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Breast and prostate cancer are diseases in which steroids and steroid metabolism could
markedly influence clinical outcomes for patients. In both malignancies the modification
of ketone and hydroxyl groups attached to the steroid backbone (phase one metabolism)
has been examined in detail but the conjugation reactions (phase two metabolism) have
not been extensively studied. Therefore, in this review we aim to summarize phase two
metabolism in breast and prostate cancers from a number of perspectives, including the
impact of variation in serum levels of conjugated steroids, tissue, and pathology specific
expression of phase two enzymes, and consequences of genetic variations of these con-
jugation enzymes. In addition to this biological perspective, we will also address current
pharmacological efforts to manipulate phase two metabolism as a potential therapy for
hormone dependent cancers, including clinical trials of STS inhibitors and preclinical STS
inhibitor development. While this review is not intended to cover any one particular area in
great technical depth, it is intended as an introduction to and/or update on the importance
of variance in phase two metabolic pathways in breast and prostate cancers.
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INTRODUCTION
Breast and prostate cancers are often characterized by their sex
steroid dependence (1). A common characteristic of both malig-
nancies is that steroidogenic enzymes and receptors have been
reported as displaying prognostic significance (2, 3) and therefore
the manipulation of steroidogenic pathways is a common mode
of endocrine therapy in these cancers (4, 5). However, despite the
importance of net steroid signaling to both cancers, the effects
of variation in phase two metabolism have not necessarily been
studied as much as those of phase one metabolism.

Phase two metabolism of androgens and estrogens is well
known to be composed of two reversible conjugation pathways.
In contrast to phase one metabolism, in which steroid potency is
modulated through modifications between hydroxyl and ketone
groups at the 3 and 17 carbon positions of the four carbon ring
backbone structure common to all steroids, phase two metabo-
lism is associated with the conjugation of a charged moiety at the
three carbon position and is almost universally associated with
a decrease in steroid potency (6). In the case of androgens and
estrogens, this moiety corresponds to a sulfate or glucuronide
group, giving rise to the naming of the two principle pathways
of phase two metabolism in breast and prostate cancers; sulfation
and glucuronidation.

The addition of sulfated and glucuronidated moieties to andro-
gens and estrogens has the net effect of lowering receptor activation
through both decreased potency and increased excretion (7–9).
The reversibility of these reactions also means that conjugated
steroids remain available, either from circulation or from local
pools of steroids, to any tissues with the ability to de-conjugate the
functional groups from the steroid backbone [e.g., Ref. (10)]. This
latter point is important as it has been proposed that the secretion

of conjugated and therefore inert steroids into the bloodstream,
in tandem with tissue specific expression of steroid metabolizing
enzymes, may allow tissue and/or organ specific steroid profiles to
be created from a common circulating pool of steroids. Therefore,
given the importance of both conjugation and de-conjugation
reactions of androgens and estrogens in peripheral tissues, this
review will focus on these pathways. These consist of four differ-
ent reactions involving two functional groups – the conjugation
and de-conjugation of glucuronide moieties to androgenic (C19)
steroids and conjugation and the de-conjugation of sulfate moi-
eties to either androgenic (C19) or estrogenic (C18/C19) steroids
(Figure 1).

Sulfation in humans is, in general, either associated with
the C19 precursor DHEA, estrone, or estradiol. The enzymes
responsible for the sulfation of estradiol (E2) and estrone (E1)
are SULT1A1, SULT1E1, and SULT2A1 (11), with each enzyme
exhibiting a similar affinity for E2 or E1. Of these enzymes
SULT1E1, also termed estrogen sulfotransferase (EST), is consid-
ered the principle C18 sulfation enzyme (12–14). Two different
STS enzymes have been proposed in the reaction of C19 steroids,
one which overlaps with estrogen metabolizing SULT enzymes
[SULT2A1 (15)] while the other does not [SULT2B1 (16, 17)].

