
Genetically Determined Plasma Lipid Levels and Risk of
Diabetic Retinopathy: A Mendelian Randomization Study
Lucia Sobrin,1 Yong He Chong,2,3 Qiao Fan,2 Alfred Gan,3 Lynn K. Stanwyck,1 Georgia Kaidonis,4

Jamie E. Craig,4 Jihye Kim,5 Wen-Ling Liao,6,7 Yu-Chuen Huang,8,9 Wen-Jane Lee,10 Yi-Jen Hung,11

Xiuqing Guo,12 Yang Hai,12 Eli Ipp,13 Samuela Pollack,14 Heather Hancock,15 Alkes Price,14 Alan Penman,16

Paul Mitchell,17 Gerald Liew,17 Albert V. Smith,18,19 Vilmundur Gudnason,18,19 Gavin Tan,3

Barbara E.K. Klein,20 Jane Kuo,12,21 Xiaohui Li,12 Mark W. Christiansen,22 Bruce M. Psaty,22,23

Kevin Sandow,12 Asian Genetic Epidemiology Network Consortium,* Richard A. Jensen,22 Ronald Klein,20

Mary Frances Cotch,24 Jie Jin Wang,2,17 Yucheng Jia,12 Ching J. Chen,15 Yii-Der Ida Chen,12

Jerome I. Rotter,12 Fuu-Jen Tsai,8,25 Craig L. Hanis,5 Kathryn P. Burdon,26 Tien Yin Wong,2,3,27 and
Ching-Yu Cheng2,3,27

Diabetes 2017;66:3130–3141 | https://doi.org/10.2337/db17-0398

Results from observational studies examining dyslipidemia
as a risk factor for diabetic retinopathy (DR) have been
inconsistent. We evaluated the causal relationship be-
tween plasma lipids and DR using a Mendelian random-
ization approach. We pooled genome-wide association
studies summary statistics from 18 studies for two DR
phenotypes: any DR (N = 2,969 case and 4,096 control
subjects) and severe DR (N = 1,277 case and 3,980 con-
trol subjects). Previously identified lipid-associated
single nucleotide polymorphisms served as instrumental
variables. Meta-analysis to combine the Mendelian
randomization estimates from different cohorts was
conducted. There was no statistically significant change
in odds ratios of having any DR or severe DR for any of

the lipid fractions in the primary analysis that used single
nucleotide polymorphisms that did not have a pleiotro-
pic effect on another lipid fraction. Similarly, there was
no significant association in the Caucasian and Chinese
subgroup analyses. This study did not show evidence of a
causal role of the four lipid fractions on DR. However, the
study had limited power to detect odds ratios less than
1.23 per SD in genetically induced increase in plasma
lipid levels, thus we cannot exclude that causal relation-
ships with more modest effect sizes exist.

Diabetic retinopathy (DR) is a major microvascular compli-
cation of diabetes and is the leading cause of blindness in
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working-aged adults (1). It has been estimated that the
global prevalence for any DR and proliferative DR (PDR) to
be 34.6% and 7.0%, respectively (2).

Dyslipidemia is a major cardiovascular risk factor and
has been suggested also as a potential risk factor for DR, in
particular the more severe end points such as PDR and
diabetic macular edema (DME) (2,3). However, in contrast
to tight glycemic and blood pressure control, which have
been shown in clinical trials to reduce DR progression (4,5),
therapies targeted at dyslipidemia have not shown simi-
lar results (6,7). In this regard, fenofibrate, a peroxisome
proliferator–activated receptor a (PPAR-a) agonist, has
shown benefits in reducing requirements for laser treat-
ment of DR and DME (8), but the therapeutic effects of
fenofibrate may not be lipid dependent. The association of
dyslipidemia with DR has been inconsistent among obser-
vational studies (9–12). Possible reasons for this include
confounding (e.g., with obesity), reverse causation, and
measurement biases. As such, there is difficulty in establish-
ing a causal relationship between plasma lipids and DR.

