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Abstract

Successful treatment of cancer patients requires balancing of the
dose, timing, and type of therapeutic regimen. Detection of increased
cell death may serve as a predictor of the eventual therapeutic
success. Imaging of cell death may thus lead to early identifica-
tion of treatment responders and nonresponders, and to “patient-
tailored therapy.” Cell death in organs and tissues of the human body
can be visualized, using positron emission tomography or single-
photon emission computed tomography, although unsolved prob-
lems remain concerning target selection, tracer pharmacokinetics,
target-to-nontarget ratio, and spatial and temporal resolution of the
scans. Phosphatidylserine exposure by dying cells has been the most
extensively studied imaging target. However, visualization of this
process with radiolabeled Annexin A5 has not become routine in
the clinical setting. Classification of death modes is no longer based
only on cell morphology but also on biochemistry, and apoptosis is
no longer found to be the preponderant mechanism of cell death
after antitumor therapy, as was earlier believed. These conceptual
changes have affected radiochemical efforts. Novel probes target-
ing changes in membrane permeability, cytoplasmic pH, mitochon-

drial membrane potential, or caspase activation have recently been
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explored. In this review, we discuss molecular changes in tumors
which can be targeted to visualize cell death and we propose promis-

ing biomarkers for future exploration.

KEYWORDS

apoptosis, early treatment response, necrosis, positron emission
tomography (PET), single photon emission computed tomography
(SPECT)

1 | INTRODUCTION

A living organism can be considered as a complicated machine, which requires constant maintenance, modernization,
and restructuring or reconstruction. Subunits of the organism, such as cells, are continuously produced, exploited,
altered, utilized and exchanged. Billions of cells die daily as a part of natural processes in the adult human body, and
even more cells die during embryonic development. Under physiological conditions, superfluous, dangerous, or dam-
aged cells are killed and dismantled in a discrete and highly orchestrated manner. For instance, squamous epithelial
cells are removed via cornification,! Miillerian duct in males or Wolffian duct in females via apoptosis, and pronephric
kidney tubes also via apoptosis.23 A mainstay of the body's homeostasis is a proper decision on cellular fate: death or
survival.

It is thus not surprising that perturbations of cell death processes are an underlying factor of many pathologic
conditions. Cell death is enhanced in ischemia,* sepsis,’ type-1 diabetes,® transplant rejection,” neurodegenerative
disorders,® and autoimmunity (e.g., AIDS).? In contrast, reduced cell death is observed in persistent inflammation (as
occurs in chronic obstructive pulmonary disease and asthma),1%11 autoimmunity (e.g., rheumatoid arthritis),'2 and
cancer.13 With nondestructive and minimally invasive medical imaging techniques like PET (positron emission tomog-
raphy) and SPECT (single photon emission computed tomography), cell death in organs and tissues of the human body
can be visualized and quantified. Such quantification may be important in cancer treatment, since monitoring of the
increase in cell death early after the onset of antitumor therapy can serve as a predictor of the eventual therapeutic
outcome.

In the following review, we describe molecular changes in tumors related to cell death and we provide an overview
of the wide range of PET and SPECT tracers which have been developed to monitor these changes. We discuss the
potential and the limitations of the existing tracers and we propose some promising biomarkers of dying cells which
deserve to be explored in future imaging research.

1.1 | Canonical classification of cell death modes

There are many ways for a cell to die. In recent years our concepts of cell death have changed. In this chapter, we first
describe the canonical classification of cell death modes and we subsequently summarize new observations which have
led to a revised classification.

The classical concept of cell death (proposed in 1973) is based on morphologic features of dying cells and makes
a distinction between three death types: apoptosis (type 1), autophagic cell death (type II), and necrosis (type IlI) (see
Table 1).14 Even nowadays, cell death is still frequently classified in these three subroutines. Apoptosis and autophagy
are considered as “regulated” and necrosis as “accidental” cell death.1>

1.1.1 | Apoptosis

Apoptosis was considered to be a noninflammatory, highly orchestrated, and inherently controlled process. Since its
identification in 1972,16 apoptosis has been the most investigated type of cell death. Apoptosis can be activated by
intra- or extracellular stimuli and is then coined as “intrinsic” or “extrinsic” apoptosis. Both these apoptotic scenarios



RYBCZYNSKAET AL.

WILEY 7

TABLE1 Morphological classification of cell death

Apoptosis (Type I) Autophagic cell death (Type I1) Necrosis (Type Ill)

Affects anindividual cell Affects anindividual cell Affects a group of cells

Cell rounding, shrinkage and Cytoplasmic vacuolization Increased cell volume (oncosis),
detachment translucent and vacuolized cytoplasm

Cell membrane blebbing and Cell membrane intact Cell membrane breakdown

shedding of apoptotic bodies,
but membrane intact

Maintained organelles and Degradation of Golgi, Swollen organelles and cytoplasm
cytoplasm condensation polyribosomes and ER

Chromatin condensation No/partial chromatin Chromatin condensation into small,
(pyknosis) condensation irregular patches (karyolysis)

Nuclear fragmentation Appearance of autophagosomes Dilatation of the nuclear membrane
(karyorrhexis) and autolysosomes

DNA fragmentation Late DNA fragmentation Late DNA fragmentation (after cell lysis)

Presence of phagocytosis, No/little phagocytosis Generally absence of phagocytosis,
generally anti-inflammatory often pro-inflammatory

include extensive cellular remodeling by activated cysteine-aspartic proteases, called “caspases” (for more informa-
tion, see 2.4.).

Inintrinsic apoptosis, stimuli such as DNA damage and hypoxia lead to swelling or permeabilization of the mitochon-
drial outer membrane, dissipation of the mitochondrial membrane potential (MMP), and release of various apoptotic
effectors. Apoptotic effectors serve either as activators of the proapoptotic cascade or inhibitors of the pro-survival
cascade. Apoptosome complex forming compounds, such as caspase-9, cytochrome ¢ (CytC), apoptotic peptidase-
activating factor 1, deoxy-adenosine 5’-triphosphate (deoxy-ATP), and second mitochondria-derived activator of cas-
pases (second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low Iso-
electric point (pl)) belong to the activator category, whereas B-cell lymphoma 2 (Bcl-2) family members and inhibitors
of apoptosis proteins are in the inhibitor class.1”-1?

Extrinsic apoptosis is activated by the appearance of multiple members of a tumor necrosis factor (TNF) family of lig-
ands via death receptors, or by the disappearance of specific ligands for dependence receptors. Death receptor ligands
include TNFa, first apoptosis signal ligand which binds to the Fas receptor, and TNF-related apoptosis inducing ligand
(TRAIL), which interacts with the TRAIL receptors.2%21 An example of a ligand for a dependence receptor is netrin-1,
which binds to the uncoordinated movement receptor gene 5B (mutations in this gene result in uncoordinated move-
ment of Caenorhabditis elegans) receptor.22 Main effectors activating the proapoptotic cascade are death-inducing
signaling complex-forming: Fas-associated protein with death domain, caspase-8 and caspase-10, whereas main effec-
tors inhibiting the proapoptotic cascade are cellular Fas-associated protein with death domain-like IL-1p-converting
enzyme-inhibitory protein and x-linked inhibitor of apoptosis protein.23-25 Extrinsic apoptosis is frequently linked to
the response of the immune system to abnormalities.

Under certain circumstances (e.g., high x-linked inhibitor of apoptosis protein expression levels), components of the
intrinsic apoptosis machinery can also become activated during extrinsic apoptosis. This interrelation of extrinsic and
intrinsic signaling is mediated by a proapoptotic Bcl-2 member, Bcl-2 homology domain 3 interacting-domain death
agonist, and serves for amplification of an apoptotic signal downstream death receptors.26 Furthermore, intrinsic and
extrinsic apoptosis converge through caspase-9 and caspase-8, which leads to activation of caspase-3 and cellular dis-
assembly from within. Activation of caspase-3 is followed by cleavage of cytosolic and nuclear proteins, DNA fragmen-
tation, cross-linking of proteins, formation of apoptotic bodies, expression of ligands for phagocytic cell receptors, and
removal of apoptotic cells by phagocytosis.2”

Evasion of cell death is considered to play an important role in oncogenesis and in development of treatment resis-
tance in cancer.28 One example of apoptosis evasion is a decrease in p53 signaling. P53 is a tumor suppressor protein,

which can regulate the cell cycle and can induce cancer cell apoptosis in response to diverse stressful stimuli. Frequent
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mutations in the TP53 gene and/or defects in the p53 signaling pathway (e.g., upregulation of the p53 inhibitor mouse

double minute 2, mouse double minute 2 homolog [E3 ubiquitin-protein ligase]) result in uncontrolled proliferation and
a brake on apoptosis. This may have a subsequent impact on both initiation of oncogenesis and development of treat-
ment resistance. Although apoptosis is the best-characterized cell death mechanism, in many cancers it is not the main

cause of cell loss induced by DNA damaging agents.28

1.1.2 | Autophagic cell death

Autophagy is a natural, regulated process for disassembly of dysfunctional or damaged cellular organelles and proteins.
Such damaged components are contained inside a double-membrane vesicle called an autophagosome. After fusion of
an autophagosome and a lysosome to an autolysosome, the contents of the organelle are digested by acidic lysosomal
hydrolases.2?

Even today, there is much controversy on the question whether in vivo autophagy is a type of cell death or fulfills
a pro-survival function, for example, by limiting cell constituents during nutrient starvation. This question is raised
because most inhibitors of autophagy accelerate (and not retard) cell death.39-34 For this reason, autophagic cell death
has now been defined as cell death inhibited by inactivation of autophagy genes or by autophagy inhibitors, such
as 3MA, rather than cell death judged by simple morphological classification.3> This definition is based on studies
which have elucidated molecular mechanisms of autophagic cell death.3¢:37 Tissue-specific knockout models of genes
controlling autophagy in mice have provided much information about the role of autophagy in the development and
differentiation of mammalian tissues and organs.38 In some tissues (e.g., mouse liver) autophagy seems to suppress
tumorigenesis,3? but in most cases, autophagy facilitates the formation of tumors and increases tumor growth and
aggressiveness.*® Autophagy seems to be particularly induced when cancers progress to metastasis.*! Inhibitors of

autophagy may thus be useful as adjuvants in cancer therapy.

