes have been developed to monitor the translocation of PE to the outer leaflet of the cell mem-

brane during apoptosis. A few lantibiotics have been radiolabeled and tested for imaging of exposed PE; these include

cinnamycin and duramycin.

Cinnamycin

Cinnamycin (Ro09-0198) is a small peptide (2,046 kDa, 19 amino acids) from a family of lantibiotics isolated from

Streptoverticillium cinnamoneus, which binds selectively to PE.81 A few in vitro assays have been performed with

the fluorescein-streptavidin (SA)-labeled cinnamycin derivative fluorescein-SA-Ro, the iodine-125-labeled derivative

(125I)-SA-Ro, or the AF546-SA-biotin-labeled derivative,63,77,78,167 for results see Table 3.

Duramycin

Duramycin (PA48009, a peptide of 2,013 kDa and 19 amino acids) differs from cinnamycin by only one amino acid

residue: Lys2 → Arg2.168,169 Duramycin takes its name from being resistant to high temperatures and proteolysis.

Soon after its discovery, duramycin was shown to interact with biological membranes and to have a high affinity (Kd,

4–11nM) toPE.170 ThePEbinding is specific and occurs in an equimolar andCa2+-independentmanner.171 Duramycin

binding to PE depends on membrane curvature and may alter both the curvature and permeability of the membrane.

The mechanism by which duramycin induces these changes is unknown.172 Studies of protein domains involved in

membrane tubulation and vesicle formation (e.g., ENTH [epsin NH2-terminal homology] and BAR [protein dimeriza-

tion domain named after the proteins Bin, Amphiphysin, and Rvs] domains) may provide clues on how duramycin can

fold themembrane.173

The results presented in Table 3 suggest that radiolabeled duramycin but not cinnamycin is suitable for SPECT imag-

ing of exposed PE. However, the tracer has not yet been tested in patients or in healthy human volunteers.

3.1.2 Exposure of PS

Since PS exposure accompanies apoptosis, PS has been extensively studied as a target for the imaging of dying cells.

Thus far, five families of protein or peptide-based PS imaging probes have been employed: Annexin A5, theC2A domain

of synaptotagmin I, lactadherin, PS-binding peptide 6, and bavituximab. Annexin A5 is the only probe that has pro-

ceeded to the clinical stage of testing. Imaging data for probes targeting exposed PS are presented in Tables 3 and 4.

Annexin A5

Annexin A5 (earlier called Annexin V or “placenta protein 4”) is an endogenous 36 kDa protein which was originally

isolated from human placenta.174 Other tissues, such as endothelial cells, kidneys, myocardium, skeletal muscle, skin,

red blood cells, platelets, and monocytes contain lower quantities of the protein.175 Annexin A5 was identified as a

potent anticoagulant which could displace and inhibit coagulation factors from biological membranes.176 Its binding
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was attributed to a Ca2+-dependent interaction with negatively-charged PSmolecules on the cell surface. Annexin A5

has no absolute specificity for PS, but binds with lower affinities to other targets, such as PE,177 membrane products

of lipid peroxidation,178 vascular endothelial growth factor receptor 2,179 and integrin 𝛽5.180 For this reason, some

Annexin A5 bindingmay be observed even in viable cells.

Although annexin A5 has been extensively tested in experimental animals and in cancer patients (see Table 3), for

various reasons the original probe failed tomeet clinical expectations181–183:

1. The radiolabeling procedures for AnnexinA5 are rather elaborate and complex, which has limited application of the

radiolabeled probe in a clinical setting.

2. Since Annexin A5 binds to exposed PS, an annexin scan cannot discriminate between apoptosis and necrosis. This

caveat is true for all PS- and PE-binding radiotracers. In a treatment response setting, the lack of specificity is not

necessarily a problem, andmay rather be an advantage, since PS- and PE-probes can provide a stronger signal than

pure apoptosis tracers and both apoptosis and necrosis can be desirable consequences of antitumor therapy.

3. Since the binding of Annexin A5 to exposed PS is calcium-dependent, fluctuations (or regional differences) of intra-

cellular Ca2+ concentrations may affect the binding of the tracer. This impact of calciummay result in high intrain-

dividual variability of probe binding and an impaired test-retest reproducibility of annexin scans.

4. The magnitude of Annexin A5 uptake in target lesions and the target-to-background (or signal-to-noise) ratios of

Annexin A5 scans are usually rather low. Low uptake of the tracer may be partially due to poor penetration of

Annexin A5 into tumor tissue. Poor image contrast may be caused by slow clearance of radiolabeled Annexin A5

from nontarget regions and blood, and by an increased uptake of the probe in normal tissues after antitumor ther-

apy. In order to address this problem, Annexin V-128 was developed, which shows a significantly lower kidney

retention than Annexin A5 and is currently being evaluated in clinical trials.

5. High nonspecific accumulation of Annexin A5 in the liver and the kidneys makes it hard to detect tumors in the

abdomen.

6. Tracer accumulation in areas far from known tumor sites may indicate the presence of unknown tumors or metas-

tases, but may also be false positives, since Annexin A5 can accumulate in various benign lesions, such as infections

and inflammations, capillary haemangioma, platelet-rich thrombi, and unstable atherosclerotic plaques. Uptake of

the tracer in such sites could bemisinterpreted as indicating the presence of malignant lymph nodes.