Mendelian randomization (MR) is a study design using
genetic variants as instrumental variables (IVs) to evaluate
the causal relationship between a biomarker and an outcome
of interest (13). Because it takes advantage of the natural
randomization of genetic variants inherited independent of
confounding factors such as lifestyle and environmental
factors (14,15), MR avoids the issues of confounders and
reverse causality and serves as a practical approach to eval-
uate the relationship between plasma lipids and DR.

In this study, we used an MR approach pooling multiple
studies to evaluate the causal relationship between plasma lipids
and two DR phenotypes, 1) any DR and 2) severe DR, by
using genetic variants associated with plasma lipids as IVs.

RESEARCH DESIGN AND METHODS

Study Participants
We included a total of 18 genome-wide association studies
(GWAS) on DR: African American Proliferative Diabetic
Retinopathy Study (AAPDR); Age Gene/Environment
Susceptibility–Reykjavik Study (AGES Reykjavik); Australian
Genetics of Diabetic Retinopathy Study (AUST); Blue Moun-
tains Eye Study (BMES); Cardiovascular Health Study-African
American (CHS-AA); Cardiovascular Health Study-Whites

(CHS-Whites); Genetic Center, China Medical University
Hospital, Taiwan; Genetics of Latinos Diabetic Retinop-
athy (GOLDR); Jackson Heart Study (JHS); Multi-Ethnic
Study of Atherosclerosis-African American (MESA-AA);
Multi-Ethnic Study of Atherosclerosis-Chinese (MESA-
CHN); Multi-Ethnic Study of Atherosclerosis-European
(MESA-EU); Multi-Ethnic Study of Atherosclerosis-Hispanic
(MESA-HIS); Singapore Chinese Eye Study (SCES); Singapore
Malay Eye Study (SiMES); Singapore Indian Eye Study (SINDI);
Starr County Health Studies; and Taiwan–US Diabetic
Retinopathy Study (TUDR). Details of the individual studies
have been previously described (16–31). Of them, 17 had
phenotype information on any DR and 11 on severe DR.
Genotyping was performed on either the Illumina (San
Diego, CA) or Affymetrix (Santa Clara, CA) platforms. Im-
putation was done using the Markov Chain Haplotyping soft-
ware IMPUTE2 or MaCH with 1000 Genomes or HapMap
Phase II as reference panels (Table 1). Details about im-
putation quality control and adjustment are provided in
Table 1. Informed consent was obtained from all partic-
ipants, ethics approval was obtained from the local ethics
committee, and recommendations of the Declaration of
Helsinki were adhered to.

DR Assessment and Definition
DR was either assessed through retinal photography or
clinical diagnosis in the studies involved. DR was graded
using the Early Treatment of Diabetic Retinopathy Study
(ETDRS) adaptation of the modified Airlie House classifi-
cation system or the American Academy of Ophthalmology
(AAO) International Clinical Diabetic Retinopathy Disease
Severity Scale. On the ETDRS scale, grade 10 represents no
DR, grades $20 indicates any DR, and grades $53 indi-
cates severe nonproliferative DR (NPDR) and PDR. On the
AAO scale, the category of no DR indicates absence of DR,
the remaining four categories together indicate any DR, and
the two highest categories together capture severe NPDR
and PDR. As all the studies were graded by one of these two
scales and it is straightforward to harmonize DR pheno-
types across these two scales, it was possible to easily har-
monize the DR phenotype across all the studies.

Two DR phenotypes were assessed in MR analyses:
1) any DR referred to participants with evidence of presence
of DR and 2) severe DR referred to participants with severe
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NPDR and/or PDR (Table 1). Control subjects in the GWAS
analyses were defined as subjects with type 2 diabetes with-
out DR; case subjects were subjects with type 2 diabetes
with either of the defined DR phenotypes.