1.1.3 | Necrosis

Necrosis is the consequence of irreversible damage to cells caused by factors such as mechanical trauma, infections,
toxins, and shortage of oxygen and nutrients. Necrosis is traditionally thought to be an uncontrollable and accidental
type of cell death, which is highly immunogenic and elicits an inflammatory response due to leakage of cytosolic con-
tents. It was considered the death mode of cells which displayed no characteristics of apoptosis. In most cases necrosis
affects not a single cell but spreads over a group of cells, as in gangrene or ischemia. Morphologic features of necro-
sis are listed in Table 1. At the biochemical level, necrosis is accompanied by a massive production of reactive oxygen
species and reactive nitrogen species, besides a marked drop of cellular ATP.3>

About 10 years ago, studies on genes that could control necrosis led to the conclusion that a regulated form of necro-
sis must exist. Regulated necrosis (“necroptosis”) can occur as the result of activation of death receptors, for exam-
ple, by TNF, first apoptosis signal ligand, or TRAIL,*2 and is controlled by two key regulators:TNF receptor-associated
factor 2 and receptor-interacting protein kinases 1 and 3.3>43 Besides the activation of death receptors, necropto-
sis requires inhibition of the apoptotic signaling.#* This type of necrosis occurs not only in disease (e.g., in systemic
inflammatory response syndrome), but also in normal physiology (e.g., in immunologically silent maintenance of T-cell
homeostasis).#>46 In cancer, necrosis occurs when rapid tumor growth is accompanied by insufficient vascularization
or the cancer cell population becomes very dense.?” It can also be a consequence of successful immunotherapy, for
example, with oncolytic viruses.*® The triggering of nonapoptotic cell death modes, such as regulated necrosis, is cur-
rently explored for treatment of apoptosis-resistant cancer cells.*? However, clinical application of regulated necrosis

in cancer treatment has not yet been achieved.

1.2 | Revised classification of cell death modes

Canonical (morphologic) features of a particular cell death mode can be inhibited while death is only deferred.1> Under
certain circumstances, a dying cell can even switch between different cell death programs, for example, the response to
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FIGURE 1 Physiologic, molecular, and morphologic events during the time-course of cell death

DNA damage changes from apoptosis to mitotic catastrophe in p53-expressing ovarian cancer treated with cisplatin
versus cisplatin and checkpoint kinase 2 (required for checkpoint-mediated cell cycle arrest) inhibitor>°-52 or from
apoptosis to (secondary) necrosis in conditions of insufficient phagocytosis. This suggests that an interplay and/or a
fluidic switch may exist between various types of cell death.>3 Apparently, cell death may differ not only in its main
morphologic features but also in biochemical features, cell types involved, and activating mechanisms. Moreover, mor-
phologic features are hardly quantifiable and do not take functional, biochemical, and immunological variables into
account. Therefore, scientists have shifted from a morphological to a biochemical classification of cell death.3> As a
consequence, the canonical distinction of three different cell death modes has been revised and expanded to com-
prise 14 subroutines (see Table 2), of which ten play a proven role in treatment-induced cancer cell death.1>:3554
These include: apoptosis (divided into: intrinsic caspase-dependent, intrinsic caspase-independent, extrinsic by death
receptors, extrinsic by dependence receptors), unregulated necrosis, regulated necrosis (necroptosis), pyroptosis,
autophagic cell death, mitotic catastrophe, and anoikis. It is still hotly debated whether some of these processes (e.g.,
autophagic cell death and mitotic catastrophe) are true subroutines or associated phenomena preceding cell death
(for more information, see).3555 Furthermore, it is still not clear which of these subroutines predominates in cell death
induced by antitumor treatment and which route should be activated for the most effective treatment of a particular
type of cancer.28 Nevertheless, this new classification of cell death allows a better separation of molecular pathways
and the linking of pathways to functional consequences.

In order to properly classify cell death, several parameters should be determined since many biochemical processes
that were initially considered to be hallmarks of apoptosis appear also in other death modes (Table 2). Despite this
complexity, five main biochemical parameters appear to define dying cells: (1) changes of membrane asymmetry (expo-
sure of phosphatidylethanolamine [PE] and phosphatidylserine [PS]), (2) loss of transmembrane potential, (3) perme-
abilization of the mitochondrial membrane with associated potential changes, (4) increased proteolysis, and (5) DNA

fragmentation. We will discuss these in the following chapter.

2 | HALLMARKS OF CELL DEATH

As listed in Table 2, each of the five characteristics of apoptosis occurs in more than one cell death mode. However, the

order of their appearance on the scenario of cell death is generally well preserved (see Figure 1).

2.1 | Changesin membrane asymmetry

The cell membrane is a highly specialized bilayer of asymmetrically distributed phospholipids. In the resting state,
cationic phospholipids prevail in the outer, and anionic phospholipids in the inner membrane leaflet. The cell membrane
functions as: a barrier (allowing passage of only a selected set of molecules), an organizer (assembling, co-localizing,
and controlling activity of signaling components), and a sensor and communicator (processing and conducting signals

between the cell and its environment).5¢ Multiple cellular activities are accompanied by changes in morphology or
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composition of the cell membrane. These activities include the regulation of immunity, coagulation and bone forma-
tion, for example, by changing the conformation, interactions, localization, and destination of proteins.57“Jl

A hallmark of apoptosis is the disturbance of membrane asymmetry, and specifically, the translocation of phospho-
lipids, such as PE and PS, from the inner to the outer leaflet of the membrane. Under basal conditions, PE is predom-
inantly and PS is almost exclusively confined to the inner leaflet of the cell membrane (in erythrocytes, 80-85% and
>96%, respectively).62 Once on the cell surface, exposed PE may regulate actin-dependent blebbing and the formation
of apoptotic bodies,®3-6> whereas exposed PS serves as a recognition and docking site, for example, for phagocytes,
and facilitates the removal of apoptotic cells.66-68

Although disturbance of membrane asymmetry is a feature of apoptosis, disturbed asymmetry also appears early
after activation of other cell death modes, such as anoikis, autophagic cell death, pyroptosis and mitotic catastrophe
(Table 2).69-72 |n death modes such as necrosis, PE and PS may become accessible only at later time points, when cell

membrane integrity has been lost.”3

2.1.1 | Phosphatidylethanolamine exposure

PE is a neutral (zwitterionic) molecule which accounts for 40-50% of total membrane phospholipids.”4 Most PE
molecules are cone-shaped and do not organize themselves into membrane bilayers in an artificial setting, but rather
form monolayers,’5 although PE is kept in bilayer configuration in biological membranes by interaction with other phos-
pholipids. This feature enables PE to “coat” lipophilic regions of membrane proteins and to participate in membrane
fusion and fission. In hepatocytes, the presence of PE in the bilayer was shown to result in a less tight packing of the
membrane lipids and increased membrane permeability.”¢

The dynamics of PE play a role in membrane reorganization during cytokinesis,””-”8 stress and apoptosis,®37? and
possibly also in hemostasis®° and the physiology of the mitochondrial inner membrane.81:82 The appearance of PE on
the surface may be a more sensitive biomarker of cell stress than PS, since PE is more abundant than PS and could
deliver a stronger signal.6*82 Moreover, PE is present on the luminal surface of tumor blood vessels. Exposed PE in the

vessel wall may represent a biomarker for imaging response to antivascular cancer therapy.t*

2.1.2 | Phosphatidylserine exposure

PS is an anionic molecule accounting for 2-10% of the total membrane phospholipids.8384 It has a cylindrical shape,
which promotes formation of membrane bilayers. However, at elevated pH or [Ca2*], PS can adopt a conical shape to
form hexagonal membrane structures.85-87 PS is inhomogenously distributed in the plasma membrane, forming 11 nm
clusters.88

As mentioned above, PS exposure is a hallmark of apoptosis and an “eat me” signal for phagocytosis of dying cells.
Many biochemical assays (e.g., in vitro staining of cells with Annexin A5) use PS exposure as a marker of apoptosis. Since
annexin is not able to selectively identify apoptosis, Annexin A5 is then used in combination with propidium iodide to
identify necrotic cells from apoptotic cells. Early in apoptosis, 10 -10? PS molecules become accessible to Annexin A5
after translocation to the outer leaflet of the cell membrane 8970

However, PS exposure also occurs in normal physiology. For example, binding of proteins to intracellular PS
can localize their signaling pathways to the proximity of the cell membrane (e.g., PS-PKC [protein kinase C]
interaction)?192 and/or can promote membrane fusion and fission (e.g., PS-synaptotagmin-I interaction).”® PS expo-
sure plays a role in physiological processes such as cell activation (platelets in clotting cascade, lymphocytes in
immune response), membrane fusion in phagocytosis,” release of membrane-encapsulated nuclei during maturation
of erythroblasts,? and cellular stress responses.?6?7 Up to 50% of blood vessels in untreated tumors are positive for
exposed PS, likely due to oxidative stress in their environment.?®9? This fraction generally increases after anticancer
treatment.100

In recent years it has become apparent that different forms of PS play unique and important signaling roles
in the cell. Oxidized PS was shown to promote recognition of apoptotic cells by macrophages via interaction with
CD36 (cluster of differentiation 36 [fatty acid translocase])19 or the bridging protein lactadherin (aka milk fat
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globule-epidermal growth factor 8 protein, MFGE8).102 Up to 20% of the PS in neutrophils is endogenously converted
to PSwith only a single acyl chain lyso-phosphatidylserine (lysoPS), in a g-nicotinamide adenine dinucleotide (reduced)
oxidase-dependent manner. LysoPS plays a role in the clearance of PS-expressing, nonapoptotic neutrophilic cells.103
1-Lyso-2-acyl-PS and 1-acyl-2-lyso-PS (PS with deletions of the first or second acyl chain) perform different cellular
functions.104-106 1.]yso-2-acyl-PS can signal platelet degranulation, mast cell activation, and T-cell growth suppres-
sion; and 1-acyl-2-lyso-PS may accompany histamine release from peritoneal mast cells and neuronal differentiation.

However, our understanding of the role of different forms of lysoPS in cancer cell death is still rudimentary.