7. Theoptimal timing of a post-therapyAnnexinA5 scan is frequently unknownor uncertain (which is true for all exist-

ing cell death-targeting tracers), and a complex protocol with multiple scans may be necessary for correct evalua-

tion of the response of a tumor to therapy. A protocol involving three separate injections of radiolabeled annexin

and six whole-body SPECT scans has been proposed for studies in cancer patients, in order not to miss an early

response of the tumors to chemotherapy.184

Annexin B1

Annexin B1 is a PS-binding protein isolated from the pork tapeworm (Cysticercus cellulosae, the larval stage of Taenia

solium). Theprotein has adistinctN-terminus andonly32 to44%homology toother annexins, includingAnnexinA5.185

Radiolabeled Annexin B1 has been tested for SPECT and PET imaging of apoptosis (Table 3). [99mTc]- and [18F]Annexin

B1 showed predominantly renal clearance, like Annexin A5.

Although animal data indicate that apoptotic cells can be detected with radiolabeled Annexin B1, they have not

demonstrated superiority of Annexin B1 over Annexin A5. Moreover, injection of a foreign protein like Annexin B1

may lead to an immune response in humans.

Zinc coordination complexes

Zinc-dipicolylamine (Zn-DPA) coordination complexes contain two meta-oriented bivalent zinc cations and were cre-

ated as mimetics to the domain of Annexin A5 which binds to PS via two bridging bivalent calcium cations.186
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These small-molecule complexes associate with negatively-charged phosphorylatedmolecules, based on electrostatic

interaction.187,188 PSS-380 has a binding sitewith high and a binding sitewith low affinity for Zn2+; coordination of the

second Zn2+ molecule occurs only after association of the probe with the anionic membrane surface.189 PSS-380 has

only been used in an in vitro setting. In vitro and in vivo studies with a similar NIR probe (PSS-794) demonstrated that

Zn-DPA complexes can detect human cells dying by apoptosis or necrosis, and bacterial infections.190–193

The small molecular size of zinc coordination complexes could be an advantage and is one of the reasons why PET

and SPECT analogues of these compounds were tested for apoptosis imaging (it could, e.g., lead to improved probe

entry into tumor tissue). However, a high nonspecific binding of the labeledmolecules in healthy tissue194 and/or a high

uptake and retention of radioactivity in liver and intestines195,196 was found to limit the usefulness of Zn-DPA probes

for visualization of cell death. Moreover, since Zn-DPA complexes can bind to all kinds of anionic surfaces, positive

SPECT or PET signals may not always reflect exposed PS.

Synaptotagmin I

Synaptotagmin I is a 65 kDa transmembrane protein primarily present in synaptic vesicleswhere it binds to negatively-

charged phospholipids in a Ca2+-dependent manner to facilitate vesicle fusion and recycling during neurotransmit-

ter release.197–199 The two cytoplasmic C2 domains (C2A and C2B) of this protein have homology to PKC.198,199

These domains interacting with Ca2+, phospholipids, and soluble N-ethylmaleimide-sensitive factor attachment pro-

tein receptor are involved inmembrane fusionduring synaptic vesicle cycling.87 Whereas theC2A domain binds anionic

phospholipids, such as PS (Kd = 15 – 40 nM) and phosphatidylinositol, the C2B domain interacts with calmodulin and

phosphatidylinositol.200 Imaging of apoptosis has been explored by labeling the 12 kDa C2A domain with various fluo-

rochromes, contrast agents (superparamagnetic ironoxide andGd), and radionuclides (99mTcand 18F). For this purpose,

a C2A-glutathione S-transferase fusion proteinwas synthesized to prevent chemicalmodification in the PS-binding site

of C2A. Unfortunately, this approach yielded a heterogeneous probemixture as any of the 14 Lys residues in C2A could

be labeled resulting in a decrease of affinity to PS. Therefore, a single-site mutant of C2A was developed (C2Am, S78C)

with a Cys residue suitable for labeling and distant from the PS-binding site.201

Initial experiments with a fluorescent probe showed that C2A derivatives had much lower background binding in

viable cells than Annexin A5 and were fourfold more specific in imaging cell death.201 However, since the affinity of

C2A for PS-containing membranes (Kd = 20 to 71 nM) is much lower than that of Annexin A5 (Kd = 1 to 7 nM), a >50

times higher protein concentration may be necessary for good images.201 The preclinical imaging results described in

Table 4 have indicated that C2A-based probes are potentially useful for evaluation of antitumor treatment, but have

also some drawbacks:

1. High levels of radioactivity in liver, kidney, and abdomen may complicate the evaluation of tracer uptake in these

areas, particularly at short intervals after injection. The C2A domain labeled with 18F202 has shown a better clear-

ance profile than the 99mTc-labeled analogue.203

2. Because of the large size of the C2A molecule, tracer uptake is limited by the rate of diffusion into tissue. Radio-

chemists could try to produce probes with a reduced size and charge whichmay show amore rapid tissue entry.

