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Introduction

Pregnancy loss is common and occurs in approximately 
15–25% of clinical pregnancies. Recurrent pregnancy loss 
(RPL) is a distinct disorder defined as two or more failed 
clinical pregnancies (1). Fewer than 5% of women will 
experience two consecutive miscarriages and only 1% will 
experience three or more miscarriages (2). Our knowledge 
of the underlying etiologies behind RPL is still in flux. 
However, current evaluation of couples with RPL focuses 
on female factors including endocrine abnormalities such 
as thyroid disease, hyperprolactinemia and uncontrolled 
diabetes; uterine factors such as fibroids and Mullerian 
anomalies, acquired thrombophilia evaluation and 
karyotyping to evaluate for balanced translocations (3). The 
man, while important for conception, is investigated only 

with karyotype. 
The semen analysis is generally not a part of the initial 

assessment of RPL due in part to its limitations as a 
functional test. However, sperm integrity is essential for 
sperm—egg interactions, fertilization and early embryonic 
development (4-6). In addition, paternally expressed genes 
modulate the proliferation and invasiveness of trophoblast 
cells and later placental proliferation (7-9). Despite some of 
the evidence of the effect of sperm on early embryogenesis 
and placental function, male factors contributory to RPL 
are largely unexplored.

Fifty percent of couples with RPL will receive the 
diagnosis of unexplained RPL (Figure 1) (3). This 
is a frustrating diagnosis that has both physical and 
psychological implications. There is suspicion that some 
of unexplained RPL is as a result of an underlying male 
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mechanism that is not currently understood. It is logical 
that since the male gamete contributes 50% of the genomic 
material to the embryo and placenta (10-12), the integrity 
of the sperm genome is essential for the initiation and 
maintenance of a successful pregnancy (13).

In this paper, we will discuss what is known about the 
male contribution to RPL. We will identify knowledge gaps 
and discuss the limitations of some of the findings in the 
literature. We will discuss some of the genes implicated in 
male infertility that appear to overlap with RPL, as well 
as some epigenetic modifications thought to be associated 
with RPL. Finally, we will attempt to provide a glimpse into 
the future and comment on what research must be done to 
answer some of the questions about the male contribution 
to RPL. 

What is known?

Structural chromosomal abnormalities

Structural chromosomal abnormalities imply a different 
arrangement of an appropriate number of chromosomes. 
For example, a part of one chromosome may be found 
attached to a different chromosome so that all the genetic 
material is present but not in the right place. This is 
referred to as a translocation. In this situation, it is possible 
to create unbalanced gametes, which often result in 
offspring that spontaneously abort (Figure 2). Balanced 
translocations consist of reciprocal or Robertsonian 
translocations or inversions. Translocations can occur de 
novo in an embryo or can be inherited from either parent. 
If the translocation is inherited, the carrier parent is often 
phenotypically normal. 

Karyotyping of couples is part of the evaluation of RPL 
and karyotypic abnormalities are an established cause of 
RPL, whether the abnormality occurs in the male partner 
or the female partner. It is however often the last test that 
is obtained because of the low likelihood of an abnormal 
result. A review of cytogenetic findings in multiple 
published surveys of couples with two or more pregnancy 
losses observed an overall prevalence of major chromosomal 
abnormalities of 2.9%, which is five to six times higher 
than that of the general population. Approximately 50% of 
the abnormalities were balanced reciprocal translocations, 
24% were Robertsonian translocations and 12% were sex 
chromosome mosaicisms in females; the rest consisted of Figure 1 Etiologies of recurrent pregnancy loss (3). 

Figure 2 Reciprocal translocation. Illustration from Genetic Counseling Aids, 2nd Edition, Copyright 1989, permission for use granted by 
Greenwood Genetic Center.
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inversions and other sporadic abnormalities. In every group 
of chromosome abnormalities in the parents, there was a 
female to male predominance with a 2:1 ratio (14). Thus, 
structural chromosomal abnormalities in the male partner 
contribute in only a small proportion of couples with RPL. 

Sperm deoxyribonucleic acid fragmentation

DNA fragmentation is the separation or breakage of DNA 
strands into pieces. Terminal deoxynucleotidyl transferase 
dUTP nick-end labeling (TUNEL) and sperm chromatin 
structure assays (SCSA) have been used for the identification 
of significant DNA fragmentation in couples with infertility 
and RPL (15-18). Not only does the presence of significant 
sperm DNA fragmentation have profound implications 
on embryogenesis, prenatal and postnatal growth, it 
has also been proposed to be associated with congenital 
malformations and childhood cancers (19-21). 