Genetic IVs
We selected lipid-associated single nucleotide polymor-
phisms (SNPs) at 157 loci, including 60 for HDL cholesterol,
30 for LDL cholesterol, 28 for triglycerides, and 39 for total
cholesterol, previously identified by the Global Lipids Ge-
netic Consortium (GLGC) (32) in individuals of European
ancestry. Summary statistics data for the association be-
tween these 157 SNPs and plasma lipids were used as
genetic IVs for MR analyses in all ethnicities and for Cau-
casian cohorts. The SNPs used as IVs were not in linkage
disequilibrium (R2 ,0.2) with each other as reported by the
original report (32). We then tested the effects of these
157 SNPs on plasma lipid levels in East Asian populations
from the Asian Genetic Epidemiology Network (AGEN)
Consortium and identified 51 SNPs (28 for HDL choles-
terol, 10 for LDL cholesterol, and 13 for triglycerides) as-
sociated with plasma lipids (P , 0.05) in East Asians and
used them for MR analysis in Chinese groups.

As the goal was to estimate the unconfounded associa-
tion of specific lipid fractions with the DR outcomes, any
of the 157 SNPs that were also associated with another
fraction by definition violates the MR assumption that
each SNP IV has no pleiotropic effect and only acts on the
outcome via the specific lipid fraction exposure. Therefore,
for the primary analysis, we selected the subset of SNPs
that were unique (independent) to each lipid fraction (i.e.,
did not also have pleiotropic effect on another lipid frac-
tion) as reported by the GLGC (32). Using the Type 2
Diabetes Knowledge Portal (www.type2diabetesgenetics
.org), we also examined whether any of these SNPs were
significantly associated (P , 5 3 1028) with other risk
factors for DR (type 2 diabetes itself, related glycemic traits,
and hypertension). We also eliminated those SNPs from the
primary analysis (Supplementary Table 1). However, we
were also concerned that the primary analysis would suffer
from a significant loss of power and might overcorrect for
pleiotropy among the different lipid fractions. Therefore, we
also performed a secondary analysis with the entire set of
157 SNPs. Of note, the 157 SNPs were chosen such that each
SNP was only assigned to be the IV for the lipid fraction for
which it was most strongly associated. That is, if a SNP
was significantly associated with both HDL and total choles-
terol levels but the association with HDL levels was stronger,
then it was only chosen as an IV for HDL levels. This elim-
inated some pleiotropic SNPs from the analysis, although it
was not as conservative as the primary analysis that elimi-
nated SNPs with any pleiotropic effects completely, e.g., they
were not assigned as IVs for any lipid fraction.

Statistical Analysis
We obtained GWAS summary statistics data from individual
studies for either or both DR phenotypes for the SNPs
where genotype and imputed data were available. We then
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performed inverse variance–weighted, fixed-effect meta-
analyses with METAL software to pool available GWAS
summary data for each SNP for both DR phenotypes
from individual studies. Individual SNP data were pooled
from all studies, as well as studies from Caucasian and
Chinese cohorts separately.

Next, the association between plasma lipids and DR at
each SNP was calculated as b(lipid-DR) = b(SNP-lipid)/b(SNP-DR)

(33), where b(lipid-DR) represents the estimated effect size
(logarithm of the odds ratio [OR]) of 1 SD of genetically
determined plasma lipid levels on DR. To assess the asso-
ciation between each lipid trait and DR, we combined the
b(lipid-DR) estimates across multiple SNPs using fixed-effect
meta-analysis. Cochran Q test was applied to assess hetero-
geneity across SNPs. Heterogeneity across SNPs was found to
be low (I2 ,40%) among studies (Supplementary Table 2),
hence random-effect meta-analysis was not carried out.

We performed the same analysis for two subgroups of
studies for each DR phenotype where the IVs were presumed
to be stronger on account of similar ancestry backgrounds: 1)
among studies of Caucasian ancestry using the SNPs iden-
tified by the GLGC as IVs and 2) among studies of Chinese
ancestry using SNPs from the AGEN Consortium as IVs.
Of note, b(SNP-lipid) estimates differed between GLGC and
AGEN Consortium, thus supporting the separate analyses
in these two populations. All statistical analyses were per-
formed using Stata 14 (StataCorp LP, College Station, TX).