3. Although in vitro experiments indicated a low background binding of C2A derivatives in viable cells, target-to-

background ratios of the radiolabeled compounds in the mammalian body were rather unfavorable. These low

ratios could be related to a low affinity of the probes to PS-containing membranes. C2A domain probes with higher

specificity and lower nonspecific retention have recently been developed, and as expected, these probes showed

improved tumor-to-background ratios.204

Lactadherin (MFG-E8, milk fat globule epidermal growth factor 8 protein)

MFGE8, a 46 kDa extracellular glycoprotein, is secreted by a subset of macrophages and dendritic cells. As a solu-

ble molecule, it participates in the opsonization of apoptotic cells and their phagocytosis, adhesion between sperm

and the egg coat, repair of intestinal mucosa, mammary gland branching, morphogenesis, and angiogenesis.205 The
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protein acts as a potent anticoagulant in blood206 andwas linked toAlzheimer's disease and autoimmunity. It is a bridg-

ing molecule between apoptotic and phagocytic cells, has the ability to bind to integrins (𝛼v𝛽3 and 𝛼v𝛽5) on immune

cells via its arginylglycylaspartic acid motif of the glutamic acid-leucine-arginine domain,207 and also binds to mem-

brane PS on apoptotic cells (with preference to PS inmembrane areas of spikymorphology). The binding tomembrane

PS occurs via its F5/8-type C1 and C2 domains (KdC1C2 = 4.9 nM, KdC2 = 2.0 nM) and does not require Ca2+. The

C2 domain has about 100-fold lower affinity toward soluble than membrane PS (Kd = 2.8 𝜇M) and has a much higher

affinity toward phosphatidyl-L-serine than phosphatidyl-D-serine.208 Despite functional similarity of the C-domains

present in synaptotagmin-1 and lactadherin, they do not share any sequence homology,207 but there is homology

between theC2domains shared by lactadherin andblood coagulation factorVIII andV.209,210 An in vitro study showed

that lactadherin can specifically detect PS andhas ahigher affinity forPS thanAnnexinA5.211 Imagingdata for a SPECT

tracer based on bovine lactadherin are presented in Table 4.

Lactadherin binding to apoptotic HL60 cells was reported to be related to PS exposure and not to an interaction of

the probewith integrins.212 However, the arginylglycylaspartic acidmotif in lactadherinmay bind to integrins through-

out the body, which will likely complicate visualization of dying cells in living mammals. In future studies, lactadherin

may be engineered in such a way that only the C2 domain, responsible for PS-binding, is used for labeling. A fluores-

cent derivative of the C2 domain has shown the ability to label different cellular pools of PS88,92 and apoptotic tumor

cells.208,213,214

PS-binding peptides

Using phagedisplay technology, peptideswere identifiedwhich canbindwith considerable affinity to exposedPS. Clus-

ters of the basic amino acids Arg (R) and Lys (K) appeared to be critical for (ionic?) interaction with this phospholipid.

A peptide called PSBP-6 has been radiolabeled for SPECT and PET imaging. The amino acid sequence of this peptide is

based on the 14-amino-acid sequence from the C2 domain shared by PKC, PS decarboxylase, and synaptotagmin I.215

PS-binding peptides are in theory an attractive alternative to PS-binding proteins such as Annexin A5. The pro-

cedures for radiolabeling of peptides can be simpler, and the radioactive probes may show a more rapid entry into

tumor tissue because of their smaller size. This reduced size can also result in amore rapid clearance of unbound probe

from tissue and from blood. Moreover, peptides can be structurally modified, in order to improve their pharmacoki-

netic properties andmetabolic stability. However, the currently available PS-binding peptides seem tohave insufficient

affinity216–220 and/or specificity221 for their target phospholipid (see Table 4).

Bavituximab family of antibodies

An indirect option for imaging of externalized PS is provided by the generation of antibodies for 𝛽2-glycoprotein 1.

This protein is abundant in plasma and was shown to bind to negatively charged compounds, such as heparin, anionic

phospholipids, and dextran sulfate. Two molecules of 𝛽2-glycoprotein 1 are required for the interaction with PS (Kd ∼
1 nM).222 Several murinemonoclonal antibodies (e.g., 3G4 and 2aG4),99,223–225 a chimericmonoclonal antibody (mAb)

(bavituximab),226 and a humanmAb (PGN635)227 were generated to detect PS exposure on tumor vessels. All of these

antibodies have been explored preclinically and in clinical trials for treatment of different types of malignancy. Radio-

labeled bavituximab, PGN635, and PGN650 have been used for noninvasive in vivo imaging of PS exposure (Table 4).

Bavituximab (MW = 145.3 kDa) was constructed by fusion of variable (F𝜈) regions from the mouse 3G4 antibody

and human immunoglobulin G1𝜅 constant regions. The chimeric antibody cross-links and stabilizes a complex of two

𝛽2-glycoprotein 1molecules (Kd= 0.4 nM,MW∼ 250 kDa) attached to the cell surface pool of PS.

