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Abstract: An opto-microfluidic static pressure sensor based on a fiber Fabry-Perot Interferometer (FPI)
with extended air cavity for enhancing the measuring sensitivity is proposed. The FPI is constructed
in a microfluidic channel by the combination of the fixed fiber-end reflection and floating liquid
surface reflection faces. A change of the aquatic pressure will cause a drift of the liquid surface
and the pressure can be measured by detecting the shift of the FPI spectrum. Sensitivity of the
sensor structure can be enhanced significantly by extending the air region of the FPI. The structure
is manufactured by using a common single-mode optical fiber, and a silica capillary with the inner
wall coated with a hydrophobic film. A sample with 3500 µm air cavity length has demonstrated the
pressure sensitivity of about 32.4 µm/kPa, and the temperature cross-sensitivity of about 0.33 kPa/K.

Keywords: Fabry-Perot Interferometer (FPI); optical fiber sensor; static pressure sensing; micro-fluidic

1. Introduction

Optical fiber pressure sensors are miniature in size, immune to electromagnetic inter-
ference and enable remote detection, which is suitable for the applications in biomedical,
industrial and environmental safety monitoring [1–3]. Among all fiber-type pressure sen-
sors, the Fabry-Perot (FP) interferometric configuration is highly sensitive, compact, and
convenient for one-end operation [4]. The measurement schemes of FPI sensors are typi-
cally based on two major principles: the change of either in-cavity refractive index (RI) or
the cavity-length or both.

The optical fiber FP pressure sensors based on RI changes have no mechanical moving
parts in the structure and can be demonstrated by simply connecting a hollow-core fiber be-
tween two solid-core fibers. However, their sensitivities were typically 3–5 nm/MPa, which
were limited by the small pressure-index coefficient of the gas in the hollow core [5–7].
Another type of pressure sensor is based on cavity-length change, where the membrane
with large size and small thickness is usually used as the reflective surface of the FP inter-
ferometer (FPI) for achieving a higher sensitivity. Membranes of different materials, such as
silica [8,9], sapphire [10], diamond [11], silver [12], graphene [13,14] and polymer [15], have
been used in building this FPI pressure sensors. Sensors made with silica and sapphire
membranes have low sensitivities, however, they can be applied in a high temperature
environment above 1000 ◦C [10]. The sensor with diamond diaphragm can withstand
high pressure up to 6.8 MPa [11]. Since graphene and polymer material films have good
elasticity and mechanical properties, pressure sensors based on these materials have higher
sensitivity. This type of pressure sensor made with a graphene film of ~100 nm thickness
and 125 µm diameter has reached a cavity-length sensitivity of 1.1 µm/kPa at 10 kHz [16].
When a Parylene-C diaphragm with a larger diameter of 9 mm and a thickness of 500 nm
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was used in the sensor, the sensitivity has reached 2.2 × 103 µm/kPa at 20 Hz [15]. The
pressure sensors with large area and nano-thickness membrane are fragile to surface defects
and environmental influences, hence may not stable and durable enough in static pressure
sensing. However, they are useful in the detection of dynamic pressure (acoustic) [13]. On
the other hand, the FP pressure sensor based on smaller and thicker membranes can be used
for static pressure sensing, but the sensitivity was usually below tens of nm/kPa [12,17].
A compressible micro-FP cavity pressure sensor can simultaneously apply the RI change
and the cavity length change to obtain a high cavity-length sensitivity of 6.9 µm/kPa for
static pressure [18]. The sensitivity can be further increased to 18.2 µm/kPa by using an
anti-resonant hollow-core fiber with selective opening at fiber-end [19].

In this paper, a simple, high-sensitivity optical fiber FP pressure sensor is proposed by
using a combination of a common single mode fiber (SMF), a silica capillary tube and a
small section of liquid. The new FP sensing configuration has an extended air cavity (EAC)
besides the normal FP air cavity, which is the key to sensitivity enhancement. The effects
of the structural parameters of the cavity on the measurement performance is analyzed in
detail. An optimized sensor sample can reach an extremely high measuring sensitivity of
32.4 µm/kPa.