2.1.3 | Mechanism of PE and PS exposure

Currently, there are two models describing PS exposure during apoptosis: a recently proposed model of increased
phospholipid vesicle trafficking (involving lysosomes, 197 or bidirectional endosomes198) and a widely accepted model
of disturbed phospholipid transport.109-112

According to the first model, PS externalization reflects phospholipid vesicle trafficking between plasma membrane
and cytoplasm rather than an activity of phospholipid transporters.198 This model is supported by the finding that PS
externalization during apoptosis is derived from a newly synthesized pool, and the rate of PS synthesis is then ~twofold
increased.113114 Furthermore, altered lipid packing in shrinking cells can prompt PS exposure.11>

According to the second model, localization of PE and PS is regulated by a common set of transporters, such as
scramblases,116:117 ATP-binding cassette (ABC) transporters,118 and aminophospholipid translocases.11? Scramblases
carry out Ca2t-dependent bidirectional and nonspecific transport of phospholipids, whereas ATP-dependent ABC
transporters (floppases) and aminophospholipid translocases (flippases) transport PS and PE appropriately between
the two leaflets of the cell membrane, that is, in outward or inward direction. The more specific localization of PS than
PE to the intracellular leaflet under baseline conditions may be attributed to the fact that aminophospholipid translo-
cases have a somewhat lower affinity for PE than for PS. It is generally accepted that apoptosis leads to deactivation
of aminophospholipid translocases and activation of scramblases and ABC transporters.109-112 Scramblases are acti-
vated by elevation of cytosolic Ca2+, an upstream event in, for example, apoptosis and blood coagulation. However, the
identity of the transporters that are activated during cancer cell apoptosis has been the subject of a long debate.

The speed, strength, persistence, and reversibility of the signal are the best-characterized features of PS exposure.
Exposure of PS to the outer leaflet has been shown to occur within a few hours after induction of apoptosis.12° In
human promyelocytic leukemia cells and Jurkat cells (immortalized line of human T lymphocytes) treated with various
apoptosis inducers (e.g., anti-Fas antibody or camptothecin), the content of PS in the outer leaflet increased 25-280-
fold (from <0.9 to >240 pmole/million cells).67:120 At least an eightfold increase in externalized PS had to be reached
to initiate phagocytosis of these cells, which is in line with the threshold model.129 In myocardial ischemia in mice, PS
exposure on apoptotic cardiomyocytes was shown to persist for about 6 hours (hr) after reperfusion.12!

The upstream signaling cascade leading to PE and PS externalization in apoptosis has also been examined. PS expo-

121-123 cathepsin D activation,124

sure is usually accompanied by other molecular events, such as caspase activation,
perturbed Ca%t homeostasis, 1257128 and PKC activation.12%.130 Whether these processes may occur in parallel or are
required in combination to initiate PE and PS exposure is not yet clear.108 A direct role of caspases in PS exposure
during apoptosis has been suggested by the discovery of Kell blood group precursor-related protein 8, which requires
a caspase-3 cleavage site to support presentation of PS on the surface of a dying cell followed by phagocytosis.131
In the human myeloid leukemia cell line KBM7, the P4-ATPases ATPase phospholipid transporting, type 11C and cell
division cycle protein 50A were shown to act as flippases and to transport aminophospholipids from the outer to the
inner leaflet of the plasma membrane.132 ATPase phospholipid transporting, type 11C is a caspase substrate. Caspase-
mediated apoptotic exposure of PS is irreversible and leads to cellular engulfment by macrophages.

PS exposure is not under all circumstances closely related to cell death and phagocytic removal. PS can be
exposed by viable cells, but is then likely an insufficient trigger for phagocytosis.133 However, blocking PS on dying
cells can abrogate their clearance by phagocytosis. Therefore, phagocytes recognize cell surface PS on dying cells

most likely only within strongly curved membrane areas (i.e., in blebs). However, little is known about membrane
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morphology surrounding exposed PE and PS and how these phospholipids are engaged by specific receptors, for

example, lactadherin.66:134135 Furthermore, several tumor cell lines have been identified that lack PS exposure dur-

ing apoptosis198 and PS exposure can be reversible.?7:121,136,137

2.2 | Loss of cellular transmembrane potential

Scrambling processes in early apoptosis reduce the pH of the external membrane leaflet and cytoplasm (acidification),
and reduce the energy barrier of the cell membrane (depolarization).138:139 The mechanism of cytoplasm acidification
is not yet completely understood. A change in PS localization during apoptosis may affect the function of H*-ATPases,
increase proton (H*) transport across the cell membrane, and reduce cytoplasmic pH.140.141 Under basal conditions the
cytoplasm has a pH of about 7.2 which decreases by about 0.3 to 0.4 pH units in early apoptosis. This drop promotes
the activity of important enzymes involved in cell death, such as proteases and DNase 11.142 A loss of plasma mem-
brane potential can be due to a change in cationic and anionic phospholipid distribution, an altered balance between
extracellular Na* and intracellular K* (e.g., impaired function of Na*/K*-ATPase) and export of intracellular CI=. The
impairment of Nat/K* ATPase function in apoptotic cells was shown to be caspase-dependent and coincided with mito-

chondrial depolarization.143

2.3 | Change in mitochondrial transmembrane potential (Ay,,)

Ca?* is a very powerful regulator of many biochemical processes. Therefore, its cellular concentration must be tightly
controlled. Increases in cytoplasmic Ca2+ (e.g., caused by calcium release from the endoplasmic reticulum [ER]) can be
resolved by mitochondria.144 Mitochondria are one of the largest stores of intracellular Ca2* (after the ER), and centers
of cellular energy production by oxidative phosphorylation. The functioning electron transport chain facilitates the
creation of an electrochemical gradient (spH) across the inner mitochondrial membrane and the creation of an MMP
(Aw ). The highly negative charge generated at the inner mitochondrial membrane by oxidative phosphorylation is
strongly reduced when cells are energetically compromised and on their way to death. Certain apoptotic stimuli (e.g.,
ER stressors, death receptors, DNA damage) may cause a mitochondrial CaZ* overload and spillage of CaZ* into the
cytoplasm. Ca2* efflux is regulated by the Nat/CaZ* exchanger and the permeability transition pore complex formed
by proapoptotic Bcl-2 family members. A disturbance in CaZ* homeostasis and transition pore formation was shown
to result in inhibition of oxidative phosphorylation and electron transport, dissipation of Ay, and/or generation of
mitochondrial outer membrane permeability, a decrease in cellular ATP, release of proteins from the mitochondrial
intermembrane space, and activation of cytoplasmic Ca2+-dependent endonucleases.145146 Factors which are then
released from mitochondria include ATP, reactive oxygen species, and facilitators of caspase-9 activity, such as CytC,
apoptosis-inducing factor, and second mitochondria-derived activator of caspase (see Section 1.1). The release of such
factors is thought to be “a point-of-no-return” in the apoptotic cascade.147:148

Changes in mitochondrial transmembrane potential can be both the cause and a consequence of apoptosis. They are
the cause if certain agents induce mitochondrial damage and downstream activation of caspase-9, and a consequence if
mitochondria amplify the apoptotic cascade downstream death receptors and caspase-8 has already become activated.
Depolarization (or, in rare cases, hyperpolarization) of the mitochondrial membrane occurs in response to a cellular
insult,149.150

Changes in Ay, are frequently monitored as an indicator of cell viability. Almost each form of cell death results in
declined y,, either at an earlier or a later stage, but an interesting study has shown that release of certain proapoptotic

molecules (such as CytC) may occur in the absence of changes in mitochondrial outer membrane potential.1>1

2.4 | Increased caspase proteolysis

Cell death is frequently mediated by a proteolytic cascade, in which caspases play a pivotal role. Caspases have been

demonstrated to cleave as much as 5% of the cellular proteome during apoptosis.152153 The caspases are a family of
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enzymes with the ability to sever a myriad of peptides and proteins at residues C-terminally to aspartate (Asp, D). They
contain a catalytic Cys-His pair with Cys285 acting as the nucleophile and His237 acting as the general base to abstract
the proton from the catalytic Cys and promote the nucleophile. Caspases recognize and cleave proteins after the tetra-
peptide motif Asp-x-x-Asp. The enzymes occur as dimers and are mostly present in the cytoplasmic compartment of
the cell.

To date, at least 11 caspases (14 according to ref. 154) and 11 caspase-encoding genes were identified in the
human genome and proteome. Although these proteases are generally known as executioners of apoptosis, nonapop-
totic activities have also been reported.15% Thus, they can be classified as apototic and nonapoptotic (inflammatory)
caspases. The apoptotic caspases comprise apoptosis initiators (caspase-2, -8, -9, and -10) and apoptosis executors
(caspase-3, -6, and -7). The executor caspases can cleave hundreds of substrates.156 Caspase-3 is the main executer of
apoptosis. Among its substrates are proteins participating in DNA repair (e.g., poly [ADP-ribose] polymerase 1, PARP-
1), cytoskeletal proteins (e.g., fodrin), remodeling proteins (e.g., Rho-associated, coiled-coil containing protein kinase
1), and nuclear proteins (e.g., lamin B1). (Primarily) nonapoptotic caspases include caspase-1, -4, -5, and - 14.

In the absence of a demand for proteolytic activity, caspases are present in an inactive zymogen form (procaspases).
Upon specific cellular insults, two procaspases are cleaved in a highly controlled manner into two small and two large
subunits, assembled into a heterotetramer and activated. By cleaving a specific range of assigned protein substrates,
caspases render a controlled loss, gain, functional change, or altered localization of client proteins. This in turn leads to
the appearance of typical apoptotic characteristics, such as disturbance of cell membrane lipid asymmetry, cell shrink-
age, nuclear chromatin condensation, and DNA fragmentation.

Synthetic caspase-3/7 substrates should consist of at least five amino acid residues. Caspase substrates are selected
based on protein primary, secondary, tertiary, and quaternary structure.1>2 The design of synthetic caspase substrates
is based on the preference of caspases for individual peptide sequences (subsite preference).1>”

2.5 | DNA fragmentation

DNA fragmentation is a major step of cellular disassembly. The process may be induced by cell death-inducing fac-
tors (e.g., cytolytic T-cells) or by irreparable errors or damage to DNA (e.g., radiation damage). Genomic DNA can be
hydrolyzed either inside or outside a dying cell.1>8 DNA hydrolysis occurs at different time points and has a different
pattern in different cell death modes.