PGN635 is a first-in-class PS-targeting fully human mAb. The F(ab’)2 fragment of PGN635 was used to produce

PGN650, which has similar affinity for PS-𝛽2-glycoprotein 1 complexes as 3G4 and bavituximab.227

In an animal model of human prostate tumors, 74 As-bavituximab displayed very high tumor-to-muscle ratios and

specific binding in the tumor (Table 4). Nonvascular staining of dead and dying cells in and around necrotic tumor

regions was observed only sporadically, which may indicate a poor ability of bavituximab to penetrate tumor tissue.

If this is the case, antibody fragments, such as PGN650may showbetter penetration. An open-label, single-arm clinical
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F IGURE 2 Chemical structures of members of the ApoSense family of compounds

trial has been performed on 12 patients with advanced solid tumors, in which radioiodinated PGN650 was tested for

tumor imaging, safety, and dosimetry. Unfortunately, the results of this trial have not yet been reported (Table 4).

‘Betabodies’

’Betabodies’ are fusion products based on the PS-binding domain(s) of 𝛽2-glycoprotein 1 and the constant region of an

antibody.228 The recombinant ‘betabody’ KL15 is expressed in a dimeric form and consists of the domain I and V from

𝛽2-glycoprotein 1 fusedwith theCH2andCH3constant (F𝜈) domains of amouse IgG2a antibody.Only a fewpreclinical

data concerning this probe have been published (see Table 4).

3.2 Altered permeability of the cell membrane

3.2.1 ApoSense family

The ApoSense family (Figure 2) is a group of small-molecule compounds (size 300 to 700 D) that can be used to

detect alteredmembrane permeability in apoptotic cells. The family comprises two different generations ofmolecules.

N,N′-Didansyl-L-cystine (DDC), (5-dimethylamino)-1-napthtalene-sulfonyl-𝛼-ethyl-fluoroalanine (NST-732), andN-(2-

mercaptoethyl)-dansylamide (NST-729) belong to the first generation. Thesemolecules possess an amphiphatic struc-

ture, in which the hydrophobic moiety may provide a membrane anchor, while the charged moiety may prevent the

compound from crossing healthy cell membranes. All contain a functional dansyl group with an inherent fluores-

cence. Butyl-2-methyl-malonic acid (ML-9) and pentyl-2-methyl-malonic acid (ML-10) belong to the second genera-

tion of the family. Their amphiphatic structure is based on an alkyl-malonate motif, which is derived from 𝛾-carboxy-

glutamate-rich Vitamin K-dependent carboxylation/gamma-carboxyglutamic protein domain-containing proteins.229

Vitamin K-dependent carboxylation/gamma-carboxyglutamic protein domain containing proteins (e.g., growth arrest-

specific protein 6, coagulation factor X, vitamin K-dependent protein S, and prothrombin) bind anionic phospholipids

and calcium ions and are an important component of the blood clotting cascade.

ApoSense molecules were initially thought to detect both apoptotic and necrotic cell damage, but later studies

have suggested that they specifically accumulate in apoptotic cells.230 Since ApoSense family members can cross the

intact blood–brain barrier, they can be used to image the response of brain tumors to treatment, and loss of neu-

rons after stroke or neurodegeneration in diseases like Alzheimer's disease. ApoSense compounds accumulate in the

cytoplasm.231
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Correlation between the in vitro uptake of DDC and Annexin A5 has suggested that scrambling processes in early

apoptosis reduce the energetic barrier of the cell membrane and allow DDC to enter the cell. DDC uptake is thought

to be the result of the following sequence of events:

Scrambling → membrane acidification → (mono)protonation of ApoSense molecules → flip-flop of the molecule

through the membrane by active scramblases and cell membrane depolarization → binding of the molecule to cyto-

plasmic proteins.

However, this proposed mechanism is not yet fully supported by experimental data. Imaging results acquired with

ApoSense probes are summarized in Table 5.

Advantages of the Aposense family of compounds are: their small molecular size, the minimal number of func-

tional groups, and the absence of chemically reactive, undesired labeling sites.232 Disadvantages are: the rather poorly

defined mechanism of uptake and the requirement of a high administered dose. This last aspect raises concern about

potential toxicity, since the dose is in the therapeutic rather than the tracer range. Some findings in animal models

have suggested that the uptake of ML-10 is pH-sensitive.233 If ML-10 uptake is indeed dependent on protonation, a

decreased pHof the blood (e.g., due to failure ofmultiple organs after anti-Fas antibody treatment)may result in a high

nonspecific uptake of ML-10 in viable tissues, whereas an increased extracellular pH (e.g., due to cyclophosphamide-

induced necrosis in treated tumors) could be associatedwith a decrease ofML-10 uptake. Such factorsmay complicate

the interpretation of PET images acquired with [18F]ML-10.

3.3 Changes ofmitochondrial transmembrane potential

Several lipophilic phosphonium cation-based tracers (arylphosphonium salts) have been developed for in vivo imaging

of treatment-induced changes of MMP (Δ𝜓m).
234 Loss of negative charge at the inner mitochondrial membrane leads

to reduceduptakeof these lipophilic cationic tracers. Thus, radiolabeledarylphosphoniumsaltswill generate anegative

contrast.

