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SCISSOR: a framework for identifying structural
changes in RNA transcripts
Hyo Young Choi1,2,3, Heejoon Jo1,2, Xiaobei Zhao1,2, Katherine A. Hoadley 4,5, Scott Newman 3,

Jeremiah Holt1, Michele C. Hayward5, Michael I. Love4,6, J. S. Marron7 & D. Neil Hayes 1,2,3✉

High-throughput sequencing protocols such as RNA-seq have made it possible to interrogate

the sequence, structure and abundance of RNA transcripts at higher resolution than previous

microarray and other molecular techniques. While many computational tools have been

proposed for identifying mRNA variation through differential splicing/alternative exon usage,

challenges in its analysis remain. Here, we propose a framework for unbiased and robust

discovery of aberrant RNA transcript structures using short read sequencing data based on

shape changes in an RNA-seq coverage profile. Shape changes in selecting sample outliers in

RNA-seq, SCISSOR, is a series of procedures for transforming and normalizing base-level

RNA sequencing coverage data in a transcript independent manner, followed by a statistical

framework for its analysis (https://github.com/hyochoi/SCISSOR). The resulting high

dimensional object is amenable to unsupervised screening of structural alterations across

RNA-seq cohorts with nearly no assumption on the mutational mechanisms underlying

abnormalities. This enables SCISSOR to independently recapture known variants such as

splice site mutations in tumor suppressor genes as well as novel variants that are previously

unrecognized or difficult to identify by any existing methods including recurrent alternate

transcription start sites and recurrent complex deletions in 3′ UTRs.
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Many human genes differ in function through various
expression changes in mRNA product1–6. For example,
tumor-suppressor genes and oncogenes can lose or gain

function through aberrant splicing, gene fusions, duplication,
short insertions, and deletions (indels), or overexpression7–10.
These alterations are emerging as relevant targets of therapy, and
thus the systematic discovery of such alterations is critical11,12.
Many computational methods can identify mRNA aberrations
from RNA-seq, but most use a limited subset of the total RNA-
seq data available. For example, isoform detection methods that
emphasize known transcripts such as DEXSeq13 and SpliceTrap14

collapse reads aligning to exons to a single value without incor-
poration of spliced reads. Alternatively, transcript agnostic
methods such as MISO15, rMATS16, and DiffSplice17 generally
ignore non-junction-spanning reads, and analysis is restricted to
pre-specified events of interest such as intron retention or exon
skipping18. In either case, the transformed RNA data object is a
greatly compressed representation of the true underlying data,
and this can obscure various types of RNA variation. Therefore,
there is an unmet need for unbiased methods that work on a less-
compressed—or base resolution—representation of the tran-
scriptome and thus could have greater power to reveal novel
biological insights19,20.

Here we present SCISSOR, an approach for systematic dis-
covery of changes in mRNA expression including alternative
splicing, intron retention, de novo splice sites, intra-/intergenic
deletions, and alternative transcription start/termination (ATS/
ATT) sites. RNA changes may be somatic, as the result of driver
or passenger mutations, germline variants, or non-genetic events
resulting from epigenetic regulation of alternate isoforms. In
contrast to existing methods, SCISSOR uses base-resolution read
coverage data that provide a rich and comprehensive landscape
beyond gene/exon expression values or splice junctions. SCISSOR
aims to detect structural variation, or differential coverage pat-
terns, across RNA-seq cohorts without any underlying assump-
tion of the mechanism driving the coverage variation. This
enables us to reduce our dependency upon known gene models
and increase our potential to confidently identify otherwise
obscured genetic aberrations. As a proof of principle, we used
SCISSOR on a cohort of 522 TCGA head and neck squamous cell
carcinomas (HNSC) to identify known abnormalities in cancer-
related genes21. We then identified novel aberrations missed by
previous studies on the same data set including alternate splice
isoforms, fusions, and intragenic deletions. Finally, we applied
SCISSOR genome-wide to identify a novel set of genes with
strong evidence of aberrant structure in HNSC.

Results
SCISSOR relies on the post-alignment pileup format to represent
the base-level coverage of each individual locus of interest22. The
method allows for transcript-independent analysis based on
genome alignments, although for the sake of visualization, con-
venience, and interpretation in the current example we limit this
analysis primarily to annotated regions of the genome and
exclude most intronic bases (see “Methods” section). Base-level
read-depth represents an easily interpreted view of coverage
shape of genes, with the y axis proportional to per-base expres-
sion and the x axis showing the genomic position (see “Methods”
section and Fig. 1a). Our underlying assumption is that the
majority of samples from the same tissue type will show uniform
coverage and abnormal expression patterns will present as diverse
shape changes that could be the result of various mutational
mechanisms such as exon skipping, intron retention, gene fusion,
deletion, or internal tandem duplication (Fig. 1a). As a tool for
the systematic discovery of a variety of genetic aberrations, we use

SCISSOR to interrogate shape changes where the aligned cover-
age shape is significantly different from the majority of samples.