In humans the enzyme responsible for de-conjugation of
sulfated groups is common to both androgenic and estrogenic
steroids. This enzyme is steroid sulfotransferase (STS), also termed
aryl sulfotransferase. The relatively high levels of sulfated steroids
in the circulation have made this particular enzyme the focus
of intense study. These sulfated steroids are proposed to act as
a pool of precursor steroids in tissues, such as the breast and
the prostate, capable of deconjugating the sulfate moiety from
the steroid backbone (Figure 2). This STS mediated enzymatic
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FIGURE 1 | Steroid conjugation reactions in breast and prostate
with a known underlying biology. Despite the many possible actions
of steroids conjugation in the inactivation of steroids only a few have a
concrete suggested role and have been well documented in the breast
and the prostate. It is these latter reactions that are shown in the figure
above. The reactions contained inside the dotted line are not
conjugations reactions and hence are outside the scope of this review.

These reactions however have been covered in recent reviews and we
refer the reader toward these (1–3, 10). Italics indicate the known or
most likely candidate enzymes that catalyze conjugation reactions. The
arrows both in the central area and for the conjugation reactions give
the possible directions for possible conversions, but in any tissue or
state the nature of the conversions are dependent on the enzymes
expressed.

FIGURE 2 | Representative illustrations of immunohistochemistry of STS in breast (A) and prostate cancer (B). Immunoreactivity is detected in the
cytoplasm of carcinoma cells.

reaction is one of the most clinically relevant, at least within
the confines of phase two metabolism, as it is the closest to
being exploited as a therapeutic option in hormone dependent
cancers.

Glucuronidated steroids, in contrast to sulfated steroids, have
mostly been studied in the context of downstream metabolism
of active androgens (Figure 1). Glucuronidated steroids derived
from the potent androgen DHT have been reported to be mea-
surable in the serum of both men (18, 19) and women (20,
21). The enzymes responsible for glucuronidation of androgens
are UGT2B7, UGT2B15, UGT2B17, and possibly UGT2B28 (22),
with recent studies suggesting specificity of different enzymes to

steroids (23). While estrogen glucuronidation has not been exten-
sively studied as a pathway in either breast or prostate cancer,
activities of glucuronidation enzymes on estrogenic compounds
have been reported and differ between estradiol and estrone
(E2; UGT1A1, UGT1A4, UGT1A9, and UGT1A10 E1; UGT1A9,
UGT1A10, UGT1A3, and UGT1A8) (11, 24). The glucuronida-
tion of both C18 and C19 steroids is reversible and is mediated
by β-Glucuronidase but this reverse reaction has not necessarily
been well studied. This could be due to the relatively low levels
of circulating glucuronidated androgens, suggesting that the de-
conjugation of glucuronidated steroids may not play important
roles in steroid dependent tissues.
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CONJUGATED CIRCULATING STEROIDS AND HORMONE
DEPENDENT CANCER RISK
There is a relative abundance of conjugated as compared to non-
conjugated steroids in the circulation [e.g., Ref. (25–27)], and
variations in the levels of these steroids have been correlated with
the risks of developing hormone dependent disease. In breast
cancer increased serum concentrations of sulfated forms of both
androgens and estrogens, along with their unconjugated forms,
have been reported to be associated with increased risks of can-
cer development in some, but not all, studies of post-menopausal
women (26, 28–31). The same possibility has been explored in
prostate cancer but no association was demonstrated (32).

Associations between serum glucuronidated steroid levels and
risks of hormonal dependent cancer development have been
principally studied in prostate cancer and, in this setting, glu-
curonidated steroid have been interpreted as indirect markers
of peripheral androgen synthesis (33). For instance in Japanese
compared to western males, the main circulating glucuronidated
steroids androsterone glucuronide (ADT-G) and androstane-3α,
17β-diol glucuronide (3α-diol-G) are lower (34). This has been
interpreted to suggest that lower peripheral steroid synthesis could
account for the lower prostate cancer risk in Japanese males
(34). Measurable levels of serum glucuronidated androgens have
also been reported in females (20, 21) but their clinical signifi-
cance remains unknown with regard to the risk of breast cancer
development.