3.3.1 [18F]fluorobenzyl triphenyl phosphonium

[18F]fluorobenzyl triphenyl phosphonium (FBnTP) accumulates in cells with normal mitochondrial potential and

washes out when this potential is impaired by apoptosis. When the baseline uptake of the tracer in tumor tissue is

low, another imagingmodality must be used for tumor localization.235 The signal of the tracer has been reported to be

stable up to 45 min after injection.236 Changes in [18F]FBnTP uptake may be difficult to interpret since the accumula-

tion of this tracer can be affected by cellular efflux processes driven bymultidrug-resistance proteins237 and by tissue-

dependent differences of background uptake. Various structural analogs of [18F]FBnTP have also been prepared, such

as 4-[18F]-tetraphenylphosphonium (TPP),238–240 ([18F]fluoropentyl)triphenylphosphonium,241 and [18F]PEGylated-

BnTP.242 Uptake of these compounds is probably affected by the same processes as the tissue uptake of [18F]FBnTP.

3.3.2 [99mTc]sesta-methoxyisobutylisonitrile

The SPECT perfusion tracer [99mTc]sesta-methoxyisobutylisonitrile (mibi) has been tested as a probe of reducedmem-

branepotential in dying cells. Anearly study reported that theuptakeof this tracer inhumanbreast cancer cells (MCF7)

was reduced when cells were treated with a cytostatic agent (sodium phenylacetate), and the decline of tracer uptake

was correlated to the fraction of apoptotic cells.243 Another study reported that tumor uptake of [99mTc]sestamibi

was dose-dependently reduced inmice bearing Ehrlich carcinomas that were subjected to radiotherapy. At 24 hr after

irradiation, tumor-to-background ratioswere inversely correlatedwith apoptosis index and the percentage of necrotic

area, but at longer intervals (72 hr and 144hr post irradiation) these ratioswere inversely correlated onlywith the per-

centage of necrotic area.244 Although this study confirmed that [99mTc]sestamibi is a “negative contrast tracer of dying

cells,” another investigation performed in the same year showed that the absolute uptake values of [99mTc]sestamibi in

carcinomas are six- to eightfold smaller than those of a phosphonium cation like TPP.238 Thus, [99mTc]sestamibi scans

will show a considerably lower signal-to-noise ratio than TPP scans.
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In summary: PET and SPECT probes of mitochondrial transmembrane potential have shown limited success. The

uptake of such tracers is affected by the activity of transporters involved in multidrug resistance and by changes of

the physical properties of target tissue. Changes in the uptake of such probes after antitumor therapy may not always

reflect changes in mitochondrial transmembrane potential of tumor cells.

3.4 Increased proteolysis

Extrinsic and intrinsic apoptotic pathways converge at the level of caspase-3 and caspase-7 activation. Thedetectionof

activated caspases could be a valuable and specific tool for identifying dying cells beforemorphological features of cell

death occur. Quantitative imaging of activated caspase-3 and -7 may be more useful for monitoring tumor responses

to therapy than for diagnosis and localization of unknown tumors. In vivo imaging of activated caspases is possible via

two different approaches:

1. use of caspase inhibitors (Z-valine-alanine-DL-aspartate or isatin-derivatives, for example, [18F]WC-II-89)245; and

2. use of caspase substrates (Z-aspartate-glutamate-valine-aspartate-derivatives, for example, [18F]CP18).246–248

The main benefits of radiolabeled substrates over radiolabeled inhibitors are (in theory): (a) no problem of satu-

ration of the binding sites, and: (b) signal amplification. Since a single enzyme molecule can convert several substrate

molecules within the time frame of a PET or SPECT scan, the use of a substrate may result in a higher sensitivity for

the detection of an active enzyme. However, in a comparative study between a caspase substrate and activity-based

probes (inhibitor-based), signal amplificationat the siteof proteolysis didnothaveadramatic enhancingeffect on imag-

ing. The authors believe that this was due to slow diffusion of the substrates into tissues and cells.249 In another study

with inhibitor-based probes, the abundance of active proteases in tumor tissueswas found to be sufficient for the gen-

eration of images with acceptable contrast, therefore no saturation of binding sites occurred.250

3.4.1 Caspase inhibitors

Radiolabeled inhibitors bind to a finite number of sites resulting in saturability of the probe binding.251–253 The amount

of accumulation is dependent on the ratio of the concentration of active caspases and the affinity of the inhibitor for

these caspases (Bmax/Kd). The addition of a sulfonamide group confers isatins (i.e., derivatives of 1H-indole-2,3-dione)

a high affinity for caspase-3 and -7.254 The chemical structures of some isatin-based caspase inhibitors are shown in

Figure 3, whereas imaging results acquired with these tracers are summarized in Table 6.

Radiolabeled isatins have been shown to bind specifically to activated caspases, but their sensitivity as PET probes

was limited. [18F]WC-II-89 may be better than [11C]WC-98 or [18F]WC-IV-3 in discriminating the varying levels of

active caspases in vivo. Although preclinical studies have indicated that [18F]ICMT-11 has potential for evaluation of

the impact of antitumor therapy, clinical application of this tracer is not very easy. Because of a low baseline uptake of

radioactivity, tumor outlines cannot be assessed by PET but should be determined from a CT scan. The low baseline

uptake may be considered as a favorable property of a cell death tracer, since in patients only small fractions of apop-

totic cells are expected in tumor tissues at all posttreatment scanning intervals. Thus, the use of a CT or MRI scan will

possibly be always necessary to delineate the tumors. Since radioactivity accumulates in liver, kidneys, intestines, and

urinary bladder, assessment of the uptake of [18F]ICMT-11 in abdominal tumors may be difficult or even impossible.