Pre-processing procedure. Before the main shape change
detection procedure, normalization and variance stabilization are
performed to generate more symmetrical distributions of the
SCISSOR test statistic and to facilitate interpretation of results
across genes. Because SCISSOR is unlike most gene expression
methods in considering base-level gene expression as opposed to
summary gene expression or expression of exons or splice junc-
tions, modifications of existing normalization and variance sta-
bilization methods are required. We perform additional pre-
processing that can be thought of as determining the residual per-
base expression for each sample after subtraction of a model
representing the shape of that gene across all samples (Fig. 1b).
We refer to a potential abnormal residual structure as latent gene
expression because it is not directly observed but inferred after
subtraction of the model from the normalized data.

The proposed model. The curve after the normalization (Fig. 1b)
can be viewed as a single point in a high-dimensional space by
considering each base position as a dimension and the height of
latent gene expression as a value at that position. By considering
each curve in the normalized data as a random vector in a high-
dimensional space, we fit multiple unknown mixture distribu-
tions, recasting the problem into a high-dimensional latent
variables framework (see “Methods” section). A latent variable is
used to model an underlying abnormal gene expression trajec-
tory, i.e., an outlying direction in a high-dimensional space, that is
interrogated for outliers. An outlier case with shape changes then
can be a data point that is strongly involved in one or multiple
abnormal trajectories, which enables modeling complex structural
variation.

Shape change detection. SCISSOR extracts latent gene expression
associated with abnormal sequencing coverage and quantifies the
level of abnormality in a robust way for determining the cases
with shape changes (Fig. 1c, d). As the type of structure of interest
here is outlying/abnormal, we search for the best one-
dimensional projection in which each sample achieves the max-
imum deviation from all other samples, as a result, producing a
direction we termed the “most outlying direction” (MOD).
Recognizing that RNA-seq data may retain the quality of skew-
ness despite normalization, we propose a modified projection
outlyingness approach which is complementary to a robust
measure of how outlying a sample is in the most extreme one-
dimensional direction23,24 (see “Methods” section and Supple-
mentary Note 5). This modified approach helps to avoid spurious
outliers due to strong skewness of distributions as well as enables
approximate comparisons of outlyingness across genes and
samples. At each gene under consideration, the resulting statistic
is an outlyingness score for each sample with larger values indi-
cating more severe deviation from other samples in the data set
(Fig. 1c). The observed distribution of the outlyingness scores can
be used for identifying and ranking outliers and modeling sta-
tistical significance. For each outlier, SCISSOR produces the
MOD as a single best trajectory that describes abnormalities of
the corresponding outlier, which can be used to recover the latent
space of underlying outlier directions (see “Methods” section and
Supplementary Fig. 1).

The current method increases the dimensionality of the data by
considering expression at a per-base level along the entire length
of the gene under consideration. Although this allows high-
resolution views of RNA variation, it also entails a higher level of
noise due to sampling variation. Accordingly, our approach must
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address the signal-to-noise ratios generated by accumulated noise
in such a high-dimensional framework. Specifically, we attempt to
detect with similar success, both focal and broad structural
alterations in genes expressed either at very high/very low levels,
as well as for very short/very long regions, challenges which we
feel are not well captured by current methods.

To address these challenges, SCISSOR implements a two-step
procedure, global and local, taking advantage of low-dimensional
transformations and sparsity (see “Methods” section). We define
a global shape change (GSC) as one that appears in a wide range
within a gene, including altered exons or introns, intragenic
deletions, and fusions. The directions supporting disjoint exonic
or intronic regions are considered as a set of orthogonal bases of a
low-rank space that will be searched by the modified projection
outlyingness method. As a result, the MOD of an outlier detected
by the global shape change detection is established by a linear
combination of the bases (or a basis itself), which enables the
interpretation of the abnormality and the automatic character-
ization of its type (see “Methods” section and Supplementary
Fig. 1a–c, Supplementary Table 1). By contrast, the local shape
change (LSC) detection procedure only considers changes in
closely related base positions. In this second step designed to
detect more focal sequence changes often missing from the low-
rank space, we interrogate the remaining residuals. We optimize
the residual outlyingness with respect to sparse directions
supporting important regions within a given gene. This helps

detect local genomic variation such as abnormal gains or losses at
narrow regions (Supplementary Fig. 1d–e).

Validation. To validate the assumptions of SCISSOR, we inves-
tigated the results applied to genes commonly altered in HNSC,
including TP53, CDKN2A, and FAT1 (Fig. 2 and Supplementary
Figs. 1–8). For the purposes of this exercise, we relied on publicly
reported mutation calls from TCGA as well as TCGA RNA-seq
data. Although these genes are frequently mutated, overall no
single structural alteration is recurrent or overlapping. As such,
we provide evidence that the method detects non-recurrent out-
lier events that we extend to passenger genes and infrequently
mutated genes (Supplementary Note 6).