Fertilization of an oocyte with damaged spermatozoon 
may result in an increase in DNA damage in the resulting 
embryo genome, which could result in DNA errors 
at different levels of embryogenesis (22). This could 
manifest as either being lethal to a developing embryo or 
as childhood diseases if the errors are non-lethal (23,24). 
Furthermore, this type of damage could occur in embryos 
with a normal chromosome complement and therefore 
could contribute to unexplained RPL (25). Higher sperm 
DNA fragmentation in couples with RPL may have its 
origin in poor DNA packaging at chromatin remodeling 
during spermiogenesis, which could leave DNA more 
vulnerable to oxidative stress (26-29) and DNA nucleases 
(30,31).

Several studies have suggested an association between 
increased sperm DNA fragmentation and unexplained 
RPL (32-36). The study by Bareh et al. [2016] is especially 
intriguing because they only included normozoospermic 
male partners and nonetheless detected significantly higher 
levels of DNA fragmentation within the RPL group 
compared to controls (36). The paternal genome provides the 
centrosome in the first mitotic division after fertilization (37).  
Because the paternal genome is activated between the four- 
and eight-cell stage in human embryos, high DNA damage 
may have no effect on fertilization yet manifest in later 
stages of embryonic development (38,39).

Although ASRM does not recommend routine sperm 
DNA fragmentation testing in male partners of women 
with unexplained RPL, current evidence since that 
guideline was published suggests that this could provide a 

potential mechanism for a male contribution to unexplained 
RPL. Moreover, a variety of interventions have been 
demonstrated to decrease sperm DNA fragmentation. 
Varicoceles are a known cause of sperm DNA damage (40) 
and many reproductive urologists will evaluate for their 
presence in couples with RPL. Varicocelectomy decreases 
sperm DNA fragmentation (41). Indeed, a randomized 
controlled trial demonstrated higher rates of conception and 
lower rates of miscarriage in couples with RPL in whom 
the male underwent varicocele repair (42). Furthermore, 
Esteves et al. demonstrated the effectiveness of using 
testicular sperm for ICSI over ejaculated sperm during IVF 
as a strategy to overcome infertility in oligozoospermic men 
with high sperm DNA fragmentation (43). 

Additional modifiable factors that have been associated 
with an increase in reactive oxygen species generation 
and abnormal sperm DNA fragmentation include  
alcohol (44), smoking (45) and some environmental toxins 
(45-47). Furthermore, we are just beginning to explore 
the possibility that some men could have an unrecognized 
inherent genetic predisposit ion that causes their 
spermatozoa DNA to become susceptible to fragmentation. 
This possibility is yet to be thoroughly investigated and 
would require refined genetic evaluations including 
assessing epigenetic modifications in the sperm genome.

Despite some of the evidence for DNA fragmentation 
as a potential etiology of RPL, there are some limitations 
for its use. The threshold for what is deemed as “abnormal” 
DNA fragmentation varies in the literature and until there 
is a standardized method of measuring DNA fragmentation, 
it may not be widely utilized in the evaluation of couples 
with unexplained RPL.

Y chromosome microdeletions

The presence of severe oligospermia or azoospermia on 
routine semen analysis warrants further investigation 
including evaluation for microdeletion of the azoospermic 
factor (AZF) on the Y chromosome (48). Prevalence of 
Y-chromosome microdeletion in severely oligospermic and 
azoospermic men is estimated to be 8–18% (49,50). Several 
investigators have studied the prevalence of Y-chromosome 
microdeletions in their populations of couples with RPL. 
Three studies have demonstrated a significantly higher 
prevalence of microdeletion in the Y chromosome in the 
RPL group compared to controls and this prevalence 
ranged from 16% to 82% (51-53), while other studies 
have not demonstrated a difference in the prevalence of 
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Y-chromosome microdeletion in the RPL group compared 
to the control group (54-56). 

These studies on the association between Y-chromosome 
microdeletion and RPL are mixed in part due to the low 
prevalence of Y-chromosome microdeletion in the male 
infertile population coupled with the fact that these men are 
very rarely able to procreate, and almost exclusively require 
assisted reproductive technology (ART) for reproduction. 
In addition, it remains unknown how spermatozoa with 
a deletion influence fertilization rate and embryo quality. 
There are very few studies in the literature of the plausible 
mechanism by which AZF mutation can be implicated with 
miscarriages. Some of these studies implicate AZF region 
mutations with a meiotic defect, which may be associated 
with increased pregnancy loss (57-59). Another alternative 
explanation is that these Y-chromosome microdeletions 
are polymorphisms and due to the presence of palindromic 
areas, there are likely to be crossing over events with the 
X-chromosome yielding a genetic abnormality that could 
result in RPL (51). This is a knowledge gap that could be 
further investigated with animal models. 