RESULTS

The baseline characteristics of the participants in each study
are shown in Table 2. A total of 2,969 case and 4,096 con-
trol subjects were included in the analysis of the any DR
phenotype and 1,277 case and 3,980 control subjects were
included in the analysis of the severe DR phenotype. A
summary of the 157 lipid-associated SNPs used as IVs for
MR analysis and the SNP pooled association with DR are
shown in Supplementary Tables 3 and 4.

Tables 3 and 4 show the results of the MR analysis for
the any DR phenotype in all cohorts and the subgroup
Caucasian and Chinese cohort analyses. We did not find
any significant association between plasma lipids and DR.
In the primary analysis (Table 3), for each 1-SD increase in
genetically induced increase in plasma lipid profiles, the OR
of having any DR was 0.91 (95% CI 0.67–1.23) for HDL,
2.50 (0.91–6.87) for LDL, 1.00 (0.86–1.15) for triglycerides,
and 0.83 (0.53–1.31) for total cholesterol in the all ethnic-
ities analysis.

In the secondary analysis (Table 4), for each 1-SD in-
crease in genetically induced increase in plasma lipid pro-
files, the OR of having DR was 0.94 (95% CI 0.79–1.14) for
HDL, 0.95 (0.75–1.20) for LDL, 1.08 (0.96–1.22) for tri-
glycerides, and 0.92 (0.74–1.14) for total cholesterol in the
all ethnicities analysis.

Tables 5 and 6 show the results of the MR analysis for
the severe DR phenotype. For the primary analysis (Table 5),
the OR (95% CI) for the association between plasma
lipids and severe DR was 0.98 (0.74–1.31) for HDL, 0.95
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(0.39–2.36) for LDL, 0.84 (0.33–2.12) for triglycerides, and
0.68 (0.25–1.87) for total cholesterol. In the secondary
analysis (Table 6), the OR (95% CI) for the association be-
tween plasma lipids and severe DR was 1.02 (0.81–1.29) for
HDL, 0.94 (0.80–1.10) for LDL, and 0.69 (0.41–1.16) for
total cholesterol, respectively. In the secondary analysis,
there was stronger evidence that genetically determined
plasma triglycerides levels conferred an increased risk of
having severe DR (OR 1.37 [95% CI 0.99–1.88]), although
the results did not achieve statistical significance (P =
0.056). We did not find any association between plasma lipids
and severe DR in the subgroup Caucasian and Chinese cohort
analyses.

Of note, in the primary analysis using only strictly
defined independent IVs, the risk of genetically determined
plasma triglycerides levels on having severe DR was greatly
reduced (OR 0.84 [95% CI 0.33–2.12]), suggesting that the
association in the secondary analysis was due to pleiotro-
pic triglyceride-related SNPs. Given this finding, we also
repeated the analysis for triglycerides and severe DR using
the 12 SNPs that have effects on triglycerides and at least
one other lipid fraction (Table 6). The risk of genetically
determined plasma triglycerides levels on having severe DR
was strengthened (OR 1.42 [95% CI 1.01–2.00], P = 0.044)
when only these 12 pleiotropic SNPs were used. Because the
PPAR-a agonist fenofibrate has shown benefits in reducing
requirements for laser treatment of DR and DME (8) that are
not explained by its therapeutic effects on triglyceride levels,
we examined whether any of these 12 SNPs were in or near
PPAR-a target genes (34). We found that 3 of these 12 SNPs
are near PPAR-a target genes involved in lipoprotein
uptake/metabolism and lipogenesis (Supplementary Table 5).

We calculated the power for this study using all 157
SNPs. We determined power for varying ORs for DR per SD
of the exposure variable (plasma lipid), with the assumption
that the proportion of lipid variance explained by SNP IVs is
R2 ;10% and with a type 1 error of 0.05 (Supplementary
Table 6) (35). The minimum OR for which the study has
80% power is 1.23 for the any DR outcome and approxi-
mately 1.3 for the severe DR outcome.