In 452 samples, SCISSOR identified 26 GSCs and 24 LSCs
capturing a rich set of known (82%) and previously unrecognized
(18%) genetic aberrations in TP53 (Fig. 2a, b and Supplementary
Figs. 2–4). As expected, many of the shape changes coincided
with mutations (82%), most commonly at splice sites that caused
exon skipping or intron retention and in-frame indels character-
ized by LSCs. Somewhat unexpectedly, only 59% of mutations
annotated as splice site mutations in the public repository of
HNSC mutations were associated with a statistically significant
shape change. Since we expect canonical splice-site mutations to
result in a shape change associated with either retained intron or
skipped exon, we investigated these discordant findings further.
In nearly every case, we found that the called mutation was likely

Fig. 1 Pipeline of SCISSOR for detecting shape changes at a single gene. aMain steps of SCISSOR are illustrated with four typical shape change examples
using a toy gene: an intact example (gray); exon skipping (pink); intron retention (yellow); deletions (blue). The toy gene consists of three exons
highlighted by colored background and two introns by a white background. In each example, short reads are represented by colored bars and the bars
joined by the solid lines indicate the bridging reads spanning two separate genomic regions. Abnormally spliced reads from each scenario result in aberrant
shapes in base-level RNA-seq expression profile as indicated by brown dashed boxes. In each coverage figure, the x axis represents genomic coordinates of
the gene and the y axis represents the read-depth, i.e., the number of reads aligned to each nucleotide. b The normalized coverage accentuates the aberrant
features by eliminating the common structure shared by the majority of samples. c The scores obtained by projecting the normalized coverage matrix onto
each of the most outlying directions corresponding to each example are shown with the kernel density estimates. The colored point in each scatter plot
indicates the outlyingness score corresponding to each example. dMain steps in the pipeline are outlined. RNA-seq coverage for a single gene is extracted
from a BAM file for each subject, and a data matrix is constructed by collecting coverage data from all subjects. The data matrix is then pre-processed
through transformation, exclusion of degraded samples, and normalization. The proposed statistical procedure is applied to the normalized data, providing
the most outlying directions, outlyingness statistics, and identified shape outliers.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20593-3 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:286 | https://doi.org/10.1038/s41467-020-20593-3 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


incorrectly annotated or had limited (or no) supporting reads for
an abnormal splicing event (Fig. 2c–e and Supplementary Table 2,
Supplementary Note 2).

In addition to shape variation associated with previously
reported mutations at TP53, we identified 11 samples that were
not documented in the TCGA mutation calls. In these 11 samples,
we detected intron retention and skipping of multiple exons
(Supplementary Fig. 4). In one case (but often observed in other
genes), the examination of the DNA alignments in the immediate
vicinity (often within 3–5 base pairs (bp)) of the shape change
revealed a variant not annotated as a canonical splice site
mutation, but likely functioning as an abnormal splice donor or
acceptor. For example, we identified a novel intronic insertion

associated with the retained 3rd intron in TCGA-BA-6871-01A
(Fig. 2f–h). Although the insertion was located 3–4 bp from the
exon-intron junction which was not annotated as a splice site in
the TCGA, all 38 intronic RNA reads contained the insertion
whereas the exonic VAF was 0% (P < 0.001, Fisher’s exact test).
This supports a potential impact of intronic variants (>2 bp) on
abnormal splicing, which has been relatively underappreciated
compared to SNVs in exons and canonical splice sites25, and thus
shows the capability of our shape-based analysis to assess the
functional impact of variants outside of the canonical splice sites.

Further, SCISSOR detected all of the previously reported as
well as the unrecognized tumor-suppressor loss of function
mutations in this disease, increasing the numbers of variant cases

Fig. 2 SCISSOR results at the gene TP53. a Global outlyingness scores and local outlyingness scores are shown in the top and bottom figures, respectively,
with kernel density estimates. The colored points indicate the identified shape changes from each step based on the cutoff values (significance level= 1e
−04) indicated by the black vertical lines. Each procedure identified 26 global shape changes (GSCs) and 24 local shape changes (LSCs). b Association
between mutations and shape changes are summarized. The numbers of coincidences of each mutation and identified GSCs and LSCs are shown in the pie
charts (n = 452). c Coverage of a sample with a normal splicing pattern in spite of a splice site mutation is shown (black curve) with median coverage
(gray curve). d The reads aligned to the exon-intron junction involved in the splice site mutation are all normally spliced and a subset of those reads are
shown using the Integrative Genomic Viewer (IGV). e The ratio of normally spliced reads to reads aligned to the last base of the exon is shown for all
samples (n = 452; gray for nonoutliers; red for GSCs; blue for LSCs) using a box plot with the median, interquartile range (IQR), and 1.5×IQR distances
from the upper and lower ends of the box marked. The particular sample (black point) has a large ratio close to 1, indicating normal splicing. f Coverage of
one of the identified shape changes in the absence of any mutation is shown (black). g A subset of the aligned reads to the region of intron retention is
shown using the IGV, which appears as an insertion (T) at 7,579,308–7,579,309 in all the reads abnormally retained. h The ratios of normally spliced reads
at this region are shown using a box plot with the median, interquartile range (IQR), and 1.5×IQR distances from the upper and lower ends of the box
marked (n= 452; gray for nonoutliers; red for GSCs; blue for LSCs). The box plot shows that the sample (TCGA-BA-6871-01A) and a few other samples
identified by SCISSOR have a large proportion of abnormal reads.
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with statistical support between 20 and 30% on average (Fig. 3a).
Specifically, variant shape changes were identified in 8% and 9%
of samples at FAT1 and CDKN2A, respectively, including all nine
splice site mutations called at CDKN2A and multiple known and
novel fusion-like structural variants events in FAT1 (Supplemen-
tary Figs. 5–8). Additionally, as an example of gain of function
events, SCISSOR identified shape changes associated with
previously reported FGFR3–TACC3 fusions in two samples
(Supplementary Fig. 9)21. Taken together, we conclude that
SCISSOR effectively detects altered expression not only caused by
truncating mutations but also various sources such as alternate
splice isoforms, fusions, and intragenic deletions.