Cleavage of DNA is executed by certain enzymes, DNA endonucleases, which are also known as DNases. These
DNases are divided into three groups: (a) Ca2*/Mg2+ endonucleases (e.g., DNase | and DNAS1L3), (b) Mg2*+ endonu-
cleases (e.g., endonuclease G and DFF40/caspase-activated DNase), and (c) cation-independent/acid endonucleases
(e.g., DNase Il). The activity of these DNases is controlled by various means, such as protease activation (caspases or
serine proteases), poly(ADP ribosylation), phosphorylation, or ubiquitination, and by physicochemical conditions, such
as a change of cytoplasmic pH.142159 Activation of various DNases results in different DNA fragmentation patterns.

(Inter)nucleosomal DNA fragmentation yielding low molecular weight (MW) DNA fragments (“laddering pattern”)
almost always accompanies apoptosis. Caspase-activated DNase (present in extrinsic and intrinsic apoptosis) and
endonuclease G (present in intrinsic apoptosis) produce various laddering patterns.160-164 The selection of a certain
DNase seems to be stimulus- and cell type-dependent. DNA is processed in two steps during apoptosis. In the early
stage, DNA is cleaved into high MW fragments (50-300 kb). Here DNA condensation takes place. Subsequently, these
molecules are further broken up into oligonucleosome-sized fragments (repeats of 180-200 bp).1é> Free DNA termini
present as a consequence of apoptosis can be detected by a TdT-mediated-dUTP nick end labeling assay.1¢¢ However,
DNA breaks detected by this assay need not to be a consequence of apoptosis. The TdT-mediated-dUTP nick end label-
ing assay cannot discriminate among apoptosis, necrosis, and autolytic cell death.

A more random form of DNA fragmentation, yielding a “smear pattern,” is observed in nonapoptotic cell death
modes, such as necrosis, or cellular disassembly after phagocytosis. This pattern results from the activity of lysosomal

DNases, for example, DNase Il.
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3 | CELL DEATH IMAGING

Since the mechanisms underlying cell death are complex, the question arises how treatment-induced cell death, for
example, in cancer, should be quantified with medical imaging. The majority of tracers monitoring cell death are
designed to probe: (1) disturbances in membrane asymmetry, (2) reductions in the membrane energetic barrier, (3)
changes in MMP, and (4) activation of apoptotic caspases. Although these phenomena were initially considered hall-
marks of apoptosis, similar processes occur in other forms of cell death. Thus, most imaging probes are not selective
for one particular form of cell death. Increased uptake of such probes may be the net result of cells dying by various
mechanisms.

3.1 | Membrane asymmetry

3.1.1 | Exposure of PE

Several imaging probes have been developed to monitor the translocation of PE to the outer leaflet of the cell mem-
brane during apoptosis. A few lantibiotics have been radiolabeled and tested for imaging of exposed PE; these include

cinnamycin and duramycin.

Cinnamycin

Cinnamycin (Ro09-0198) is a small peptide (2,046 kDa, 19 amino acids) from a family of lantibiotics isolated from
Streptoverticillium cinnamoneus, which binds selectively to PE.81 A few in vitro assays have been performed with
the fluorescein-streptavidin (SA)-labeled cinnamycin derivative fluorescein-SA-Ro, the iodine-125-labeled derivative
(1251)-SA-Ro, or the AF546-SA-biotin-labeled derivative, 637778167 for results see Table 3.

Duramycin
Duramycin (PA48009, a peptide of 2,013 kDa and 19 amino acids) differs from cinnamycin by only one amino acid
residue: Lys2 — Arg2.168.16% Dyramycin takes its name from being resistant to high temperatures and proteolysis.
Soon after its discovery, duramycin was shown to interact with biological membranes and to have a high affinity (Kg,
4-11nM) to PE.170 The PE binding is specific and occurs in an equimolar and Ca2*-independent manner.1’ Duramycin
binding to PE depends on membrane curvature and may alter both the curvature and permeability of the membrane.
The mechanism by which duramycin induces these changes is unknown.172 Studies of protein domains involved in
membrane tubulation and vesicle formation (e.g., ENTH [epsin NH2-terminal homology] and BAR [protein dimeriza-
tion domain named after the proteins Bin, Amphiphysin, and Rvs] domains) may provide clues on how duramycin can
fold the membrane.173

The results presented in Table 3 suggest that radiolabeled duramycin but not cinnamycin is suitable for SPECT imag-
ing of exposed PE. However, the tracer has not yet been tested in patients or in healthy human volunteers.

3.1.2 | Exposure of PS

Since PS exposure accompanies apoptosis, PS has been extensively studied as a target for the imaging of dying cells.
Thus far, five families of protein or peptide-based PS imaging probes have been employed: Annexin A5, the C,, domain
of synaptotagmin I, lactadherin, PS-binding peptide 6, and bavituximab. Annexin A5 is the only probe that has pro-

ceeded to the clinical stage of testing. Imaging data for probes targeting exposed PS are presented in Tables 3 and 4.

Annexin A5

Annexin A5 (earlier called Annexin V or “placenta protein 4”) is an endogenous 36 kDa protein which was originally
isolated from human placenta.1’4 Other tissues, such as endothelial cells, kidneys, myocardium, skeletal muscle, skin,
red blood cells, platelets, and monocytes contain lower quantities of the protein.1’> Annexin A5 was identified as a

potent anticoagulant which could displace and inhibit coagulation factors from biological membranes.176 Its binding
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was attributed to a Ca2t-dependent interaction with negatively-charged PS molecules on the cell surface. Annexin A5
has no absolute specificity for PS, but binds with lower affinities to other targets, such as PE,177 membrane products
of lipid peroxidation,178 vascular endothelial growth factor receptor 2,179 and integrin #5.180 For this reason, some
Annexin A5 binding may be observed even in viable cells.

Although annexin A5 has been extensively tested in experimental animals and in cancer patients (see Table 3), for
various reasons the original probe failed to meet clinical expectations181-183;

1. Theradiolabeling procedures for Annexin A5 are rather elaborate and complex, which has limited application of the

radiolabeled probe in a clinical setting.

2. Since Annexin A5 binds to exposed PS, an annexin scan cannot discriminate between apoptosis and necrosis. This
caveat is true for all PS- and PE-binding radiotracers. In a treatment response setting, the lack of specificity is not
necessarily a problem, and may rather be an advantage, since PS- and PE-probes can provide a stronger signal than
pure apoptosis tracers and both apoptosis and necrosis can be desirable consequences of antitumor therapy.

3. Since the binding of Annexin A5 to exposed PS is calcium-dependent, fluctuations (or regional differences) of intra-
cellular Ca2+ concentrations may affect the binding of the tracer. This impact of calcium may result in high intrain-

dividual variability of probe binding and an impaired test-retest reproducibility of annexin scans.

4. The magnitude of Annexin A5 uptake in target lesions and the target-to-background (or signal-to-noise) ratios of
Annexin A5 scans are usually rather low. Low uptake of the tracer may be partially due to poor penetration of
Annexin A5 into tumor tissue. Poor image contrast may be caused by slow clearance of radiolabeled Annexin A5
from nontarget regions and blood, and by an increased uptake of the probe in normal tissues after antitumor ther-
apy. In order to address this problem, Annexin V-128 was developed, which shows a significantly lower kidney

retention than Annexin A5 and is currently being evaluated in clinical trials.

5. High nonspecific accumulation of Annexin A5 in the liver and the kidneys makes it hard to detect tumors in the
abdomen.

6. Tracer accumulation in areas far from known tumor sites may indicate the presence of unknown tumors or metas-
tases, but may also be false positives, since Annexin A5 can accumulate in various benign lesions, such as infections
and inflammations, capillary haemangioma, platelet-rich thrombi, and unstable atherosclerotic plaques. Uptake of
the tracer in such sites could be misinterpreted as indicating the presence of malignant lymph nodes.

7. The optimal timing of a post-therapy Annexin A5 scan is frequently unknown or uncertain (which is true for all exist-
ing cell death-targeting tracers), and a complex protocol with multiple scans may be necessary for correct evalua-
tion of the response of a tumor to therapy. A protocol involving three separate injections of radiolabeled annexin
and six whole-body SPECT scans has been proposed for studies in cancer patients, in order not to miss an early

response of the tumors to chemotherapy.184

Annexin B1
Annexin B1 is a PS-binding protein isolated from the pork tapeworm (Cysticercus cellulosae, the larval stage of Taenia
solium). The protein has a distinct N-terminus and only 32 to 44% homology to other annexins, including Annexin A5.185
Radiolabeled Annexin B1 has been tested for SPECT and PET imaging of apoptosis (Table 3). [7™Tc]- and [18F]Annexin
B1 showed predominantly renal clearance, like Annexin A5.

Although animal data indicate that apoptotic cells can be detected with radiolabeled Annexin B1, they have not
demonstrated superiority of Annexin B1 over Annexin A5. Moreover, injection of a foreign protein like Annexin B1

may lead to an immune response in humans.

Zinc coordination complexes
Zinc-dipicolylamine (Zn-DPA) coordination complexes contain two meta-oriented bivalent zinc cations and were cre-

ated as mimetics to the domain of Annexin A5 which binds to PS via two bridging bivalent calcium cations.186
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These small-molecule complexes associate with negatively-charged phosphorylated molecules, based on electrostatic
interaction.187:188 pSS-380 has a binding site with high and a binding site with low affinity for Zn2*; coordination of the
second Zn2*+ molecule occurs only after association of the probe with the anionic membrane surface.18? PSS-380 has
only been used in an in vitro setting. In vitro and in vivo studies with a similar NIR probe (PSS-794) demonstrated that
Zn-DPA complexes can detect human cells dying by apoptosis or necrosis, and bacterial infections.190-193

The small molecular size of zinc coordination complexes could be an advantage and is one of the reasons why PET
and SPECT analogues of these compounds were tested for apoptosis imaging (it could, e.g., lead to improved probe
entry into tumor tissue). However, a high nonspecific binding of the labeled molecules in healthy tissue1? and/or a high

uptake and retention of radioactivity in liver and intestines!?>196

was found to limit the usefulness of Zn-DPA probes
for visualization of cell death. Moreover, since Zn-DPA complexes can bind to all kinds of anionic surfaces, positive

SPECT or PET signals may not always reflect exposed PS.