STEROID CONJUGATING ENZYMES IN BREAST AND
PROSTATE TISSUES
While serum levels of conjugated steroids provide information
as to the sum total of conjugation reaction in the entire body
they do not necessarily provide information regarding the steroid
metabolism within a particular tissue. Hence an examination of
the localized expression of relevant enzymes is considered invalu-
able in demonstrating the role(s) of phase two metabolism specific
to a tissue and its pathology. Such studies have mainly focused on
EST expression, principally in breast cancer patients but also to a
limited extent in prostate cancer patients.

In the prostate, EST immunoreactivity was reported to be
absent in normal ductal cells but detected in carcinoma cells (35)
suggesting a possible role in cancer. In contrast to prostate cancer,
the roles of steroid sulfating enzymes in breast cancer, especially
that of EST, have been extensively studied. In human breast tis-
sue EST was detected in both normal and various carcinoma
tissues (36–39). EST expression is generally most pronounced in
the normal breast followed by ductal carcinoma in situ (DCIS)
and lowest in invasive ductal carcinoma with localization to both
the tumor and tumor-adjacent stromal fibroblasts (36–38). An
inverse correlation between tumor histological grade and the lev-
els of intratumoral EST immunoreactivity was also reported in
both invasive carcinoma and DCIS (38, 39). This suggests that the
inactivation of estrogens by EST is an important component in
protecting the breast against estrogen excess, thus averting malig-
nant growth. In addition to EST, SULT2B1 expression was present
in both breast and prostate cancers (16, 17) and in the breast its
expression was reported to be increased in cancerous as compared
to normal breast tissues (16, 40). This finding suggests a potential

role for androgens in protecting breast tissues. However, further
investigations are needed to confirm or disprove this potentially
interesting hypothesis.

Glucuronidation enzymes in the breast [C18; UGT1A1,
UGT1A8, and UGT1A10, UGT2B28 (24, 41, 42) C19; UGT2B15
and UGT2B28 (24, 41)] and prostate [C18; UGT1A5, UGT1A10
and UGT1A1 (24, 42) C19; UGT2B15 and UGT2B17 (24)] have
been reported but their precise clinical and/or biological signif-
icance is not clear. One recent study has examined the localiza-
tion of UGT2B15 and UGT2B17 in prostate cancer showing that
UGT2B17 increased, and UGT2B15 decreased in cancer progres-
sion from benign disease to lymph node metastasis (43). Further
investigations such as these in breast and prostate cancer may bring
new and interesting insights into the underlying biology.

GENETIC POLYMORPHISMS IN CONJUGATING ENZYMES
AND BREAST AND PROSTATE CANCER RISK
For a number of the enzymes detailed above there are validated
polymorphisms reported with characterized alterations in enzyme
activity. When probing the relevance of these polymorphisms in
breast and prostate cancer two potential roles have been identi-
fied; the impact of polymorphisms upon the tissue metabolism
of endogenous steroids and the potential impact of the polymor-
phisms upon the metabolism of chemical or endocrine directed
therapy. The latter is considered important but it is outside the
scope of this review and we direct the reader toward original papers
dealing with this topic (44–46). In this section we will concen-
trate on the potential impact of polymorphisms in treatment-naïve
settings.

In breast cancer, studies have focused on polymorphisms in
UGT1A1, SULTE1/EST, and SULT1A1. For UGT1A1, the majority
of studies examining genetic variation have evaluated the impact
of variants associated with a lower rate of enzyme transcription
in vitro. These studies all demonstrated an association between the
low activity variant and an increased risk of premenopausal breast
cancer across a number of ethnic populations [African (47), Chi-
nese (48), African Americans (49)] and in addition an association
with cancer grade, estrogen negativity and increased mammo-
graphic density (50, 51). A similar association between genetic
variants in SULT1E1 and breast cancer risk/mammographic den-
sity has also been detected (51–53). These findings are not incon-
trovertible as in other studies no association between clinical
factors and SNPs in SULT1E1 was reported (54).