Genome-wide analysis. Having investigated the use of SCISSOR
in genes known to be important in HNSC, we next applied it

genome-wide. Importantly, this analysis emphasizes non-
recurrent outlier events in both known driver (Fig. 3a) and
potential driver (Fig. 3b) versus potential passenger genes. The
distribution of the number of detected outliers was interrogated
on a per gene basis in 14,399 expressed genes (after gene filtering)
from the genome-wide analysis in the TCGA HNSC cohort
(Supplementary Note 6). About 32% of the genes had at least one
significant shape change, and many of them had only one or two
shape changes identified. Only 2.7% of genes had alterations in
>1% of the cohort. Overlapping TCGA mutational data with
SCISSOR outliers showed a strong association between shape
changes and mutations predicted to change the shape of a tran-
script such as splice site mutations and indels. When considering
genes expressed at higher levels, splice site/indel mutations were
more likely to be associated with a shape change than genes with
lower expression (Fig. 3b), e.g., if a gene is not expressed, a splice

Fig. 3 Genome-wide analysis of SCISSOR. a Significantly mutated genes (rows) for 452 head and neck squamous cell carcinomas (HNSC) samples
(columns). Each gene has two rows: mutations and shape changes. Left, percentages of mutation and shape variants; right, percentage of variants
additionally identified by SCISSOR/percentage of total variants from mutation and shape changes. b Top: percentage of mutations identified across genes
(n = 14,390; on/off genes excluded). The x axis represents thresholds for filtering out lowly expressed genes with the number of genes included at each
threshold. Each threshold indicates each percentile cutoff for both median and median absolute deviation (MAD) of normalized RSEM values across
samples. The error envelopes were constructed by bootstrapping samples of size 200 with 500 repeats (5th, 95th percentile). Low: as a negative control
for this experiment, we report log10(P-values) from a two-sided Fisher’s exact test using silent mutations as a negative control. P-value of 0.01 marked by a
red dashed line. c Some of the novel genes identified are shown using the consistent format with a. d Recurrent abnormal expression changes in 3′ UTR in
LSS. The RNA-seq profile, for example (TCGA-BA-A8YP), shows deep deletion in the middle of the 3′ UTR (green background). The detailed view of the 3′
UTR by the Integrative Genomic Viewer (IGV) shows no spliced junction reads. However, read pairs were aligned to each of the split regions indicated by
the arrow, suggesting an aberrant splicing event. e Recurrent structural variants for MTAP. For TCGA-CV-A463, the last few exons of MTAP were deleted
(blue background) and the remaining exons were connected to other parts of the genome. f Recurrent alternative transcription start (ATS) for FBLN5. The
detailed view of FBLN5 exons 7–9 including the intervening introns is illustrated by the IGV for FBLN5 ATS event (top) and FBLN5 wild type (bottom). The
ATS event shows the short reads aligning continuously between intron 7 and exon 8. On the other hand, the wild type shows normally spliced junction
reads between exons 7 and 8 with no expression in intron 7. Exons 7–9 are expressed at similar levels.
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site mutation cannot alter the shape of its coverage. As silent
mutations were not predicted to change the transcript structure,
we performed Fisher’s exact test for different mutational types
with silent mutations as a negative control for this experiment.
Likewise, missense mutations would not be expected to strongly
impact the shape of the pileup, and accordingly, there is no sig-
nificant association with shape changes.

In order to make novel observations, we investigated out-
lyingness scores for every gene and sample. Using the normalized
outlyingness scores across samples and genes allows for
prioritization despite the very high dimensionality of the
genome-wide scan, which is a powerful property of our
approach. We captured known driver genes including TP53,
FAT1, CDKN2A, and NOTCH1 but also found a number of
previously unrecognized genes (Fig. 3a, c–f and Supplementary
Fig. 10). For example, the gene LSS demonstrates a recurrent
1.13 kb deletion in the 3’ UTR in nine samples (2%) (Fig. 3d).
This was a notable example because no spliced reads were
observed flanking the deletion in TCGA data, making the event
impossible to find with existing splice-based algorithms. The
Genome Aggregation Database (gnomAD) reported this event
with the allele frequency of 0.05 in the general population26,
suggesting that the LSS shape change was driven by a common,
but poorly characterized, germline CNV. Further investigation
on the enrichment of this variant in our cancer cohort over the
population revealed that this variant was strongly associated with
African ancestry (P < 1e−07, Fisher’s exact test). Accounting for
ethnicity, there was no clear enrichment in the TCGA HNSC
cohort. Functional characterization in the UTR variants is
challenging, and as such, they are generally ignored or given low
priority. Although the functional impact of this variant is
speculative, we note that the deleted region includes a known
enhancer element (Supplementary Fig. 11). We suggest that
SCISSOR may be uniquely placed to discover recurrent variants
in the untranslated regions of genes allowing better prioritization
for function follow-up.