2. Structure and Principle of the Pressure Sensor

The structure of the FP pressure sensor is shown in Figure 1. A flat-cut SMF tip is sealed
in a silica capillary at the center position and the fiber-end is close to the capillary opening.
When the liquid is purged into the capillary from the open end of the capillary, incident
light from the SMF will be reflected, respectively, from the flat fiber-end and the air-liquid
surface inside the capillary, hence construct an FPI. In the reflection spectrum, interference
fringes of the FPI will shift while the liquid surface move under the pressure change of the
liquid. Instant pressure can be measured from the shift of the fringes. Different from the
sensors reported in [18], this sensing structure possesses an additional air cavity between
the UV-adhesive (ergo 8500) and the fiber-end, which will enhance the measuring sensitivity
significantly. The inner wall of the capillary is coated with a hydrophobic material layer
(Daikin OPTOOL UD509) to slow down the liquid flow rate inside the capillary.
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In the structure, the lengths of the EAC, the initial FPI cavity and instant FPI cavity
are defined by Le, L0 and Lx, respectively. The reflected light intensity I of the FPI can be
expressed by: I = I1 + I2 + 2(I1I2)1/2cos[(4πnLx/λ) + ϕ0], where I1 and I2 are respectively
the reflected light intensity from fiber-end and liquid surface, n = 1 is the RI of the air in the
cavity; λ is the operating wavelength; ϕ0 is the initial phase. The fiber is carefully adjusted
to be perpendicular to the liquid surface and then fixed by UV-adhesive.

At a constant temperature, the relation between Lx and pressure P follows the ideal
gas law and can be described by:

Lx(P) = (P0A − PDe
2Le)/PD2 (1)

where P0 is the initial pressure, D and d are the inner diameter of the capillary and the
diameter of the optical fiber, respectively. De = (D2 − d2)1/2 is the effective diameter
of the EAC region. A = De

2Le + D2L0 is a structure-related parameter to simplify the
expression. Then, the cavity length sensitivity of FPI can be deduced by the differentiation
of formula (1):

dLx/dP = −P0 A/P2D2 = −P0

(
1 − d2/D2)Le + L0

P2 (2)

Equation (2) indicates that Lx would be affected by the dimensions of the FPI cavity
and the EAC as well. The sensor with smaller ratio of d/D, longer L0 or Le would exhibit
a larger sensitivity. Since the increasing L0 and D will reduce the FPI contrast and affect
the size of the sensor head, respectively, and d is always the same for a common fiber, so a
larger Le can enhance the measuring sensitivity.

3. Experiments and Discussion

These four samples were built with silica capillary (900 µm inner diameter) and single
mode fiber (SMF, 125 µm diameter). The sample-1, -2 and -3 have similar L0 of ~500 µm,
but different EAC lengths Le of 338 µm, 1516 µm and 3003 µm, respectively. The sample-4
has the same total air-cavity length as sample-1 (Le + L0 ≈ 840 µm), but different length
ratios (Le:L0) of ~3:7 (Le = 251 µm, L0 = 589 µm). Figure 2a is micrograph of the sample-3
which has the longest Le.
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Figure 2. (a) Micrograph of sample-4 in air. (b) Experimental set-up to test the sensitivity of the
pressure sensor head with EAC.

The static pressure sensitivities of the samples are measured with the system shown
in Figure 2b. The sample-under-test were sealed in a water-filled Teflon pipe with an
inner diameter of 3 mm with AB glue (Kafuter 3-ton clear epoxy adhesive). Pressure was
applied from the other end of the pipe by using a pneumatic test pump (Fluke 700PTP-1,
Washington, DC, USA) and a digital pressure meter (Fluke 700G07, resolution 10 Pa) was
used to monitor the applied pressure for comparison. A semiconductor super-luminescent
light emitting diode (SLED, EXALOS EXS210048-02, Schlieren, Switzerland), an optical
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fiber circulator and an optical spectral analyzer (Yokogawa AQ6370D, Tokyo, Japan) were
used to measure the FP interference fringes at different pressure levels. The power of
the SLED should be smaller than 1 µW to avoid vaporization of water, otherwise water
droplets would be generated inside the cavity and greatly increased the loss of the sample.