Synaptotagmin |
Synaptotagmin | is a 65 kDa transmembrane protein primarily present in synaptic vesicles where it binds to negatively-
charged phospholipids in a Ca2*-dependent manner to facilitate vesicle fusion and recycling during neurotransmit-
ter release.?7-19% The two cytoplasmic C, domains (C,5 and C,g) of this protein have homology to PKC.198.199
These domains interacting with CaZ*, phospholipids, and soluble N-ethylmaleimide-sensitive factor attachment pro-
tein receptor are involved in membrane fusion during synaptic vesicle cycling.8” Whereas the C,, domain binds anionic
phospholipids, such as PS (K4 = 15 - 40 nM) and phosphatidylinositol, the C,5 domain interacts with calmodulin and
phosphatidylinositol.2%° Imaging of apoptosis has been explored by labeling the 12 kDa C,, domain with various fluo-
rochromes, contrast agents (superparamagnetic iron oxide and Gd), and radionuclides (™ Tc and 18F). For this purpose,
a Cyp-glutathione S-transferase fusion protein was synthesized to prevent chemical modification in the PS-binding site
of C,a. Unfortunately, this approach yielded a heterogeneous probe mixture as any of the 14 Lys residues in C,, could
be labeled resulting in a decrease of affinity to PS. Therefore, a single-site mutant of C,, was developed (C,,m, S78C)
with a Cys residue suitable for labeling and distant from the PS-binding site.201

Initial experiments with a fluorescent probe showed that C,, derivatives had much lower background binding in
viable cells than Annexin A5 and were fourfold more specific in imaging cell death.201 However, since the affinity of
C, for PS-containing membranes (K4 = 20 to 71 nM) is much lower than that of Annexin A5 (Ky=1to 7 nM), a >50
times higher protein concentration may be necessary for good images.2°1 The preclinical imaging results described in
Table 4 have indicated that C,5-based probes are potentially useful for evaluation of antitumor treatment, but have
also some drawbacks:

1. High levels of radioactivity in liver, kidney, and abdomen may complicate the evaluation of tracer uptake in these
areas, particularly at short intervals after injection. The C,, domain labeled with 8F202 has shown a better clear-
ance profile than the 2™ Tc-labeled analogue.203

2. Because of the large size of the C,5 molecule, tracer uptake is limited by the rate of diffusion into tissue. Radio-

chemists could try to produce probes with a reduced size and charge which may show a more rapid tissue entry.

3. Although in vitro experiments indicated a low background binding of C,, derivatives in viable cells, target-to-
background ratios of the radiolabeled compounds in the mammalian body were rather unfavorable. These low
ratios could be related to a low affinity of the probes to PS-containing membranes. C,, domain probes with higher
specificity and lower nonspecific retention have recently been developed, and as expected, these probes showed

improved tumor-to-background ratios.2%4

Lactadherin (MFG-ES8, milk fat globule epidermal growth factor 8 protein)
MFGES, a 46 kDa extracellular glycoprotein, is secreted by a subset of macrophages and dendritic cells. As a solu-
ble molecule, it participates in the opsonization of apoptotic cells and their phagocytosis, adhesion between sperm

and the egg coat, repair of intestinal mucosa, mammary gland branching, morphogenesis, and angiogenesis.2%> The
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protein acts as a potent anticoagulant in blood2%¢ and was linked to Alzheimer's disease and autoimmunity. It is a bridg-
ing molecule between apoptotic and phagocytic cells, has the ability to bind to integrins (a, 3 and a, f5) on immune
cells via its arginylglycylaspartic acid motif of the glutamic acid-leucine-arginine domain,2%7 and also binds to mem-
brane PS on apoptotic cells (with preference to PS in membrane areas of spiky morphology). The binding to membrane
PS occurs via its F5/8-type C1 and C2 domains (Kdcicp = 4.9 nM, Kd¢, = 2.0 nM) and does not require Ca%*. The
C2 domain has about 100-fold lower affinity toward soluble than membrane PS (Kd = 2.8 M) and has a much higher
affinity toward phosphatidyl-L-serine than phosphatidyl-D-serine.208 Despite functional similarity of the C-domains
present in synaptotagmin-1 and lactadherin, they do not share any sequence homology,2%7 but there is homology
between the C2 domains shared by lactadherin and blood coagulation factor VIII and V.209210 An in vitro study showed
that lactadherin can specifically detect PS and has a higher affinity for PS than Annexin A5.21! Imaging data for a SPECT
tracer based on bovine lactadherin are presented in Table 4.

Lactadherin binding to apoptotic HL60 cells was reported to be related to PS exposure and not to an interaction of
the probe with integrins.212 However, the arginylglycylaspartic acid motif in lactadherin may bind to integrins through-
out the body, which will likely complicate visualization of dying cells in living mammals. In future studies, lactadherin
may be engineered in such a way that only the C2 domain, responsible for PS-binding, is used for labeling. A fluores-

cent derivative of the C2 domain has shown the ability to label different cellular pools of PS88:2 and apoptotic tumor
cells.208213,214

PS-binding peptides
Using phage display technology, peptides were identified which can bind with considerable affinity to exposed PS. Clus-
ters of the basic amino acids Arg (R) and Lys (K) appeared to be critical for (ionic?) interaction with this phospholipid.
A peptide called PSBP-6 has been radiolabeled for SPECT and PET imaging. The amino acid sequence of this peptide is
based on the 14-amino-acid sequence from the C2 domain shared by PKC, PS decarboxylase, and synaptotagmin 1.21>
PS-binding peptides are in theory an attractive alternative to PS-binding proteins such as Annexin A5. The pro-
cedures for radiolabeling of peptides can be simpler, and the radioactive probes may show a more rapid entry into
tumor tissue because of their smaller size. This reduced size can also result in a more rapid clearance of unbound probe
from tissue and from blood. Moreover, peptides can be structurally modified, in order to improve their pharmacoki-
netic properties and metabolic stability. However, the currently available PS-binding peptides seem to have insufficient

affinity216-220 and/or specificity?2! for their target phospholipid (see Table 4).

Bavituximab family of antibodies

An indirect option for imaging of externalized PS is provided by the generation of antibodies for g,-glycoprotein 1.
This protein is abundant in plasma and was shown to bind to negatively charged compounds, such as heparin, anionic
phospholipids, and dextran sulfate. Two molecules of f,-glycoprotein 1 are required for the interaction with PS (Kd ~

99.223-225 3 chimeric monoclonal antibody (mAb)

1 nM).222 Several murine monoclonal antibodies (e.g., 3G4 and 2aG4),
(bavituximab),226 and a human mAb (PGN635)227 were generated to detect PS exposure on tumor vessels. All of these
antibodies have been explored preclinically and in clinical trials for treatment of different types of malignancy. Radio-
labeled bavituximab, PGN635, and PGN650 have been used for noninvasive in vivo imaging of PS exposure (Table 4).

Bavituximab (MW = 145.3 kDa) was constructed by fusion of variable (Fv) regions from the mouse 3G4 antibody
and human immunoglobulin G1x constant regions. The chimeric antibody cross-links and stabilizes a complex of two
Bo-glycoprotein 1 molecules (Kd = 0.4 nM, MW ~ 250 kDa) attached to the cell surface pool of PS.

PGN635 is a first-in-class PS-targeting fully human mAb. The F(ab’), fragment of PGN635 was used to produce
PGN650, which has similar affinity for PS-g,-glycoprotein 1 complexes as 3G4 and bavituximab.?2”

In an animal model of human prostate tumors, 74 As-bavituximab displayed very high tumor-to-muscle ratios and
specific binding in the tumor (Table 4). Nonvascular staining of dead and dying cells in and around necrotic tumor
regions was observed only sporadically, which may indicate a poor ability of bavituximab to penetrate tumor tissue.
If this is the case, antibody fragments, such as PGN650 may show better penetration. An open-label, single-arm clinical
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FIGURE 2 Chemical structures of members of the ApoSense family of compounds

trial has been performed on 12 patients with advanced solid tumors, in which radioiodinated PGN650 was tested for
tumor imaging, safety, and dosimetry. Unfortunately, the results of this trial have not yet been reported (Table 4).

‘Betabodies’

"Betabodies’ are fusion products based on the PS-binding domain(s) of ,-glycoprotein 1 and the constant region of an
antibody.228 The recombinant ‘betabody’ KL15 is expressed in a dimeric form and consists of the domain | and V from
Bo-glycoprotein 1 fused with the CH2 and CH3 constant (Fv) domains of a mouse 1gG2a antibody. Only a few preclinical

data concerning this probe have been published (see Table 4).

3.2 | Altered permeability of the cell nembrane

3.2.1 | ApoSense family

The ApoSense family (Figure 2) is a group of small-molecule compounds (size 300 to 700 D) that can be used to
detect altered membrane permeability in apoptotic cells. The family comprises two different generations of molecules.
N,N’-Didansyl-L-cystine (DDC), (5-dimethylamino)-1-napthtalene-sulfonyl-a-ethyl-fluoroalanine (NST-732), and N-(2-
mercaptoethyl)-dansylamide (NST-729) belong to the first generation. These molecules possess an amphiphatic struc-
ture, in which the hydrophobic moiety may provide a membrane anchor, while the charged moiety may prevent the
compound from crossing healthy cell membranes. All contain a functional dansyl group with an inherent fluores-
cence. Butyl-2-methyl-malonic acid (ML-9) and pentyl-2-methyl-malonic acid (ML-10) belong to the second genera-
tion of the family. Their amphiphatic structure is based on an alkyl-malonate motif, which is derived from y-carboxy-
glutamate-rich Vitamin K-dependent carboxylation/gamma-carboxyglutamic protein domain-containing proteins.22?
Vitamin K-dependent carboxylation/gamma-carboxyglutamic protein domain containing proteins (e.g., growth arrest-
specific protein 6, coagulation factor X, vitamin K-dependent protein S, and prothrombin) bind anionic phospholipids
and calcium ions and are an important component of the blood clotting cascade.