We considered a second example, the geneMTAP, a polyamine
metabolism enzyme, located immediately adjacent to the
commonly mutated CDKN2A (Fig. 3e). Previous studies have
suggested it as an independent driver gene in multiple cancer
types, yet it is to our knowledge never highlighted as altered in
mutational or copy number analysis, likely obscured by its close
spatial association with CDKN2A27,28. However, SCISSOR
identified recurrent structural alterations in 12 samples (2.7%)
as the first objective evidence that this gene is specifically and
recurrently targeted for inactivation in TCGA HNSC. We
conclude that SCISSOR can augment copy number analysis in
defining the driver targets of deletion events (Supplementary
Fig. 12).

As proof of another important usage of shape changes, we
identified recurrent alternative transcription start/termination
(ATS/ATT) in a number of genes. ATS/ATT has been reported as
the principal drivers of isoform diversity and a novel mechanism
of oncogene activation in preliminary reports6,29. However,
methods are limited to supervised differential ATS/ATT detection
between two or more groups or only limited types of ATS/
ATT6,29. In contrast, SCISSOR enables unbiased characterization
of ATS/ATT for individual samples by their distinct RNA-seq
shape patterns which contain exons followed by ATS site at a
higher level than the preceding exons, and vice versa for ATT. For
example, we identified a novel FBLN5 isoform that is expressed in
13 samples (~3%), which initiate from exon 8 preceded by ~300
bp of intron 7 (Fig. 3f). Although the functional impact is
unknown, this isoform is not expressed in normal samples (n=
44), no supporting transcripts have been reported in a public
database, and no recurrent mutations were found.

In summary, it is clear that SCISSOR identifies both novel
driver genes and novel mechanisms of gene alterations not easily
identifiable by any other single method.

Concordant outliers across multiple samples in shared genes in
association with internal exon CpG loci. Having validated
SCISSOR for the detection of known and novel variants in single
genes, we next asked if there was evidence for shared shape
changes in groups of genes across samples. We hypothesized that
correlated shape changes might be detected in a number of cir-
cumstances including shared alterations in pathways, such as loss
of function in splicing factor genes30,31, shared artifacts, such as
global RNA degradation32–34, differential sample cellular com-
position, such as the proportion of infiltrating immune cells8,35,
or some other novel mechanism. Starting with an unsupervised
approach, we investigated potential non-random associations
between altered genes across samples by Fisher’s exact test
applied to the number of co-altered genes in every pair of the
cohorts. Four subjects were identified with high significance by
sharing alterations in a number of genes (Fig. 4a). Among 2417
genes that were highly expressed, ~25% were co-altered in these
four samples. Manual inspection revealed that overwhelmingly
these samples were identified as the result of related abnormalities
in the co-altered genes, often characterized by either different
usage of 5′ exon or intragenic dips in coverage at or near regions
of internal exon promoters (Fig. 4b). We considered numerous
potential etiologies for shared variant transcript patterns across
samples (Supplementary Table 3). An NSD1 nonsense mutation
known to be associated with chromatin modification was
observed in one out of the four samples such as that previously
reported in HNSC36, but a consistent pattern for other NSD1
mutant samples was not observed. Intriguingly, we observed a
close localization, in nearly every case, to intragenic CpG islands,
implicating a potential underlying epigenetic regulation as has
been described in the context of paired DNA-histone epigenetic
regulation of internal exon promoters (Fig. 4b and Supplementary
Fig. 13a)3.

Further inspection of reads associated with the shape change
revealed that the impacted samples demonstrated a discernable
break in the continuous transcription into two separate
discontinuous transcripts as noted by the absence of either
spanning or bridging reads mapped to that locus (Supplementary
Fig. 13b). In the majority of cases examined, there was a known
ATS site mapped to that location, and the gene was known to be
alternatively spliced (Supplementary Fig. 13a, b). In fact, a
targeted review of all samples revealed additional samples
expressing similar variant transcripts although the variation was
relatively weak (Supplementary Fig. 13c). We believe that variant
gene transcription of this type would be difficult or impossible to
detect by other existing methodologies. The adjacent exon
coverage was similar such that exon-based detection would not
identify them. Additionally, since the events often occur
internally to exons and are characterized by the lack of expression
rather than differential splicing, alternative splice approaches
would likewise fail to detect them.

Evaluation. There are challenges in comparing SCISSOR to the
many transcript analysis techniques which largely focus on
supervised analysis with the goal of detecting differential isoform
usage between sample groups13–17,37. Nonetheless, we endeavored
to compare any potential benefits of the high-dimensional trans-
formation of RNA offered by SCISSOR to approaches that rely
more on lower dimensions such as exon summary data or alter-
native splicing13,25. We adapted methods representative of junc-
tion reads-based analysis (JRBA) and exon-level expression-based
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analysis (ELBA) such as percent-spliced-in and DEXSeq2,13,15,30,
and compared their performance in identifying the canonical
alterations of TP53 as well as in simulated data (Supplementary
Note 3). We found that all three approaches detected significant
abnormal exon usage characterized by whole exon skipping and
multiple partial exon-skipping events, supporting the observation
that SCISSOR was at least comparable to prior approaches for this
variant class. However, ELBA mainly had difficulties in recog-
nizing weaker aberrations in exon usage such as the cases where
only a limited fraction of reads skipped exon. Considering splice
site mutations as a positive control, JRBA produced a comparable
performance as SCISSOR by covering intron retention events
whereas ELBA generally failed to detect this class of alterations
(Fig. 5). Compared to JRBA, SCISSOR is most challenged when
the variant splice results in an acceptor splice site that is only
different by a few bases such that the global shape of the gene is
not severely perturbed (Supplementary Note 3). By contrast,