Injected isatins can be trapped in blood (either due to apoptosis in lymphocytes, or to released, circulating caspases).

Further optimization of the pharmacological properties of isatin-based caspase inhibitors seems therefore necessary,

but unfortunately, literature indicates that the list of chemical alternatives for existing caspase-3/-7 tracers is almost

exhausted.
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F IGURE 3 Chemical structures of radiolabeled isatins which have been tested as PET probes for caspase-3

3.4.2 Caspase substrates

The cellular trapping of radiolabeled caspase substrates is less sensitive to competition by physiological substances

than the binding of radiolabeled caspase inhibitors, but intracellular retention of the cleaved substrate is necessary for

successful imaging.

Currently used caspase substrates are based on the Z-aspartate-glutamate-valine-aspartate sequence. Since the

inclusion of only a Aspartate, Glutamate, Valine, Aspartate, Glycine (DEVDG) or Asparagine, Glutamine, Valine,

Asparagine, Glycine (NQVNG) amino acid sequence results in highly polar peptides, which do not cross cell mem-

branes, some additional sequence should be attached to ensure membrane permeation. Membrane-penetrating pep-

tide sequences which could be explored are the following:

- Multiple Antigenic Peptide (MAP) peptide (X-KLALKLALKALKAALKLA)—group 1, bilateral transport;

- transportan—group 1, bilateral transport;

- Tat—group 2, unilateral trapping, suitable for labeling because of the presence of Tyr;

- penetratin—group 2, unilateral trapping, not suitable for labeling because of the presence ofMet.
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F IGURE 4 In vivo [18F]CP18 scans of tumor-bearingmice (PET/CT images showing tracer uptake [%ID/cm3] in vehi-
cle, 5-FU (5-fluorouracil), irinotecan, and combination-treated animals (from left to right) before (upper panel) and
after (lower panel) treatment. Tumors are indicated by white squares. Reproduced (with permission) from ref. 411

In the first attempts at probe development, a Tat sequence (e.g., Tat49-57, RKKRRQRRR)was added to ensure cellu-

lar uptake. It was demonstrated that insertion of yDEVDG at the C-terminus of Tat was preferable, but themechanism

of uptake which is triggered by addition of that sequence is caspase-independent.255

An elegant solution to the problem of intracellular retention of the cleaved substrate has recently been provided by

the so-called “smart probes” which display intramolecular macrocyclization and in situ nanoaggregation upon activa-

tion by caspase-3.256–258 Due to sequence homology among the caspases, most caspase probes are not specific for

caspase-3 or caspase-7. However, recent research on activity-based probes has shown that the selectivity of such

probes for a single caspase can be greatly improved by introducing several unnatural amino acids in the peptide recog-

nition sequence.259–262

Imaging results acquired with radiolabeled caspase substrates are presented in Figure 4 and Table 6. Although the

preclinical data presented in Table 6 (particularly those of [18F]CP18) have indicated that it is possible to image apopto-

sis and therapy-induced increases of apoptosis with a radiolabeled substrate for caspase-3, concentrations of radioac-

tivity in target tissueswere usually very low. Thus, the currently available caspase substrates seem to have not fulfilled

their promise of significant signal amplification with respect to radiolabeled caspase inhibitors.

3.5 DNA damage and repair

As explained in Section 2.5 of this review, fragmentation of DNA is a process which accompanies both apoptosis and

other forms of cell death. Environmental factors which may lead to the development of cancer, such as exposure to

ultraviolet light, ionizing radiation, and carcinogenic substances, cause strand breaks in DNA. Moreover, many human

cancers are characterized by deficiencies in DNA repair pathways compared to normal tissue. Finally, most forms of

antitumor therapy induce damage toDNA.Many researchers have therefore attempted to develop radiopharmaceuti-

cals which can visualize DNA damage and repair. Such tracers could be used to: (i) detect several forms of cancer at an

early stage, (ii) evaluate the response of tumors to therapy, (iii) assess the biodistribution, pharmacokinetics, and target

engagement of cytotoxic drugs aimed at inhibiting DNA repair, and (iv) select patients for treatment with such drugs.

Results of attempts to visualize DNA damage and repair are summarized in Table 7.
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F IGURE 5 Chemical structures of radiolabeled inhibitors which have been proposed for imaging of activated
PARP-1

3.5.1 Poly(ADP-ribose) polymerase-1

PARP-1 is an enzyme in the nucleus of eukaryotic cells. When single-strand breaks in DNA occur, PARP-1 transfers

ADP-ribose units from NAD+ to various proteins, such as DNA polymerase and histones. This action of the enzyme

plays an important initiating role in the repair of DNA, but when PARP-1 is hyperactivated, cellular NAD+ pools are

depleted, resulting in a decline of the levels of ATP and necrosis. Radiopharmaceuticals which target the expression

or the activity of PARP-1 have thus been used to evaluate target engagement of cytotoxic drugs. Such probes include

radiolabeled analogs of the drug olaparib and derivatives of the benzimidazol carboxamide NU1085 (see Table 7 and

Figure 5).