The sample was immersed in water and ~10 kPa pressure was applied to the water, a
clear liquid surface can be observed inside the capillary, as shown in Figure 3a. Figure 3b
shows the spectra of the sample-1 at three different pressure levels. When high pressure
was applied to the water, the in-capillary water surface would be closer to the fiber-end,
hence more reflected light intensity would be collected by the fiber. The fringe visibility
was increased to about 8 dB at a pressure of 70 kPa.
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Figure 3. (a) Micrograph of sample-3 in water. (b) Reflection spectrum of the sensor at
different pressures.

The solid lines in Figure 4 are the simulation results of the relationship between the
cavity-length and pressure (Lx − P) according to Equation (2) of our FPI pressure sensor
samples. For comparison, the pressure sensors without EAC (Le = 0) are also simulated
and represented by the dashed lines. In comparison, the sensors with EAC exhibit a higher
cavity-length sensitivity (slope of the lines), however, they have a reduction in operating
pressure range. For the sampe-1, -2 and -3 with the same L0, the sensitivity increases
significantly with larger Le. The sensitivity difference between sample-1 and -4 with the
same L0 + L1 is not obvious. The dark region in Figure 4a represents the area where the
pressure sensor does not work. When there is an instant FPI cavity length Lx ≤ 0, the
liquid surface touches the fiber end face and the FPI does not exist; when Lx > ~450 µm, the
contrast of the FPI fringe is small because the reflected light intensity from the liquid surface
(I2) is too weak. This region could be reduced by using a fiber-end with collimated lens.
The points marked in Figure 4a are the experimental results. The FPI cavity lengths are
deduced from the measured free spectral range (FSR) by using the formula: FSR = λ2/2nLx.
Figure 4b shows the experimental data of the sample-3 with the longest Le. Its cavity-length
sensitivity is about 32.4 µm/kPa in the measurement range from 2 kPa to 7 kPa. As we
know, this is the highest static cavity-length sensitivity in the reported FPI pressure sensors.
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The FSR formula of the FPI with EAC can be rewritten as Equation (3).

FSR(P) = λ2PD2/2(P0A − PDe
2Le) (3)

Figure 5 show the relationship between FSR and Pressure (FSR~P) of the pressure
sensor samples at the wavelength of 1580 nm. The sensor with longer Le would exhibit
larger FSR change with pressure, which might also indicate a larger wavelength-shift
sensitivity dλ/dP. The dark region in Figure 5 represents the non-working region in which
the liquid surface is too far from the fiber−end.
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The pressure sensitivity can also be expressed by the wavelength-shift of the fringe.
The dip wavelength of the FP interference fringe is given by: λ = 4πLx/[(2m + 1)π −
ϕ0], where m is a positive integer. The wavelength-shift sensitivity of the sensor can be
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calculated by substituting the λ into Equation (1) and take the derivative as shown in
Equation (4).

dλ/dP = − P0 Aλ

P(P0 A − PDe2Le)
(4)

Figure 6a shows the simulation results of Equation (4) (solid lines) and experimental
results (points) for different samples. The dashed line in the figure is the change of the
wavelength of FSR due to the applied pressure of the sensor without EAC (Le = 0), which
is independent of the cavity length L0 [18]. For our samples, the longer EAC ones would
exhibit higher wavelength-shift sensitivity but with smaller measurement range. The
wavelength-shifts of sample-3 and -4 were measured by observing a dip wavelength
around 1550 nm and within the pressure range of ~1 kPa. The experimental results are
given in Figure 6b. The wavelength-shift sensitivity of sample-3 at pressure ~4 kPa is
138.9 nm/kPa and the sensitivity of sample-4 at pressure ~218 kPa is 76.0 nm/kPa. Since
the wavelength shift caused by air, the RI variation with the pressure can be estimated
to be ~4.2 pm/kPa [5], the sensitivity of the samples mainly comes from the changes of
cavity lengths.
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Temperature cross-sensitivity of the FPI pressure sensor (sample-3) is measured with
a ceramic heating platform (CORNING PC-420D, New York, NY, USA) and a digital ther-
mometer (MITIR, resolution 0.1 K, Zhejiang, China) at a constant pressure of 10 kPa. The
temperature range for the test is from 293.15 K to 303.15 K. Figure 7 shows the experimental
results, which indicate that the temperature-induced cavity-length sensitivity is 10.7 µm/K.
Hence, the temperature cross-sensitivity can be calculated to be about 0.33 kPa/K. The
cross-sensitivity of the sample is proportional to the pressure under test and inversely pro-
portional to the environmental temperature [18], and about 40% lower than that of a silver
diaphragm-based FPI sensor [12]. This temperature crosstalk could be compensated by the
introduction of a temperature sensor, such as a fiber Bragg grating, into the sensor head.