SCISSOR identifies a set of samples that is primarily characterized
by smaller indels that are not recognized by either ELBA or JRBA.
Additionally, SCISSOR outperforms competing methods when the
alterations are in complex transcript variants that do not result in
obvious abnormalities in splice counts or gene/exon-level
expression (e.g., Figs. 3e and 4b).

We observed that ~50% of the variants identified by JRBA were
unique to that method and corresponded to samples with overall
low expression by RSEM. Although a definitive characterization is
challenging, we suspect these are false positives. The simulation
studies further showed that SCISSOR outperformed JRBA at
every coverage level in the sensitivity as well as the false discovery
rate (Supplementary Note 3). Similar to JRBA, approximately
50% of the samples identified by ELBA might have been more
accurately described as absent gene expression overall. We
conclude that the identification of large numbers of false positives
at low gene expression levels is a significant limitation of

Fig. 4 Concordant shape changes and CpG islands. a SCISSOR identified four samples (0.9%) that showed concordant shape changes in a number of
genes. The heatmap shows the highly expressed genes (n= 2417) in columns and the genes where each of the four samples is altered are colored in each
row. About 30% of the highly expressed genes were co-altered in at least two of the four samples. b To illustrate the concordant shape changes, the RNA-
seq profile of the four samples is shown in two genes, HNRNPM and KEAP1. These samples demonstrate two common alterations, either alternative usage
of 5′ exon or intragenic dips in coverage at or near CpG islands. Below, the CpG islands are indicated by the green color codes with the percentage of GC
contents.

Fig. 5 Comparison of SCISSOR, JRBA, and ELBA at TP53. The outliers identified by SCISSOR, JRBA (junction reads-based analysis), and ELBA (exon-level
expression-based analysis) are shown. Color codes for mutations and gene expression are shown on the top and bottom of the heatmap, respectively. In
the color code for mutations, the splice site mutations disturbing splicing (n = 27) are all shown on the left side (pink). Many of these splice site mutations
were identified from both SCISSOR and JRBA. The table in the middle of the heatmap summarizes the number of splice site mutations identified by each
method in two separate cases: intron retention (IR) and exon skipping (ES). Many of the additional shape changes (SCs) from SCISSOR are associated with
deletions in the middle of exons that are difficult to detect by junction reads or exon-level expression. On the other hand, most of the additional outliers
from JRBA or ELBA are associated with a low expression as shown in the color code for gene expression.
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exon-based and splice junction based approaches18. In contrast,
SCISSOR produced unbiased results, less dependent on gene
expression levels, thanks to its normalization procedure which
helped to minimize trivial and unreliable signals from low
coverage. A detailed discussion for the comparison is provided in
Supplementary Note 3.

Filtering genes and samples. Here, we consider sample and gene
filtering required for the efficient use of SCISSOR. The SCISSOR
methodology can be impacted by cases with degraded RNA since
degraded transcripts will register as outliers systematically
showing increasing slope from 5′ to 3′ across many genes32–34.
For 522 HNSC tumor patients, we measured the amount of
degradation across genes and identified 70 cases that were
severely degraded in a large fraction of genes and excluded from
the downstream analysis (Supplementary Fig. 14 and see
“Methods” section). The analysis did reveal one previously
unappreciated fact, which is that degradation did not appear
uniformly across all genes but differentially impacted longer
transcripts (Supplementary Fig. 14b, c). Specifically, we noted in
the TCGA data set, transcripts under 2500 bases rarely demon-
strated steep slopes even in cases with significant evidence of
RNA degradation overall (Supplementary Fig. 14b). For gene
filtering, a gene that is not expressed in some or all samples
violates the data distribution assumptions of the method. We note
that SCISSOR calculates latent gene expression from a model of
that gene’s expression across all samples in the cohort. The
interpretation of latent gene expression from a gene that is itself
not expressed in many or most samples requires special con-
siderations that are not addressed in the current work. A per gene
definition of “not expressed” versus “expressed” was developed
for the purposes of excluding genes with many non-expressed
samples for a given gene (Supplementary Fig. 15a). As a result, we
identified 5802 genes (~28%) and they were excluded from the
downstream analysis (Supplementary Fig. 15b).

Discussion
Here, we report a robust method, SCISSOR, that considers a
shape property of aligned short read data through a transformed
pileup file. With the goal of detecting samples exhibiting anom-
alous shapes, it models base-level read counts using a high-
dimensional latent variable framework that is naturally integrated
into its normalization, abnormal feature extraction, and quanti-
fication. As a result, it offers a comprehensive and computa-
tionally efficient tool that identifies a range of genetic alterations
including abnormal splicing, ATS/ATT, and small or large
deletions.