ApoSense molecules were initially thought to detect both apoptotic and necrotic cell damage, but later studies
have suggested that they specifically accumulate in apoptotic cells.230 Since ApoSense family members can cross the
intact blood-brain barrier, they can be used to image the response of brain tumors to treatment, and loss of neu-
rons after stroke or neurodegeneration in diseases like Alzheimer's disease. ApoSense compounds accumulate in the
cytoplasm.231
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Correlation between the in vitro uptake of DDC and Annexin A5 has suggested that scrambling processes in early
apoptosis reduce the energetic barrier of the cell membrane and allow DDC to enter the cell. DDC uptake is thought
to be the result of the following sequence of events:

Scrambling — membrane acidification — (mono)protonation of ApoSense molecules — flip-flop of the molecule
through the membrane by active scramblases and cell membrane depolarization — binding of the molecule to cyto-
plasmic proteins.

However, this proposed mechanism is not yet fully supported by experimental data. Imaging results acquired with
ApoSense probes are summarized in Table 5.

Advantages of the Aposense family of compounds are: their small molecular size, the minimal number of func-
tional groups, and the absence of chemically reactive, undesired labeling sites.232 Disadvantages are: the rather poorly
defined mechanism of uptake and the requirement of a high administered dose. This last aspect raises concern about
potential toxicity, since the dose is in the therapeutic rather than the tracer range. Some findings in animal models
have suggested that the uptake of ML-10 is pH-sensitive.233 If ML-10 uptake is indeed dependent on protonation, a
decreased pH of the blood (e.g., due to failure of multiple organs after anti-Fas antibody treatment) may result in a high
nonspecific uptake of ML-10 in viable tissues, whereas an increased extracellular pH (e.g., due to cyclophosphamide-
induced necrosis in treated tumors) could be associated with a decrease of ML-10 uptake. Such factors may complicate
the interpretation of PET images acquired with [18F]ML-10.

3.3 | Changes of mitochondrial transmembrane potential

Several lipophilic phosphonium cation-based tracers (arylphosphonium salts) have been developed for in vivo imaging
of treatment-induced changes of MMP (Ay ,,).23* Loss of negative charge at the inner mitochondrial membrane leads
toreduced uptake of these lipophilic cationic tracers. Thus, radiolabeled arylphosphonium salts will generate a negative

contrast.

3.3.1 | [*8F]fluorobenzyl triphenyl phosphonium

[18FIfluorobenzyl triphenyl phosphonium (FBnTP) accumulates in cells with normal mitochondrial potential and
washes out when this potential is impaired by apoptosis. When the baseline uptake of the tracer in tumor tissue is
low, another imaging modality must be used for tumor localization.23> The signal of the tracer has been reported to be
stable up to 45 min after injection.23¢ Changes in [18F]FBnTP uptake may be difficult to interpret since the accumula-
tion of this tracer can be affected by cellular efflux processes driven by multidrug-resistance proteins237 and by tissue-
dependent differences of background uptake. Various structural analogs of [18F]JFBnTP have also been prepared, such
as 4-[18F]-tetraphenylphosphonium (TPP),238-240 ([18F|fluoropentyl)triphenylphosphonium,24! and [18F]PEGylated-
BnTP.242 Uptake of these compounds is probably affected by the same processes as the tissue uptake of [18F]JFBnTP.

3.3.2 | [?9"Tc]sesta-methoxyisobutylisonitrile

The SPECT perfusion tracer [??MTc]sesta-methoxyisobutylisonitrile (mibi) has been tested as a probe of reduced mem-
brane potential in dying cells. An early study reported that the uptake of this tracer in human breast cancer cells (MCF7)
was reduced when cells were treated with a cytostatic agent (sodium phenylacetate), and the decline of tracer uptake
was correlated to the fraction of apoptotic cells.243 Another study reported that tumor uptake of [?*™Tc]sestamibi
was dose-dependently reduced in mice bearing Ehrlich carcinomas that were subjected to radiotherapy. At 24 hr after
irradiation, tumor-to-background ratios were inversely correlated with apoptosis index and the percentage of necrotic
area, but at longer intervals (72 hr and 144 hr post irradiation) these ratios were inversely correlated only with the per-
centage of necrotic area.2** Although this study confirmed that [?*™Tc]sestamibi is a “negative contrast tracer of dying
cells,” another investigation performed in the same year showed that the absolute uptake values of [??™Tc]sestamibi in
carcinomas are six- to eightfold smaller than those of a phosphonium cation like TPP.238 Thus, [??™Tc]sestamibi scans

will show a considerably lower signal-to-noise ratio than TPP scans.
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In summary: PET and SPECT probes of mitochondrial transmembrane potential have shown limited success. The
uptake of such tracers is affected by the activity of transporters involved in multidrug resistance and by changes of
the physical properties of target tissue. Changes in the uptake of such probes after antitumor therapy may not always

reflect changes in mitochondrial transmembrane potential of tumor cells.

3.4 | Increased proteolysis

Extrinsic and intrinsic apoptotic pathways converge at the level of caspase-3 and caspase-7 activation. The detection of
activated caspases could be a valuable and specific tool for identifying dying cells before morphological features of cell
death occur. Quantitative imaging of activated caspase-3 and -7 may be more useful for monitoring tumor responses
to therapy than for diagnosis and localization of unknown tumors. In vivo imaging of activated caspases is possible via

two different approaches:

1. use of caspase inhibitors (Z-valine-alanine-DL-aspartate or isatin-derivatives, for example, [18FIWC-11-89)24%; and

2. use of caspase substrates (Z-aspartate-glutamate-valine-aspartate-derivatives, for example, [18F]CP18).246-248

The main benefits of radiolabeled substrates over radiolabeled inhibitors are (in theory): (a) no problem of satu-
ration of the binding sites, and: (b) signal amplification. Since a single enzyme molecule can convert several substrate
molecules within the time frame of a PET or SPECT scan, the use of a substrate may result in a higher sensitivity for
the detection of an active enzyme. However, in a comparative study between a caspase substrate and activity-based
probes (inhibitor-based), signal amplification at the site of proteolysis did not have a dramatic enhancing effect onimag-
ing. The authors believe that this was due to slow diffusion of the substrates into tissues and cells.24? In another study
with inhibitor-based probes, the abundance of active proteases in tumor tissues was found to be sufficient for the gen-

eration of images with acceptable contrast, therefore no saturation of binding sites occurred.2>°

3.4.1 | Caspaseinhibitors

Radiolabeled inhibitors bind to a finite number of sites resulting in saturability of the probe binding.251-253 The amount
of accumulation is dependent on the ratio of the concentration of active caspases and the affinity of the inhibitor for
these caspases (B ,,,x/Kq). The addition of a sulfonamide group confers isatins (i.e., derivatives of 1H-indole-2,3-dione)
a high affinity for caspase-3 and -7.254 The chemical structures of some isatin-based caspase inhibitors are shown in
Figure 3, whereas imaging results acquired with these tracers are summarized in Table 6.

Radiolabeled isatins have been shown to bind specifically to activated caspases, but their sensitivity as PET probes
was limited. [28F]WC-11-89 may be better than [11C]WC-98 or [18F]WC-IV-3 in discriminating the varying levels of
active caspases in vivo. Although preclinical studies have indicated that [18F]ICMT-11 has potential for evaluation of
the impact of antitumor therapy, clinical application of this tracer is not very easy. Because of a low baseline uptake of
radioactivity, tumor outlines cannot be assessed by PET but should be determined from a CT scan. The low baseline
uptake may be considered as a favorable property of a cell death tracer, since in patients only small fractions of apop-
totic cells are expected in tumor tissues at all posttreatment scanning intervals. Thus, the use of a CT or MRI scan will
possibly be always necessary to delineate the tumors. Since radioactivity accumulates in liver, kidneys, intestines, and
urinary bladder, assessment of the uptake of [18F]ICMT-11 in abdominal tumors may be difficult or even impossible.
Injected isatins can be trapped in blood (either due to apoptosis in lymphocytes, or to released, circulating caspases).
Further optimization of the pharmacological properties of isatin-based caspase inhibitors seems therefore necessary,
but unfortunately, literature indicates that the list of chemical alternatives for existing caspase-3/-7 tracers is almost

exhausted.
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FIGURE 3 Chemical structures of radiolabeled isatins which have been tested as PET probes for caspase-3

3.4.2 | Caspase substrates
The cellular trapping of radiolabeled caspase substrates is less sensitive to competition by physiological substances
than the binding of radiolabeled caspase inhibitors, but intracellular retention of the cleaved substrate is necessary for

successful imaging.

Currently used caspase substrates are based on the Z-aspartate-glutamate-valine-aspartate sequence. Since the
inclusion of only a Aspartate, Glutamate, Valine, Aspartate, Glycine (DEVDG) or Asparagine, Glutamine, Valine,
Asparagine, Glycine (NQVNG) amino acid sequence results in highly polar peptides, which do not cross cell mem-
branes, some additional sequence should be attached to ensure membrane permeation. Membrane-penetrating pep-

tide sequences which could be explored are the following:
- Multiple Antigenic Peptide (MAP) peptide (X-KLALKLALKALKAALKLA)—group 1, bilateral transport;
- transportan—group 1, bilateral transport;

- Tat—group 2, unilateral trapping, suitable for labeling because of the presence of Tyr;

- penetratin—group 2, unilateral trapping, not suitable for labeling because of the presence of Met.
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Vehicle 5-FU Irinotecan Combination

Before treatment

After treatment

FIGURE4 Invivo [18F]CP18 scans of tumor-bearing mice (PET/CT images showing tracer uptake [%ID/cm3] in vehi-
cle, 5-FU (5-fluorouracil), irinotecan, and combination-treated animals (from left to right) before (upper panel) and
after (lower panel) treatment. Tumors are indicated by white squares. Reproduced (with permission) from ref. 411

In the first attempts at probe development, a Tat sequence (e.g., Tat49-57, RKKRRQRRR) was added to ensure cellu-
lar uptake. It was demonstrated that insertion of yYDEVDG at the C-terminus of Tat was preferable, but the mechanism
of uptake which is triggered by addition of that sequence is caspase-independent.255

An elegant solution to the problem of intracellular retention of the cleaved substrate has recently been provided by
the so-called “smart probes” which display intramolecular macrocyclization and in situ nanoaggregation upon activa-
tion by caspase-3.256-258 Dye to sequence homology among the caspases, most caspase probes are not specific for
caspase-3 or caspase-7. However, recent research on activity-based probes has shown that the selectivity of such
probes for a single caspase can be greatly improved by introducing several unnatural amino acids in the peptide recog-
nition sequence.259-262

Imaging results acquired with radiolabeled caspase substrates are presented in Figure 4 and Table 6. Although the
preclinical data presented in Table 6 (particularly those of [18F]CP18) have indicated that it is possible to image apopto-
sis and therapy-induced increases of apoptosis with a radiolabeled substrate for caspase-3, concentrations of radioac-
tivity in target tissues were usually very low. Thus, the currently available caspase substrates seem to have not fulfilled
their promise of significant signal amplification with respect to radiolabeled caspase inhibitors.