Micromachines 2022, 13, 19 7 of 9Micromachines 2022, 12, x 7 of 9 
 

 

 
Figure 7. Measured cavity-length of FPI at different temperature with a constant pressure of 10 kPa. 

The repeatability of the pressure sensor is also tested in the pressure range of 35 kPa 
to 35.5 kPa. A sample (Le 1011 μm, L0 507 μm) is tested for increasing pressure at intervals 
of 0.1 kPa. At each pressure, there are 20 measurements with 2 s intervals. The dip wave-
lengths of the sample are recorded and represented by box plots in Figure 8. This sample 
is then tested for decreasing pressure at the same intervals. The data (red dot in Figure 8) 
of the decreasing pressure process are located near the center of the box. The 25–75% box 
range is 2 nm maximum at 35.4 kPa measurement, and 1.1 nm minimum at 35.2 kPa meas-
urements. So, the worst measurement error of the sample is about 18 Pa. 

 
Figure 8. Repeatability test of the pressure sensor. 

4. Discussion and Conclusions 
This paper introduces a high measurement-sensitivity optical static-pressure sensor. 

The main contribution to the high sensitivity is by the introduction of an extended air-
cavity (EAC) in the normal Fabry−Perot sensing structure. Longer EACs increase the pres-
sure measurement sensitivity of the sensor significantly within a smaller dynamic range. 
The range could be extended by using beam-collimated fiber-end face in the structure. 
Sample with ~3 mm EAC exhibits cavity-length sensitivity of ~32.4 μm/kPa within the 

Figure 7. Measured cavity-length of FPI at different temperature with a constant pressure of 10 kPa.

The repeatability of the pressure sensor is also tested in the pressure range of 35 kPa
to 35.5 kPa. A sample (Le 1011 µm, L0 507 µm) is tested for increasing pressure at intervals
of 0.1 kPa. At each pressure, there are 20 measurements with 2 s intervals. The dip
wavelengths of the sample are recorded and represented by box plots in Figure 8. This
sample is then tested for decreasing pressure at the same intervals. The data (red dot in
Figure 8) of the decreasing pressure process are located near the center of the box. The
25–75% box range is 2 nm maximum at 35.4 kPa measurement, and 1.1 nm minimum at
35.2 kPa measurements. So, the worst measurement error of the sample is about 18 Pa.
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4. Discussion and Conclusions

This paper introduces a high measurement-sensitivity optical static-pressure sensor.
The main contribution to the high sensitivity is by the introduction of an extended air-cavity
(EAC) in the normal Fabry-Perot sensing structure. Longer EACs increase the pressure
measurement sensitivity of the sensor significantly within a smaller dynamic range. The
range could be extended by using beam-collimated fiber-end face in the structure. Sample
with ~3 mm EAC exhibits cavity-length sensitivity of ~32.4 µm/kPa within the pressure
range from 2 to 7 kPa, and a wavelength shift sensitivity of 138.9 nm/kPa. Temperature
cross-sensitivity of the sensor about 10.7 µm/K is measured. This compact and highly
sensitive sensing structure can be applied in opto-microfluidic system for static pressure
sensing and could also be a good candidate for dynamic pressure sensing.
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