What is currently being explored?

Sperm aneuploidy

We are now beginning to understand that genetic and 
epigenetic contributions of sperm to early embryogenesis 
are extensive and have profound clinical implications. 
Fluorescent in situ hybridization (FISH) technology is the 
primary method used to study sperm chromosomes and 
detect aneuploidy. Sperm aneuploidy has been detected 
at an increased rate in male partners of women with 
RPL compared to controls in several studies (35,60-63).  
Although the data has shown increased rates of sex 
chromosome disomy in sperm from the male partner in 
couples with RPL, cytogenetic analysis of products of 
conception from couples with RPL does not reveal an 
increased rate of sex chromosome aneuploidy. This might 
suggest that cytogenetically abnormal sperm might be 
selected against during the process of fertilization (64,65). 
ASRM does not recommend routine sperm aneuploidy 
testing in couples with unexplained RPL (3). They cited 
the study by Stephenson et al. which demonstrated that 
over half of miscarriages in couples with RPL were euploid 
(54% vs. 46%) (64). However, one limitation of this study 
is the fact that they looked at a heterogeneous group with 
recurrent miscarriage and didn’t limit to idiopathic cases. 

Moreover, the 2015 ASRM practice guideline for 
evaluation of the infertile male suggests that patients with 
RPL may benefit from screening for sperm aneuploidy (48).  
This differing view may be due in part to uncertainty 
surrounding the prognostic value of FISH regarding 
the final progeny as well as cost considerations (66). 
Furthermore, most FISH studies focus on a small number of 
chromosomes, typically those associated with aneuploidies 
compatible with life, namely 13, 18, 21, X and Y (67). What 
is unknown is whether this limited FISH panel is sufficient 
for evaluation of couples with RPL or even if expanded 
panels would provide more information. In addition, 
Neusser et al. posited that in RPL, chromosomes 1, 2, 6, 15, 
16 and 21 are more relevant targets for sperm aneuploidy 
testing with chromosome 16 being the most promising 
diagnostic target (68). For these reasons, some authors 
suggest that until more in-depth studies are performed 
to explore this relationship, men with RPL should be 
screened for sperm aneuploidy and also referred to genetic  
counselors (69). At present, no intervention is known to 
decrease sperm aneuploidy but preimplantation genetic 
screening (PGS) can be used to select for euploid embryos 
during IVF.

Methylenetetrahydrofolate reductase (MTHFR) 
polymorphisms

MTHFR enzyme plays an important role in catalyzing 
the conversion of 5,10-methylenetetraydrofolate into 
5-methylenetetrahydrofolate, which provides the single-
carbon for homocysteine in methionine synthesis (70,71). 
There have been several studies that have evaluated 
the association between polymorphisms in MTHFR 
reductase activity and unexplained RPL. The results of 
these epidemiologic studies have been inconsistent in the 
literature. Of the 40 different genetic polymorphisms of 
MTHFR, C677T variant is the most studied and thought to 
be the most clinically relevant. A recent meta-analysis of 29 
articles demonstrated a significant association between the 
MTHFR C677T polymorphism and a susceptibility to RPL 
in women (72). In addition, a pooled meta-analysis of 57 
articles also demonstrated that both maternal and paternal 
MTHFR gene C677T and A1298C variants are associated 
with RPL. They also observed a significant association 
between fetal MTHFR A1298C polymorphism and RPL, 
but no association with C677T (73). Due to the inconsistent 
literature on this association, a general consensus has 
not been determined on the impact of paternal MTHFR 
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polymorphisms on RPL.

Annexin A5 M2 haplotype

In 2007, a hereditary factor for RPL was suggested (74). This 
factor, called the M2 haplotype, comprises four consecutive 
nucleotide substitutions in the core promoter of the annexin 
A5 (ANXA5) gene and results in reduced expression levels 
of ANXA5 in placenta. ANXA5 is a member of the annexin 
protein family. It is ubiquitously expressed in perfused 
ductal organs and most abundantly present at the apical 
surfaces of the syncytiotrophoblast covering placenta  
villi (75). ANXA5 has potent anticoagulant properties 
that have been extensively studied both in vitro and 
in vivo (76,77). ANXA5 is crucial for the dynamics of 
membrane repair within the syncytiotrophoblast and 
reduced expression results in various thrombophilia-related 
pathologies of pregnancy such as preeclampsia, fetal growth 
restriction and RPL (75).