3.5 | DNA damage and repair

As explained in Section 2.5 of this review, fragmentation of DNA is a process which accompanies both apoptosis and
other forms of cell death. Environmental factors which may lead to the development of cancer, such as exposure to
ultraviolet light, ionizing radiation, and carcinogenic substances, cause strand breaks in DNA. Moreover, many human
cancers are characterized by deficiencies in DNA repair pathways compared to normal tissue. Finally, most forms of
antitumor therapy induce damage to DNA. Many researchers have therefore attempted to develop radiopharmaceuti-
cals which can visualize DNA damage and repair. Such tracers could be used to: (i) detect several forms of cancer at an
early stage, (i) evaluate the response of tumors to therapy, (iii) assess the biodistribution, pharmacokinetics, and target
engagement of cytotoxic drugs aimed at inhibiting DNA repair, and (iv) select patients for treatment with such drugs.
Results of attempts to visualize DNA damage and repair are summarized in Table 7.



RYBCZYNSKAETAL.

WILEY

(sanupuo))

‘Adedayjolipeu

Ja34e s||92 9dAY-p|IM T-YDHd

woJy JueInui T-y oy g ysinsunsip
ued 'T-dyVd 40} 24193ds sl 8qo.d

‘Iddvd
ueyj uoljoely Suipuliq d1j12ads Jajjews
SMOYS Inq }98.e} sazl|ensiA 3qo.d

'S||92 AJojewwejul 03 os|e 3nq
agewep YN Y}M S||92 Jowiny 03 Ajuo
JOU puiq 190843 T-d¥Vd 'S} NS4 pooo

'S91PN3S OAIA UI 10J [NJasN
J0OU SNy} ‘OAIA Ul pajeurion|jap Ajpidey

‘qiedejo Aq T-d¥vd
40 Aouednd0 pue |92 Jown3 ul
uolssaldxs T-d¥Vvd Ayuenb ued sqoud

‘pajedysuowsp
8uiBew! T-d¥Vd 40 ANjIqisea

SaAI}dadsa9d

ozy 9SOP 352Y31y

198 seauoued pue

uas|ds ‘bgin 0/ 4104
ASW 6°9 9SOp uonelpey

SUON

SUON

SUoN

SUON

3UoN

sa1pn)s uewnH

ozy2UIdS

pue sapou ydwA| ui 3uipuiq a1j129ds

SMOYS ‘Z-dyVd 03 pulq 30U S20p 3q0.d

szrezy SHEIS0USX TEZ-GN-VAN

vzp SI192 EAOMS ‘(dul] 192

BwouldJed UelIeAo uewny) TSZ-NNS
czp S3S€1q0.q1 pa4a3uIdus Aj|ed13susn

Zzevzy SUIPUIQ D1103ds
%/ /-06 :SHeISouax HIN/8N ‘ONTSZN

oz SI192 dunwiwi Ul
uolssaldxe T-d¥Vd 40 asnedaq usa|ds
pue sapou ydwA| ui axeidn ysiH ‘0
1N0ge soljeJ ujeiq-03-Jowny ‘Sulpuiq
21}109ds %58< :Seld30uax HINTSZN

‘SuiSew| Juadsalonyy pue | 34 Yyioq
SMO|[e 3]0 4, SHEISOUIX DIN/BN

gTp-o1 SHEI30uUdX

(3UI] ||92 BWOUIDIED UBlIBAC UBWINY)

08/ZV ‘(dul] 192 ewould.ed piojayyids

J13eaJdued uewny) T-ONVd ‘(dul|

1|92 ewould.ed d13ealdued uewny)
Z-VDBdVIN ‘EAOXS ‘897-8IN-VAW

1y SIS0403U

5199|434 ‘s|[92 B39 Ul UOISSaIdXD

T-d¥Vd Y3M $33e[2..400 oxeldn
J11B3JoUBd S913qeIp JO |9pow Jey

uoljen|eAs |edlui|aid

Hg; (@28438URY ]

(WU €9 %D1) T-dYvd Jon|4) 114

(WU 6 %D Itet
‘@Al3eALISp qllede|o) T-dYvd ‘Iyzr ‘lgzr 1dYVd-ZI

(Wugz %Dl

‘@AleALISp qliede|o) T-d¥vd dgr !ddVd

(aA13eALISP qLiede|o) T-d¥vd 4g7UI9353.10N|}-1d Y Vd

(WU 6LT %DI
‘@A3eALISp qliede|o) T-d¥vd 4g; 09
(owAzua pajeaioe
‘@)1s Bulpulq +AVN) T-ddvd Jrverd
10846 139el/2qo.ad

Jledau pue a3ewep YN 8uijadielsoqold £3149VL



WILEY

RYBCZYNSKAET AL.

|92 ewOjse|qol|8 uewny ‘ON/8N

‘aul] ||92 ewoO3se|qol|S uewny ‘DINTSZN ‘dUl| ||90 BWOUIDIEI0USPE AJBAO UBWINY ‘CAOMS ‘DUl| ||90 BLIOUIDIEI0USPE JSea.q uewny ‘gIN-YAIA ‘Uld3oad A}jiqiadadsns T adAy Jodued 3seauq ‘TyDud

‘BuiBew | 34 404
9jelidoaddeul waas so3aup0deWIRYd

‘pazijensiA
3q ued Jown} uj asuodsas 8ewep YN

'SUOISS| JUBUSI|EW JO UOI}DIIBP

Al4es Joj [enpuajod sey saipoqiue

9S9Y3 YHM 1D3dS 'Pazi[ensia

9q ued Adeusyjowayd Jo -olped
J93ye Jowny ul asuodsad a8ewep YNQ

‘soljeJ 193.4ejuou-03-393.e3
91eaapowl Apjuo pamoys
"T-d¥dVd 40} d1123ds Jou s1 aqo.d

‘([u19304d02A|3-d]

d3-d J0) ajes3sgns e Ajqissod

S131 Juswiesu) 3nup Jajje paseaJdul

Aj3uou3s aue 3uipuiq d110adsuou

pue A}IAI30B0IpE. JO S|9A9| Bwise|d)

|ewi3do jou aJe soijaujodew.eyd
s1Ing "T-d¥vd 40} d19ads si ago.d

S9AI}dadsa9d

‘3upjoo|q 198.4e3 Ja)se
oljeJ 398.1e3U0u-0}-}38.e] JO 95Ea.Id3P
auoN Joulw AjUQ z¢,'SHEISOUSX DINTSZN

HQ.MC_UC_Q
214123ds %09 1noge ‘Adessyjolpe. Ja3je
9ye3dn paseaudul pjoy-1°g :s3edSouax
SUON 897-aIN-VAWN 1¢;,SI192 891-AIN-VAIN

ocy (SAep TET Joyye) uojedied Aq Jo
(sAep 0gT 4914e) (SuiBewl aoueuOSaL
2139uSew pasueyus 3seajuod
dlweuAp) [4IN-3DQ YHm ueyy (shep
96 491e) 9qo.d 1 D3dS Y3 yum Jai|1es
Pa129919p 9 P|NO2 UOIIEW.I0S JowNn]
1192UBD }SB3Uq USALIP-UOISSUdXaI9A0
nau/(g 403dadaJ 103oe) Yymo.s
|ewapida uewny) zy3H Jo |spow
9snow JjudBsuel] . S}yelSouax
SUON 89Y-aIN-VAWN 4z1,'SI192 891-aIN-VAIN
gzy SAOWNY (Ul |92

ewoulded Alewwew asnow) 9 | INJ
SUON gzp S358|q0.q1y pa1aauidus Ajed13ausn

sz»'914ede|o pjod y1im sjewiue
Jo Juswieayaud Ja4e uojonpal
ON 3nq aye3dn 3|gesapisuod
‘syyes3ouax TeZ-aIN-van

‘(3ul] ]|22 BWOUIDJED JSEDIq
UewNY) LE6TIDH ,z, S9UI [[92 AuBWw
3uoN ‘s3se1qo.qLy pa4aaulsua Ajjea13susn
salpn3s uewinHy uoljen|eAs |es1ulda.d

SSeUD Y1V

XVZH4

XVZH4

¢-ddvd
T-ddvd

(e8uet U U1 95D)) T-divd
1984

dgr 1ALV

17 45 SOIPOqHUE
LVI-XVZHA-uY

ulypg S91poqiue
1VI-XVZHA-uy

|71 (80jeUE
114) 610-20-XA

lszp(801eue 114) TX
[2qe|/3qo4d

(panunuod) £3l14avl



RYBCZYNSKAETAL.

| PJ34

F-BO O
o (=

M
PARPi-FL | />_©_ 5 FluorThanatrace
T \—\

O Q. o0
é . E\;[}_ _@ Kx1

12-PARPi k\>_,®— | KX-02-019

FIGURE 5 Chemical structures of radiolabeled inhibitors which have been proposed for imaging of activated
PARP-1

3.5.1 | Poly(ADP-ribose) polymerase-1

PARP-1 is an enzyme in the nucleus of eukaryotic cells. When single-strand breaks in DNA occur, PARP-1 transfers
ADP-ribose units from NAD™ to various proteins, such as DNA polymerase and histones. This action of the enzyme
plays an important initiating role in the repair of DNA, but when PARP-1 is hyperactivated, cellular NAD* pools are
depleted, resulting in a decline of the levels of ATP and necrosis. Radiopharmaceuticals which target the expression
or the activity of PARP-1 have thus been used to evaluate target engagement of cytotoxic drugs. Such probes include
radiolabeled analogs of the drug olaparib and derivatives of the benzimidazol carboxamide NU1085 (see Table 7 and
Figure 5).