Our work clarifies the importance of many variants by either
confirming their function, or in many cases questioning their
relevance. In addition, we provide motivating examples of
recurrent mutations in the UTR of genes, internal exon splicing,
and cryptic events such as large intragenic deletions that would be
difficult to characterize by most other methods. Relative to other
approaches, which tend to identify thousands of significant events
at the cohort level that are difficult to prioritize, SCISSOR inde-
pendently prioritizes genes with a known role and identifies with
high confidence novel targets for efficient review. SCISSOR has
also suggested that internal exon DNA methylation may be a
common source of alternative transcription in HNSC. Finally,
SCISSOR provides a novel approach to consider not only outlier
shape changes, such as disrupted transcription and fusion events,
but also systematic shape changes such as degradation.

Although we have shown that consideration of base-level
coverage offers the potential to detect known and novel classes of
variants, there remain several challenges. Systematic coverage bias

may occur within a single sample or batch of a cohort due to
RNA degradation, fragment length, or other unknown factors.
We have shown the ability to detect samples with degraded RNA
across genes in specific samples. After removing such samples, we
then attempted to detect residual RNA degradation in calls of
outlier genes as assessed by clustering outlier genes and samples.
No evidence of residual RNA degradation was observed, although
we recognized that our inability to detect it does not exclude the
possibility of its existence. Likewise, although TCGA samples
such as we have used have high-quality RNA, it is likely that
factors such as variable fragment length would introduce arti-
factual signals detectable by SCISSOR. The impact of GC content
on nucleic acid sequencing is well known to reduce template
amplification, and as such introduce artifactual shape changes.
When such changes are systematic across all samples, they will be
removed by normalization, but if experimental conditions such as
temperature are varied, we might observe sample-specific effects
as well. To the extent that these effects are measurable by SCIS-
SOR, they will complicate the biologic interpretation of any
results.

In the current work, we describe a method for detecting outlier
RNA events across samples. Changes may be due to physiologic
events, such as alternate splicing, pathologic events, such as
mutation, or experimental factors such as RNA degradation or
contaminating stromal cells. To the extent that outlier shapes are
detected by SCISSOR as represented by the underlying data, we
consider this a success of the method, even when those changes
might relate to experimental factors such as RNA degradation
(clearly seen in the data), contaminating stroma cells (likely
observed in the current data set and the source of future reports),
GC content (potentially seen in the current report as described),
or RNA fragment length (not obviously detected in the current
report but potentially a concern). Users of SCISSOR should
consider experimental as well as biological factors when inter-
preting the results of SCISSOR. In this work, we observed that
RNA degradation, if not addressed, will result in degraded sam-
ples producing large numbers of outlier genes. We addressed this
by empirically removing samples with evidence of degradation.
We observed some weaker evidence coordinated RNA shapes
shared by samples across many genes in association with certain
types of internal CpG islands. Whether or not this is a GC
experimental artifact or a biologic process is unclear from the
current data. For those samples with evidence of retained intron,
we considered the possibility of DNA contamination as an
explanation. DNA contamination as assessed by the 260/280 ratio
was consistent with pure RNA. Additionally, we would expect
that contaminating DNA would be evidenced as a general phe-
nomenon across many introns at lower or consistent levels rather
than as we see it in highly selected introns at high coverage in a
very limited number of introns.

In its current form, SCISSOR has tuning parameters including
log normalization and a normality cutoff value which will likely
require some optimization when a significantly different wet lab
RNA-seq protocol is used. In addition, because the optimization
performed in SCISSOR is intensive and even infeasible for high-
dimensional data, SCISSOR provides a good compromise with
dimensionality and sparsity by implementing a two-step proce-
dure. Possible issues from this are that the GSC detection algo-
rithm loses information about orders of base pairs and that the
LSC detection algorithm might give alternative results with dif-
ferent window sizes. For a future study, a complementary
approach would be an all-in-one procedure that maximizes the
outlyingness with respect to full-dimensional window directions
by simultaneously searching for the optimum location and size of
a window for each sample. Although our attention was focused
on RNA-seq data, SCISSOR has great potential for future
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applications, including detection of non-coding RNA, DNA
shape changes such as copy number alterations, and single-cell
RNA-seq data. Such applications will likely explore some of the
tuning parameters and other optimization in more detail.

Methods
Modeling base-level read counts. At a given gene, SCISSOR starts with a read
count matrix R each entry of which is the observed read count Rij mapped to each
base position i in each sample j. The dimension of the matrix R is the number of
base positions along the gene locus which is denoted by d. Therefore, the input
pileup data R we consider at each gene is a d × n matrix in which d indicates the
length of the gene, i.e., dimension, and n is the size of the cohort. In other words,
each sample is a d-dimensional read count vector which can be thought of as a d-
length trajectory with certain shape patterns (Fig. 1a).

We model read counts Rij as following multiplicative framework in a high-
dimensional setting:

Rij � μ
aj
i �mij ð1Þ

with the geometrical mean μI > 0, scaled by a normalization factor aj, and the other
sources of variation mij including alternative shape variants.