Some PET tracers for PARP-1 have shown very promising results in animal models, particularly [18F]PARPi. How-

ever, all radiolabeled PARP inhibitors which have been studied thus far are hepatobiliary cleared. It remains to be seen

whether the high accumulation of radioactivity in liver, intestines, and gall bladder constitutes a problem for applica-

tion of these tracers in patients with abdominal cancer. The use of radiolabeled PARP-1 inhibitors may be associated

with two other complications: (i) Such probes may bind not only to dying tumor cells but also to immune cells, and (ii)

DNA damage and repair will not always lead to cell death. Thus, PARP-1 inhibitors will have a limited specificity for

dying cells.

3.5.2 Phosphorylated X isoform of the histoneH2A (𝜸H2AX)

When double-strand breaks in DNA occur, the X-form of histone H2A (H2AX) is phosphorylated (𝛾H2AX) and several

hundreds of phosphorylated proteinmolecules accumulate around each break site. The formation and accumulation of

𝛾
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𝛾H2AX is necessary for recruitment and activation of the subsequent processes of DNA repair. The expression levels

of 𝛾H2AX are very low under normal physiological conditions, but show a strong and rapid rise after the induction of

DNA damage. For this reason, 𝛾H2AX is an attractive target for SPECT and PET imaging. Imaging of this target may be

used to visualize the impact of antitumor therapy.

Anti-𝛾H2AX antibodies can be used to quantify phosphorylated H2AX in permeabilized or lysed cells, but are not

useful in living cells since such antibodies do not cross intact cell membranes. However, when the antibodies are linked

to a cell penetrating peptide (“TAT sequence”), they are internalized in living cells and targeted to the nucleus (see

Table 7).

A recent review on imaging of the DNA damage response263 concluded that several important issues still need to

be addressed before anti-𝛾H2AX-TAT antibodies can be applied in clinical studies:

1. A humanized version of the antibodies should be prepared, since the preclinically tested antibodies were raised in

rabbits andwill cause an immune response when they are injected in humans;

2. Since the currently used 𝛾H2AX-TAT antibodies have a rather high nonspecific in vivo binding, it may be necessary

to improve the target-to-nontarget ratio of these probes, for example, by using smaller antibody fragments rather

than full antibodies, or by the application of a pretargeting strategy;

3. Quantification of the exact number ofDNAdouble strand breaksmay be difficult, since the local increase of 𝛾H2AX

is not directly or linearly related to the number of strand breaks. More information about the biology of 𝛾H2AX is

required to properly interpret PET or SPECT images acquired with anti-𝛾H2AX-TAT.263

3.5.3 Ataxia telangiectasia and Rad3-related threonine serine kinase

Another important enzyme involved in the initiation andorchestration of the repair ofDNAdamage is ataxia telangiec-

tasia and Rad3-related threonine serine kinase (ATR kinase). A radiolabeled analog of the ATR kinase inhibitor Ve-821

has been prepared but the results were disappointing (Table 7). Apparently, the pharmacokinetic properties of radiola-

beled ATR kinase inhibitors need to be improved before they can be applied as PET tracers.

3.6 Other processes involved in cell death

Several imaging probes have been developed which may visualize necrosis. Imaging findings concerning these probes

are summarized in Table 8 and the chemical structures of some probes are shown in Figure 6. The probes in question

targeted the following processes:

3.6.1 Exposure of histoneH1

Apoptosis-targeting peptide-1 (ApoPep-1), a hexapeptide identified by phage display, binds in a Ca2+-independent

manner to histone H1, which is exposed by apoptotic cells or becomes accessible in the nucleus of necrotic cells.264

The translocation of histone H1 during apoptosis proceeds in a caspase-dependent manner and occurs at the early

stage of apoptosis (before DNA fragmentation). The R3 residue was shown to determine binding and the ApoPep-1

sequence was homologous to the G-protein-coupled receptor 83.

3.6.2 Redistribution of La autoantigen

La autoantigen is a nuclear proteinwith anMWof 47 (or 48) kDawhich is overexpressed in cancer cells with respect to

cells of the tissueoforigin. TheLaprotein is cleavedbycaspase-3duringapoptosis, resulting in translocationof theNH2

terminus part of the molecule (MW43 kDa) to the cytoplasm265 and accessibility of this part to anti-La antibodies.266

Since the expression of the La autoantigen is selectively induced in dead or dying cancer cells after DNA-damaging

chemotherapy, imaging of this target is an interesting strategy for the detection of tumors and the evaluation of anti-

tumor therapy.267
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F IGURE 6 Chemical structures of some compounds which have been used to target tissue necrosis

3.6.3 Accessibility of myosin

RadiolabeledFab fragmentsofmonoclonal antibodies againstmyosin ([111In]antimyosin) havebeenwidely used for the

detectionofmyocardial cell injury andnecrosis.Membranedisruptionofmyocytesmakes it possible for such fragments

to enter the dying cell and to interact withmyosin heavy fragments.