Some PET tracers for PARP-1 have shown very promising results in animal models, particularly [*8F]PARPi. How-
ever, all radiolabeled PARP inhibitors which have been studied thus far are hepatobiliary cleared. It remains to be seen
whether the high accumulation of radioactivity in liver, intestines, and gall bladder constitutes a problem for applica-
tion of these tracers in patients with abdominal cancer. The use of radiolabeled PARP-1 inhibitors may be associated
with two other complications: (i) Such probes may bind not only to dying tumor cells but also to immune cells, and (ii)
DNA damage and repair will not always lead to cell death. Thus, PARP-1 inhibitors will have a limited specificity for
dying cells.

3.5.2 | Phosphorylated X isoform of the histone H2A (yH2AX)
When double-strand breaks in DNA occur, the X-form of histone H2A (H2AX) is phosphorylated (yH2AX) and several

hundreds of phosphorylated protein molecules accumulate around each break site. The formation and accumulation of
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yH2AX is necessary for recruitment and activation of the subsequent processes of DNA repair. The expression levels
of yH2AX are very low under normal physiological conditions, but show a strong and rapid rise after the induction of
DNA damage. For this reason, yH2AX is an attractive target for SPECT and PET imaging. Imaging of this target may be
used to visualize the impact of antitumor therapy.

Anti-yH2AX antibodies can be used to quantify phosphorylated H2AX in permeabilized or lysed cells, but are not
useful in living cells since such antibodies do not cross intact cell membranes. However, when the antibodies are linked
to a cell penetrating peptide (“TAT sequence”), they are internalized in living cells and targeted to the nucleus (see
Table 7).

A recent review on imaging of the DNA damage response263

concluded that several important issues still need to

be addressed before anti-yH2AX-TAT antibodies can be applied in clinical studies:

1. A humanized version of the antibodies should be prepared, since the preclinically tested antibodies were raised in

rabbits and will cause an immune response when they are injected in humans;

2. Since the currently used yH2AX-TAT antibodies have a rather high nonspecific in vivo binding, it may be necessary
to improve the target-to-nontarget ratio of these probes, for example, by using smaller antibody fragments rather
than full antibodies, or by the application of a pretargeting strategy;

3. Quantification of the exact number of DNA double strand breaks may be difficult, since the local increase of yH2AX
is not directly or linearly related to the number of strand breaks. More information about the biology of yH2AX is

required to properly interpret PET or SPECT images acquired with anti-y H2AX-TAT.263

3.5.3 | Ataxiatelangiectasia and Rad3-related threonine serine kinase

Another important enzyme involved in the initiation and orchestration of the repair of DNA damage is ataxia telangiec-
tasia and Rad3-related threonine serine kinase (ATR kinase). A radiolabeled analog of the ATR kinase inhibitor Ve-821
has been prepared but the results were disappointing (Table 7). Apparently, the pharmacokinetic properties of radiola-
beled ATR kinase inhibitors need to be improved before they can be applied as PET tracers.

3.6 | Other processes involved in cell death

Several imaging probes have been developed which may visualize necrosis. Imaging findings concerning these probes
are summarized in Table 8 and the chemical structures of some probes are shown in Figure 6. The probes in question

targeted the following processes:

3.6.1 | Exposure of histone H1

Apoptosis-targeting peptide-1 (ApoPep-1), a hexapeptide identified by phage display, binds in a Ca2*-independent
manner to histone H1, which is exposed by apoptotic cells or becomes accessible in the nucleus of necrotic cells.264
The translocation of histone H1 during apoptosis proceeds in a caspase-dependent manner and occurs at the early
stage of apoptosis (before DNA fragmentation). The R3 residue was shown to determine binding and the ApoPep-1

sequence was homologous to the G-protein-coupled receptor 83.

3.6.2 | Redistribution of La autoantigen

La autoantigen is a nuclear protein with an MW of 47 (or 48) kDa which is overexpressed in cancer cells with respect to
cells of the tissue of origin. The La protein is cleaved by caspase-3 during apoptosis, resulting in translocation of the NH,
terminus part of the molecule (MW 43 kDa) to the cytoplasm?26> and accessibility of this part to anti-La antibodies.26¢
Since the expression of the La autoantigen is selectively induced in dead or dying cancer cells after DNA-damaging
chemotherapy, imaging of this target is an interesting strategy for the detection of tumors and the evaluation of anti-

tumor therapy.267
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FIGURE 6 Chemical structures of some compounds which have been used to target tissue necrosis

3.6.3 | Accessibility of myosin

Radiolabeled Fab fragments of monoclonal antibodies against myosin ([111In]antimyosin) have been widely used for the
detection of myocardial cell injury and necrosis. Membrane disruption of myocytes makes it possible for such fragments

to enter the dying cell and to interact with myosin heavy fragments.

3.6.4 | Exposed histones

[99mTc]Glucarate ([?7™Tc]-D-glucaric acid) is a six-carbon dicarboxylic acid with a structural similarity to fructose. This
SPECT tracer has been reported to accumulate in areas of acute ischemic injury where necrosis occurs, both within the
brain28 and heart.269-272 For this reason, [*?MTc]glucarate has also been tested as a cell death tracer in animal models
of human cancer and in cancer patients (see Table 8).

3.6.5 | Extracellular DNA

Hypericin is a red pigment with antraquinone-like structure (MW 504 Da), which has been isolated from St. John's
wort (Hypericum perforatum). Hypericin has been tested in many studies as a photosensitizer for photodynamic therapy.
Since the compound accumulates in necrotic cells and tissues, hypericin has also been radioiodinated or labeled with
64Cu for the imaging of tumors and infarctions in experimental animals and humans (Table 8). Because of its polyphe-
nolic polycyclic structure, hypericin has fluorescent properties and the compound can be detected in cell or preclinical

experiments by optical imaging.273-275

3.6.6 | Unknown target (Pamoic acid derivatives)

The bis-DTPA derivative of pamoic acid (4,4’-methylenebis[3-hydroxy-2-naphtoic acid]) is a necrosis avid contrast
agent. The mechanism underlying accumulation of this compound in necrotic tissue is unknown.276 Various derivatives
of pamoic acid have been radiolabeled and evaluated for visualization of necrosis with SPECT or PET (Table 8).
Unfortunately, most necrosis-targeting probes seem to lack adequate specificity (see Table 8). They may accumu-
late in tissues by mechanisms unrelated to cell death (e.g., inflammation, ischemia, hypoxia, or hypoglycemia), and the
uptake mechanism of these probes is poorly defined. Only the peptide ApoPep-1 seems to deserve further evaluation.



1748 RYBCZYNSKA ET AL.
WILEY

4 | CONCLUSIONS AND PERSPECTIVES

Although a large number of PET and SPECT probes for imaging of cell death have been developed, only a few radio-
pharmaceuticals have proceeded to the clinical stage of testing, viz. radiolabeled Annexin A5, PGN650, ML-10, CP18,
antimyosin antibodies, glucarate, and hypericin. Of these seven, the first four are the most likely candidates for trans-
lation to the clinic, and results of ongoing clinical trials with Annexin V-124 and PGN650 are eagerly awaited.

An important issue concerning cell death imaging is the question whether radiopharmaceuticals should be specific
for a particular death mode and biochemical process (e.g., activated caspase-3 or caspase-7), or can have limited speci-
ficity (e.g., detect exposed PS or anionic phospholipids). The required specificity will probably depend on the intended
use of the tracer. In a basic science setting (visualizing of dying cells in animal and in vitro models of human disease),
specificity of the used probe is very important in order to acquire specific information about the mechanisms under-
lying cell death (apoptotic vs. nonapoptotic, noninflammatory, or pro-inflammatory, etc.). However, in a clinical setting
(assessment of a patient's response to antitumor treatment), specificity of the probe may be of less importance. In this
case, a probe with limited specificity that provides a stronger signal than a specific probe may be preferred. Here the
main question to answer is whether cells have died. The question via which mechanism cell death was induced is then
only a secondary issue.

In the extensive work performed with radiolabeled Annexin A5, two important difficulties were noted which will
be of general concern in treatment response evaluation with any cell death tracer: (i) since the optimal timing of a
post-therapy scan is frequently unknown or uncertain, a complex (multi-scan) protocol may be required for correct
evaluation of tumor responses, and (i) increases in cell death occur rapidly after the onset of therapy and correlate
with early tumor shrinkage, but the magnitude of this early response to treatment is not always predictive for the long-
term response of a tumor. For a few tracers (i.e., [??MTc]Annexin A5, [18F]ML-10, [18F]FB-VAD-fluoromethy! ketone,
[?9™Tclglucarate) and a few tumor models, data have been acquired demonstrating that the magnitude of early tracer
uptake in the tumor corresponds to the extent of tumor shrinkage during follow-up. There is definitely a need for more
information about this subject, since valid predictive tools will allow clinicians to change therapy in nonresponding
patients at an early stage, avoiding unnecessary toxicity and increasing treatment efficacy.

Since a limited probe entry into tumor tissue was frequently encountered in previous research (probably due to
a large molecular size of the probes), radiolabeled protein domains or antibody fragments may be more promising as
tracers than full-length proteins or antibodies. Some novel potential tracer candidates have been identified in recent
years, but have not yet been widely explored for PET and SPECT imaging. These include the Tim family of proteins
which bind to PS via their IgV domain (but show a higher affinity to oxidized PS)277; Bai-1, which binds to PS via throm-
bospondin domains278; and sRAGE, which binds PS via a V-type domain.2’? Other possible candidates are: antibodies
against CXCL1, which is released during the unfolded protein response,28% the high mobility group box 1 (HMGB1)
protein,which interacts with PS in an integrin-dependent manner,32 and imaging of granzyme B, which may be a pre-
dictive biomarker of immunotherapy response.281 The already wide field of cell death imaging may thus expand even

further in the near future.

ORCID
Aren van Waarde ([2) http://orcid.org/0000-0003-1183-1603
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