DISCUSSION

To the best of our knowledge, our study is the most com-
prehensive MR study to evaluate the causal role of plasma
lipids in DR development by combining multiethnic cohorts
from different countries. We did not see clear evidence of a
causal relationship between lipid measures and DR in the
group as a whole or in the subgroup analyses in Caucasian
and Chinese cohorts using stronger IVs. Our findings may
help shed light on the considerable variability in previous
observational studies exploring the association between plasma
lipids and DR (36). In previous studies, HDL (37,38), LDL
(39,40), triglycerides (41), and total cholesterol (38) have
been inconsistently shown to be associated with DR. Our
findings suggest that these associations previously observed
may overall be noncausal, partially due to residual con-
founders. Our findings were generally consistent throughout
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the subgroup analyses and across populations as we
found no heterogeneity across different populations.
However, this study was not powered to detect modest (OR
,1.23) effect sizes, and thus we cannot exclude the pos-
sibility that more modest causal associations between lipid
levels and DR may exist.

Our findings did suggest a possible causal relationship
between a pleiotropic pathway that includes the triglyceride
pathway and severe DR. In a subanalysis examining the
SNPs that have effects on triglycerides and at least one other
lipid fraction, there was a marginally significant (P = 0.044)
association between the genetically determined plasma lipid
levels and severe DR risk. This finding must be interpreted
cautiously given the multiple hypotheses tested in this
study, but it is an interesting finding that should be followed
up in future studies.

Previous studies have shown an association between
dyslipidemia and severe DR (2), as well as beneficial effects
of fenofibrate treatment on DR (42). Fenofibrate acts
mainly to lower plasma triglycerides levels, but the mech-
anism of its effect on DR is unclear (43). In the Fenofibrate
Intervention and Event Lowering in Diabetes (FIELD)
study, treatment with fenofibrate reduced the need for laser
treatment for DR and showed a reduction in two-step pro-
gression in DR among those with preexisting DR (8). The Ac-
tion to Control Cardiovascular Risk in Diabetes (ACCORD)
study similarly showed that fenofibrate reduced DR pro-
gression in combination with statins, although this effect
could not be entirely explained based on plasma lipid–
altering effects (5). Our data suggest that the SNPs that
influence triglyceride levels but also influence other plasma
lipid fractions may have the strongest influence on DR risk,
suggesting pleiotropic effects of SNPs may be important. In
particular, further examination of the effects of the three
triglyceride SNPs near PPAR-a target genes (Supplementary
Table 5) may help to further explain how fenofibrate re-
duces DR progression with a mechanism other than change
in plasma lipid profile.

It is possible that the traditional lipid measures of total,
HDL, and LDL cholesterol and triglycerides may not
accurately measure the effects of dyslipidemia on DR.
Previous studies have suggested a more direct relationship
between apolipoprotein AI (ApoAI) and apolipoprotein B
(ApoB) with DR compared with traditional lipid measures.
ApoAI can be found in HDL and is overexpressed in the
retina of patients with diabetes (44). ApoB is a structural
protein for VLDL, IDL, and LDL (45) and may reflect the
atherogenic potential of lipid metabolism (46). Observa-
tional studies have found ApoAI, ApoB, and ApoB-to-ApoAI
ratio to be significantly associated with DR with higher
discriminating abilities for DR compared with traditional
lipid measures (47). Our study did not evaluate genetically
determined apolipoprotein levels as IVs for MR analysis,
which may yet reveal possible causal relationships between
dyslipidemia and DR.

The strengths of this study include pooled data from
multiple population-based studies, allowing us to increase
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sample size and thus statistical power. Despite this, our
study is still limited by sample size. It is possible that a
larger, better powered study in the future could reveal a
positive finding. We also used multiple lipid-associated SNPs
to increase the ability to detect an association between each
lipid trait and DR, as effects of individual SNPs on DR may
be modest. The IVs used for the European analysis (all
genome-wide significant SNPs) were quite strong with an
estimated F-statistic of greater than 10, given the R2 ;10%
in the original report (32). For Asian subanalysis, the IVs
were weaker, but the sensitivity analysis using the strong
IVs (genome-wide significant SNPs) did not change the re-
sults materially (Supplementary Tables 2 and 7).