Abortion risk of women carrying the M2 haplotype for 
ANXA5 has been demonstrated to be over 2-fold higher 
than the general population (74). However, the mechanism 
by which this occurs is not known. It is suggested that the 
most likely explanation is a reduced expression of ANXA5 
in placenta. It has also recently been demonstrated that the 
genetic frequency of paternal M2 carriage is significantly 
higher in couples with RPL than in fertile controls in the 
German population and its effects occur distinctly between 
the 10th and 15th week of gestation (75,78). Association 
between Annexin A5 M2 haplotype polymorphism and RPL 
has been replicated in other populations including Italian, 
Bulgarian, Japanese and Malaysian but the mechanism 
by which it impacts pregnancy loss needs to be further 
elucidated (78-81). Genotypic evaluation of embryonic 
tissue obtained from pregnancy loss may be relevant in 
further understanding the impact of this haplotype.

Ubiquitin-specific protease (USP26) gene alterations

In recent years, increased attention has been paid to genetic 
causes of male infertility. In addition to Y-chromosome 
microdeletion and mutation of some autosomal genes, 
X-chromosome genes have also been found to be closely 
related to male fertility; however, their underlying 
molecular mechanisms are still largely unknown (82,83). 
Nishimune and Tanaka [2006] observed many genes on 
the X-chromosome that are related to male infertility. The 
ubiquitin-specific protease 26 was first identified from 

a screen of X-linked genes involved in spermatogenesis 
by Wang et al. [2001]. USP26 belongs to a family of 
deubiquitinating enzymes, which play an important role 
in several biological processes such as control of growth, 
differentiation, oncogenesis and genome integrity (84,85). 
These enzymes might be involved in the removal of 
histones, regulation of cell turnover during meiosis, germ 
cell apoptosis, and proliferation and differentiation of 
spermatogonial stem cells during spermatogenesis (86).

In a recent study of 166 infertile men with non-
obstructive azoospermia, 72 male partners of couples with 
RPL and 60 fertile controls, the authors demonstrated that 
total frequency of mutation in three common haplotypes of 
the USP26 gene in the study population was significantly 
higher in the infertile group and RPL group compared to 
the fertile controls. The authors concluded that in their 
population of Iranian men, alterations to the USP26 could 
impact fertility outcomes. Mutations may lead to an increase 
in histone levels in sperm DNA and consequently increased 
sperm DNA damage (86). Further studies are required 
to examine this association, which could potentially be 
applicable to men with idiopathic RPL.

Telomere length

Telomeres have specialized function in maintaining 
chromosome integrity and in germ cells, are thought to 
aid in meiotic recombination and pairing of homologous 
chromosomes. Telomere shortening in somatic cells results 
in telomeres losing their capping ability at the end of 
chromosomes, resulting in nonreciprocal translocations, 
chromosomal instability, deletions, aneuploidy and DNA 
damage (87). Liu et al. reported that shortened telomere 
length in male mice resulted in apoptosis, decreased 
recombination and meiotic arrest, while in females 
shortened telomeres led to impaired embryonic viability 
and fetal development (88). Telomeres are hypothesized 
to be one of the first structures in the sperm nucleus that 
respond to oocyte signals for male pronucleus development 
at fertilization (89). 

Thilagavathi et al. [2013] therefore hypothesized that 
if telomeres are known to play a significant role in various 
disorders, they might also play a role at the level of the 
sperm and ova genome in unexplained RPL. Their study 
involved analyses of telomere length by real time qPCR 
of leukocytes obtained from 25 couples who experienced 
unexplained RPL and 20 fertile controls. The authors 
discovered that the relative leukocyte mean telomere 
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length in both men and women with unexplained RPL was 
significantly lower when compared to controls. This was 
an interesting finding and led the authors to conclude that 
shortened telomeres might play a role in unexplained RPL. 
However, this would need to be further substantiated by 
analyzing telomere lengths at the level of germ cells (90). 

The era of sperm epigenetics

A growing area of research in infertility is the role of 
epigenetics in male fertility. Epigenetics refer to non-
coding areas in the genome that do not alter the basic 
DNA sequence but play a regulatory role. Modifications to 
the epigenome can occur via several mechanisms such as 
methylation, micro-RNAs and histone modification (91,92). 
The sperm epigenetic profile might provide a historical 
information about the entire process of spermatogenesis. 
During maturation of sperm, about 90% of histones are 
replaced by protamines, and this allows for more efficient 
packaging of compacted chromatin and also protects the 
sperm from oxidative damage. Any modification to this 
process would impact the DNA integrity in sperm and 
render it susceptible to DNA damage (93). 