3.6.4 Exposed histones

[99mTc]Glucarate ([99mTc]-D-glucaric acid) is a six-carbon dicarboxylic acid with a structural similarity to fructose. This

SPECT tracer has been reported to accumulate in areas of acute ischemic injurywhere necrosis occurs, bothwithin the

brain268 and heart.269–272 For this reason, [99mTc]glucarate has also been tested as a cell death tracer in animalmodels

of human cancer and in cancer patients (see Table 8).

3.6.5 Extracellular DNA

Hypericin is a red pigment with antraquinone-like structure (MW 504 Da), which has been isolated from St. John's

wort (Hypericumperforatum).Hypericin has been tested inmany studies as a photosensitizer for photodynamic therapy.

Since the compound accumulates in necrotic cells and tissues, hypericin has also been radioiodinated or labeled with
64Cu for the imaging of tumors and infarctions in experimental animals and humans (Table 8). Because of its polyphe-

nolic polycyclic structure, hypericin has fluorescent properties and the compound can be detected in cell or preclinical

experiments by optical imaging.273–275

3.6.6 Unknown target (Pamoic acid derivatives)

The bis-DTPA derivative of pamoic acid (4,4′-methylenebis[3-hydroxy-2-naphtoic acid]) is a necrosis avid contrast

agent. Themechanismunderlying accumulation of this compound in necrotic tissue is unknown.276 Various derivatives

of pamoic acid have been radiolabeled and evaluated for visualization of necrosis with SPECT or PET (Table 8).

Unfortunately, most necrosis-targeting probes seem to lack adequate specificity (see Table 8). They may accumu-

late in tissues by mechanisms unrelated to cell death (e.g., inflammation, ischemia, hypoxia, or hypoglycemia), and the

uptakemechanism of these probes is poorly defined. Only the peptide ApoPep-1 seems to deserve further evaluation.
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4 CONCLUSIONS AND PERSPECTIVES

Although a large number of PET and SPECT probes for imaging of cell death have been developed, only a few radio-

pharmaceuticals have proceeded to the clinical stage of testing, viz. radiolabeled Annexin A5, PGN650, ML-10, CP18,

antimyosin antibodies, glucarate, and hypericin. Of these seven, the first four are the most likely candidates for trans-

lation to the clinic, and results of ongoing clinical trials with Annexin V-124 and PGN650 are eagerly awaited.

An important issue concerning cell death imaging is the question whether radiopharmaceuticals should be specific

for a particular deathmode and biochemical process (e.g., activated caspase-3 or caspase-7), or can have limited speci-

ficity (e.g., detect exposed PS or anionic phospholipids). The required specificity will probably depend on the intended

use of the tracer. In a basic science setting (visualizing of dying cells in animal and in vitro models of human disease),

specificity of the used probe is very important in order to acquire specific information about the mechanisms under-

lying cell death (apoptotic vs. nonapoptotic, noninflammatory, or pro-inflammatory, etc.). However, in a clinical setting

(assessment of a patient's response to antitumor treatment), specificity of the probemay be of less importance. In this

case, a probe with limited specificity that provides a stronger signal than a specific probe may be preferred. Here the

main question to answer is whether cells have died. The question via which mechanism cell death was induced is then

only a secondary issue.

In the extensive work performed with radiolabeled Annexin A5, two important difficulties were noted which will

be of general concern in treatment response evaluation with any cell death tracer: (i) since the optimal timing of a

post-therapy scan is frequently unknown or uncertain, a complex (multi-scan) protocol may be required for correct

evaluation of tumor responses, and (ii) increases in cell death occur rapidly after the onset of therapy and correlate

with early tumor shrinkage, but themagnitude of this early response to treatment is not always predictive for the long-

term response of a tumor. For a few tracers (i.e., [99mTc]Annexin A5, [18F]ML-10, [18F]FB-VAD-fluoromethyl ketone,

[99mTc]glucarate) and a few tumor models, data have been acquired demonstrating that the magnitude of early tracer

uptake in the tumor corresponds to the extent of tumor shrinkage during follow-up. There is definitely a need formore

information about this subject, since valid predictive tools will allow clinicians to change therapy in nonresponding

patients at an early stage, avoiding unnecessary toxicity and increasing treatment efficacy.

Since a limited probe entry into tumor tissue was frequently encountered in previous research (probably due to

a large molecular size of the probes), radiolabeled protein domains or antibody fragments may be more promising as

tracers than full-length proteins or antibodies. Some novel potential tracer candidates have been identified in recent

years, but have not yet been widely explored for PET and SPECT imaging. These include the Tim family of proteins

which bind to PS via their IgV domain (but show a higher affinity to oxidized PS)277; Bai-1, which binds to PS via throm-

bospondin domains278; and sRAGE, which binds PS via a V-type domain.279 Other possible candidates are: antibodies

against CXCL1, which is released during the unfolded protein response,280 the high mobility group box 1 (HMGB1)

protein,which interacts with PS in an integrin-dependent manner,52 and imaging of granzyme B, which may be a pre-

dictive biomarker of immunotherapy response.281 The already wide field of cell death imaging may thus expand even

further in the near future.
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