Limitations to this study include differing DR grading
methodologies among pooled studies, but harmonization
was straightforward because all studies were graded on one
of two widely accepted scales. Another limitation is that the
traditional meta-analysis techniques used do not completely
take into account the variability in allelic effects between
ethnic groups. Fixed-effects meta-analysis assumes the al-
lelic effect to be the same in all populations. Conversely,
random-effects meta-analysis assumes that each population
has a different underlying allelic effect, which is also subop-
timal as populations from the same ethnic group tend to be
more homogenous that those that are more distantly related.
We found little evidence of heterogeneity, and therefore we
feel that the fixed-effect meta-analysis approach is justified
and that heterogeneity is not a likely explanation for the neg-
ative results. However, we cannot exclude the possibility that
some trans-ethnic heterogeneity may decrease the power of
this study slightly. The variation in imputation thresholds
and adjustment among the cohorts is another limitation of
the study, as whether a SNP was imputed and imputation
accuracy can affect the precision, variance explained, and
power of the study. In addition, our study did not explore
the relationship between plasma lipids and DME, which
has been suggested in previous studies (48).

The SNPs chosen as IVs for MR analysis in all ethnicities
were identified from a previous study of individuals from
European ancestry, which explained only 10–15% of total
lipid trait variance (32), and this might also have weakened
the IV strength in our non-European cohorts. However,
when we compare findings from that in the largest Euro-
pean GWAS for lipid levels to the findings from genetic
association studies performed in African Americans, His-
panics, and Asians, we find great consistency with regard
to effect size and direction among ethnicities (Supplemen-
tary Tables 8–11). Although there may be some loss of
power from potential interancestry differences in SNPs
affecting lipid levels, it is likely outweighed by the gain
in power by using the larger number of SNPs from the
European lipid GWAS, which explains a greater amount
of lipid level variation.

In addition, the SNPs chosen as IVs from MR analysis
were derived from a study of mainly subjects without diabetes,
which may also decrease the validity of the measures in our
study. However, a recent GWAS of lipid levels performed
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exclusively in patients with type 2 diabetes identified all of the
top findings that had been previously found in populations
without diabetes, indicating that there is significant alignment
of the genetic architecture of lipid levels between populations
with and without diabetes (Supplementary Table 12) (49).
We did not establish the association of the SNPs with
lipid levels directly in our own cohorts because we only
had lipid level data on a subset of patients. This is a limita-
tion, but we note that other MR studies of lipid SNPs have
also used the approach we used here with positive results
(50), and so we do not think this methodologic limitation is
likely to explain our negative results.

One final limitation of this study is the inability to
convert risk estimates into more clinically meaningful
estimates. This is a limitation of all MR studies using the
summary statistics from large GWAS studies, but it does
not invalidate the main aim of these studies, which is to
garner evidence for causality (50). In the GLGC GWAS, the
statistical analysis was a linear regression with the in-
verse normal transformed lipid trait as the dependent
variable (32). The effect estimates were provided in SD
units. Unfortunately, the raw lipid value data from this
study are not available. Therefore, we are not able to
convert our findings to a more clinically meaningful out-
come such as SD of raw plasma lipid levels. The GLGC
GWAS does provide the average SD for LDL (36.8 mg/dL),
HDL (14.7 mg/dL), triglycerides (92.3 mg/dL), and total
cholesterol (42.7 mg/dL) in its Supplementary Table 1 (32).
But the SD of the raw plasma lipid values cannot be derived
directly from the SD of the inverse normalized values with-
out access to raw data.

In conclusion, our findings did not find clear evidence of
a causal role of dyslipidemia on the risk for DR, suggesting
that the inconsistently observed associations from previous
studies were noncausal and may also have been affected by
confounders. We did find a nominal association between
pleiotropic triglyceride IVs and severe retinopathy, which
should be explored in further studies, particularly given that
some of these IVs are in loci near genes that are targets for
PPAR-a and that fenofibrate, a PPAR-a agonist, has been
shown to decrease DR progression. Our study provides fur-
ther understanding of the relative contribution of plasma
lipids to the pathogenesis of diabetic complications.
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