In prostate cancer studies have focused the UGT2B15(D85Y)
and the UGT2B17 gene deletion variants, although a correlation
between variations in the gene copy number and serum steroids
was also reported (55, 56). In men, UGT2B15(D85Y) and the
UGT2B17 deletion were both associated with alterations in serum
steroid levels and fat mass (23, 57, 58) and the UGT215(D85Y)
variation (56, 59) has been reported to be associated with increased
prostate cancer risk in unselected (59), Caucasian (60) and Japan-
ese (61) subjects. However, it is also true that other studies failed
to detect an association between increased prostate cancer inci-
dence and UGT2B17 gene deletion variation in Caucasian (62)
and African American (60) patients.

Given that the polymorphisms described above have been
shown to alter serum levels of steroids, it is possibly unsurprising
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that they are also associated with increases in hormone dependent
cancer risk. While this data does not specifically show that enzyme
alterations in the breast or prostate tissue leads to malignancy it
does serve as a useful illustration of the importance of steroid con-
jugating enzymes in protecting tissues against steroid excess, and
the consequences to the organism when this system is disrupted.
Variations in findings among reported studies may be attributable
to multiple factors (including study size and power) and require
further investigation to fully unravel any associations.

HORMONAL REGULATION AS A MODULATOR OF PHASE TWO
METABOLISM IN BREAST AND PROSTATE CANCER
Hormonal regulation of the inactivation of steroids is impor-
tant because the endocrine treatment for both breast and prostate
cancer involves the manipulation of various hormonal signaling
pathways. Additionally in breast cancer, the presence or absence
of various sex steroid receptors subdivides the disease into clini-
cally meaningful subgroups with unique treatment strategies and
different prognosis. These suggest that an understanding of the
regulation of phase two metabolism by hormones may be helpful
in understanding and potentially manipulating it in breast and
prostate cancer.

The hormonal regulation of phase two metabolism has not
been reported in the peripheral tissues with the exception of EST
in the endometrium (63, 64). EST expression in the endometrium
was reported to be hormone dependent as it paralleled the serum
progesterone levels during the menstrual cycle and was suppressed
by oral contraceptives (64). While in vivo studies in breast can-
cer have not been reported in the literature, in vitro studies of
breast cancer cell lines have demonstrated estrogen treatment and
increases in cell density respectively up- and down-regulate EST
expression (63, 65). Additional in vitro studies have demonstrated
androgen dependent down-regulation and estrogen dependent
up-regulation of androgenic and estrogenic UGT subtypes in
breast and prostate carcinoma cell lines respectively (24). Although
preliminary, these findings may indicate that the local microen-
vironment including intratumoral levels of steroid impact phase
two metabolism which may in turn influence the levels of available
steroids and contribute to disease progression.

MANIPULATION OF DE-CONJUGATION ENZYMES IN THE
TREATMENT OF BREAST AND PROSTATE CANCER
In breast cancer patients, estrogenic signaling is the best charac-
terized driver of carcinoma cell proliferation and therefore much
research has been devoted to how to reduce the levels of estrogenic
signaling in carcinoma cells. Current first line therapy in estro-
gen dependent post-menopausal breast cancer patients usually
employs aromatase inhibitors to suppress the production of intra-
tumoral estrogens from androgenic precursors. This approach
could eliminate one source of estrogens but the second potential
source for estrogenic signaling, the conversion of sulfated estro-
gens to un-sulfated estrogens by STS, still remain. The adverse
roles of STS in breast cancer have been proposed by several previ-
ous studies. STS expression was reported to be increased in female
breast cancer patients (10, 66) and increased expression has also
been associated with increased recurrence (67), clinical resistance
to endocrine therapies (68) and higher histological grades (10, 69).

Interestingly this pathway may not be as active in male breast can-
cer patients (70), suggesting a gender difference in the intracrine
metabolism of the breast. Additionally while the roles of STS in the
generation of estrogenic signal have been well studied, its potential
roles of generating intratumoral androgens from DHEA-S are not,
despite the growing awareness of the potential impact of andro-
gen metabolism in breast cancers (71–73). The potential for STS
to act as a source of both estrogenic and androgenic precursors in
prostate cancer is similar to breast cancer, but this field has been
less explored in the prostate. The activity of STS has been studied
in human prostate carcinoma cell lines and its immunoreactivity
was detected in carcinoma tissues (35), which is consistent with
the potential of this mode of therapy.