For this reason, the sperm protamine 1 to protamine  
2 mRNA ratio has been extensively evaluated as a parameter 
of sperm functionality and abnormal ratios have been 
suggested to be implicated in male infertility (94-96). It has 
also recently been demonstrated to be a prognostic indicator 
of IVF/ICSI outcomes (96). Furthermore, a recent study of 
25 male partners of women who experienced unexplained 
RPL, 32 healthy sperm donors and 107 infertile cohort 
demonstrated significant differences between the RPL 
group and the healthy donors in protamine-1, protamine-2 
mRNA levels as well as the protamine mRNA ratios (97). 
In particular, the authors discovered that spermatozoa from 
male partners of women with unexplained RPL contained 
significantly higher protamine-1 and protamine-2 and the 
protamine mRNA ratio was lower in the case group. The 
authors suggest that not only are protamines important 
for fertilization, they may play an additional role in early 
embryogenesis; albeit through an uncertain mechanism (97). 
Protamines warrant further investigation as its mechanism 
of impact on male infertility appears to dovetail with an 
impact on pregnancy loss.

MicroRNAs are also non-protein coding RNAs that 
induce post-transcriptional gene silencing and mediate 
translational repression (98). MicroRNAs are believed 
to regulate almost a third of the human genome (99). It 

has been suggested that single nucleotide polymorphisms 
(SNP) in microRNA sequences can potentially affect their 
regulatory function (99) and some studies have demonstrated 
an association with RPL (100,101). A recent comparison 
study of couples with unexplained RPL compared to proven 
controls demonstrated differences in parental microRNA 
polymorphisms between the cases and the controls. This was 
the first study to implicate male microRNAs in RPL (102). 
Further investigation into microRNAs is warranted.

Finally, DNA methylation is another important aspect 
of sperm epigenetics that plays a role in male fecundity. 
Recent studies have reported an association between 
differentially methylated areas in the sperm DNA and male 
fecundity (103,104). Unexplained RPL as a result of early 
embryogenesis defect is one degree of separation away from 
male fecundity and it remains to be explored, the role of 
differential DNA methylation profiles in male partners of 
women with unexplained RPL.

Conclusions and future directions

RPL is a multifactorial disease and we are just beginning to 
scratch the surface of understanding the male contribution 
to unexplained RPL. The study of epigenetic biomarkers 
that are contributory to unexplained RPL is greatly needed. 
Abnormal DNA fragmentation is likely a symptom of 
multiple pathways; some of which we understand and 
some requiring significant further investigation (Figure 3).  
This is an area of research that involves an overlap between 
genetics, epigenetics and environmental factors. In 
addition, there is a growing need for more reliable tests of 
sperm aneuploidy and research into how to overcome this 
obstacle for selecting sperm for use in ART. Ultimately, 
the mechanisms by which these genetic and epigenetic 
mechanisms lead to RPL must be understood in order to 
develop therapeutic approaches.

Furthermore, we have only begun to explore the role 
of genes that have been found to be associated with male 
infertility in unexplained RPL. There are likely other as yet 
unknown genetic abnormalities unrelated to male infertility 
that might be implicated in unexplained RPL. Some great 
discoveries in science have occurred serendipitously and 
we cannot even begin to predict how to determine these 
unknown male genetic contributions. Perhaps pedigree 
information in couples with unexplained RPL may be 
helpful in identifying a subset of individuals in which the 
disease is strongly inherited. Linkage analysis and genome 
wide association studies could then ensue. This is an 
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interesting thought but would undeniably be costly and at 
risk of not yielding useful information.

With the information we currently have, testing for 
sperm chromosomal abnormalities and DNA fragmentation 
appears to be a reasonable option for male partners of 
women with unexplained RPL, with referral to genetic 
counselor if results are positive (69). Although, it remains 
difficult to predict the exact risk of unfavorable outcomes 
in the presence of positive findings from the available tests 
we have especially with the limitations in the methods 
of testing, this information provides for more detailed 
discussion about the risks and potential impacts on 
subsequent pregnancy outcomes. Psychologically, there may 
be benefit to couples in understanding the reasons for their 
losses, and diagnosis of a male factor may help couple in 
considering alternative reproductive options, including the 
use of donor sperm. Clinicians currently counsel couples 
with unexplained RPL that the chance of a livebirth in a 
subsequent pregnancy is approximately 75% (3). However, 
given the heterogeneity of unexplained RPL, this may not 
be accurate in a subset of patients. Further understanding 
of this complicated ailment will allow couples to make more 
educated, albeit difficult reproductive decisions. 
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