The road to developing inhibitors capable of targeting STS has
been a long one involving multiple iterations of steroidal and non-
steroidal compounds over the last three decades. As this has been
comprehensively covered in a number of recent reviews [e.g., Ref.
(10, 74, 75)], in the interests of space we will focus on the latest
developments regarding inhibitor design and the current state of
clinical trials of STS inhibitors.

Initial efforts in developing compounds to inhibit STS activity
uncovered the potential of the sulfamate group as an irreversible
inhibitor of STS. The addition of this functional group to an
estrogenic steroid backbone led to the first promising irreversible
STS inhibitor estrone-3-O-sulfamate (EMATE) (76). Despite pos-
itive in vitro data EMATE demonstrated estrogenic properties in
rodents (77) which, given its proposed application in estrogen
responsive cancers, diminished its usefulness as a human ther-
apeutic agent. As the estrogenicity of EMATE was attributed to
the release of the steroid backbone during inhibition (77), sub-
sequent iterations of STS inhibitor design have focused upon
two main strategies to overcome this drawback. Both of these
approaches have focused on changing the molecule to which sulfa-
mate groups are bound while still relying on phenol sulfamate ester
pharmacophores for enzyme inhibition.

The first approach focused on the use of non-steroidal struc-
tures as compounds to hold the sulfamate functional group. This
approach has resulted in the development of STX64 (667COU-
MATE, BN83495, irosustat), the only STS inhibitor to date to
reach phase two clinical trials. Initial phase one trials in breast
cancer patients were considered promising with an observa-
tion of stable disease in the trial participants (78–80). However,
in 2011, futility analysis of a phase II trial of STX64 follow-
ing chemotherapy in ER+ post-menopausal endometrial cancer
(NCT01251354) suggested no effect and led to the discontinuation
of this trial, and a discontinuation of Ipsen sponsored develop-
ment of STX64 (81). This decision which impacted a phase II trial
of STX64 as a therapeutic agent in post-menopausal treatment-
naïve breast cancer (NCT01230970) and a phase one trial of
STX64 in metastatic prostate cancer (NCT00790374). Despite
this setback, other phase II trials addressing the possibility of
STX64 as a combination therapy in advanced ER+ breast can-
cer (NCT01785992) and the potential of STX64 as a preoperative
treatment in treatment-naïve breast cancer (NCT01662726) are
currently recruiting. In addition to alternative uses of STX64, other
structures with a similar design strategy have been patented and
are in development (75).
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The second approach to avoiding unwanted estrogenicity in
STS inhibitors has focused on modifications to the steroid back
bone to render it non-estrogenic. Compounds of this nature have
been patented (75). These have shown in vitro potency and a lack
of estrogenicity (75, 82, 83) with proven efficacy in rodent mod-
els (75, 84–86). However, to date, none have progressed to being
tested in human clinical trials. This approach remains an exciting
prospect for the future.

Not mentioned above are compound STS inhibitors which,
while not having yet reached clinical testing, are an area of
active development. Compound inhibitors aim to utilize the cleav-
age of the sulfamate group from the parental compound as a
means to deliver two drugs in one by utilizing a biologically
active parental compound. Concepts utilizing this strategy have
principally focused on potential uses in breast cancer and thus
encompass dual STS/SERMs, STS/aromatase, and STS/17βHSD1
inhibitors, recently reviewed in Ref. (75). Among these three
different groups, the most advanced along the development

pipeline is that of STS/aromatase dual inhibitors with promising
results in rodent models (87).

SUMMARY
The targeting of phase two metabolism in breast and prostate
cancer is considered a promising emergent therapy. Most of the
research has focused on STS, and specific inhibition of this enzyme
could become an effective therapeutic tool in estrogen dependent
breast cancer and possibly in prostate cancer patients. However,
more research on the role of phase two metabolism in the excre-
tion of androgens and estrogens is warranted to fully understand
its significance in breast and prostate cancers.
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