The proposed model is divided into two parts. The first part is aj, which
represents differences due to sequencing depth and serves as a sample-specific
scaling factor. We also model a small additional bias remaining in a nonlinear
manner with respect to the aj, possibly because of gene-specific variation including
GC content, mapping bias, and other nonlinear factors, using a smooth function g
(.). In many genes, we observed certain variations non-linearly associated with the
overall expression (aj) in a gene-specific way (Supplementary Fig. 16). For example,
in some genes, highly expressed samples tend to have more noisy variation along
the locus compared to moderately expressed samples. Such unequal noise levels can
confound the downstream outlier detection procedure, so our normalization step
adjusts this nonlinear variation by estimating g(.) as a smooth function of an
overall expression level satisfying a constraint g(1) = 1. Using this g(.), the second
part of the model, mij, for remaining variation after adjusting for sample-specific

expression levels, is further modeled by log mij

� �
¼ g aj

� �
xij with d-dimensional

random vectors X ∼ Pd, where Xj ¼ x1j; ¼ ; xdj
� �T

. In this way, we used the

variable aj to account for a linear (μ
aj
i ) as well as nonlinear (g(aj)) effects of

systematic variation that should be corrected. With this representation, SCISSOR
provides a natural way to decouple outlier-associated signals from systematic
variation by estimating and normalizing out the aj-associated terms from raw read
counts (Fig. 1b, see “Methods” section and Supplementary Note 1).

The random vectors Xj’s describe other sources of variation beyond overall
expression levels, including diverse genetic events that may lead to shape changes
in expression. To model these variations, we represent the vector Xj by a spiked
covariance model38–41 with a set of underlying signal directions Uif g1≤ i ≤K . These
signal directions include latent outlier directions potentially generating outliers,
and to account for the underlying variation associated with outliers, we model Xj’s
as follows:

Xj ¼
XK
i¼1

yijUi þ ϵj; where yij �
ffiffiffiffiffiffiffi
τi;1

p zij; w:p:1� wiffiffiffiffiffiffiffi
τi;2

p zij; w:p:wi

(
ð2Þ

where the zij’s are assumed to be i.i.d. random variables with mean zero and
variance one. For each i, by assuming a small wi to be an unknown proportion of
outliers associated with the Ui and τi;2 � τi;1>0, the mixture distribution reflects
the underlying mechanism generating an outlier that goes strongly in the direction
Ui. The model also allows an outlier to be associated with several components,
which offers flexibility in modeling more complex RNA-seq outliers that show
multiple aberrations. As such, a sample vector from Eq. 2 can be viewed as a high-
dimensional random vector from a complicated mixture distribution whose
components have different covariance structures.

Normalization. The normalization step aims to reduce unwanted technical bias
and obtain the fundamental variations that are essentially associated with outlying
signals. Based on the proposed model Eq. 1, this can be naturally done by
decoupling xij from the aj-associated factors. The normalization procedure is
divided into two steps: the variance stabilization for finding a proper log-
transformation and the mean scale correction for estimating unknown parameters
and finally taking xij apart from Rij.

Variance stabilization. The raw coverage data often show heterogeneous variation
typified by extreme skewness and different fluctuations within and between sam-
ples, implicating that highly expressed regions may dominate other biologically
important variation. A typical remedy to adjust such heterogeneity of counts data is
log-transformation42,43, which helps to get more stable variation. It is common to
add a shift parameter, also known as a pseudo-count, before the log-transformation
to avoid the undefined zone of the log function and to control unwanted biases
from low versus high. However, there is no consensus on what value of a shift

parameter should be used. For the purpose of mining outliers, it is important for
the data distribution to have a roughly symmetric distribution to avoid con-
founding outliers from high skewness. It is very unlikely that there is a common
value that minimizes the skewness at every base position and so we want a para-
meter that fits best in some overall sense. Therefore, we propose to select a para-
meter that minimizes the overall skewness of the data. To measure the overall
skewness, we use aj in our statistical model as a representative value of the d read
counts along with the transcript for the jth sample. The estimate of the aj can be
obtained by the estimate of the coefficient in the linear model, termed by a mean
scale factor (MSF). See Supplementary Note 1 for details. Note that the MSFs
depend on the log shift parameter. Thus, the resulting overall skewness using MSFs
also depends on the parameter, and thus we can choose the parameter by com-
paring the overall skewness from different values of the parameter. By a grid search
based on a given range for the parameter, we select the parameter that achieves the
minimum skewness. The proposed algorithm is fully described in Supplementary
Note 1.

Mean scale correction. While the log-transformation step helps to stabilize the
different levels of variation and significantly reduce extreme skewness in data, it has
been observed in a substantial number of genes that there remain some variations
showing systematically nonlinear patterns (Supplementary Fig. 16a). In the model
(Eq. 1), we introduced a smooth curve g(.) to account for such remaining variations
that may lead to biased results. In practice, we only observe Rij, and the other
unknown elements μi, aj, and g(.) should be estimated. In brief, the estimation
procedure follows as: (1) estimation of μi’s based on a trimmed mean at each base
position; (2) estimation of aj’s by a robust linear model; (3) estimation of g(.) as a
function of aj by fitting a smooth curve. See Supplementary Note 1 for full details.
These steps are designed to robustly estimate the parameters and thus correctly
capture the dependency on overall expression. Together, we obtain the normalized
data xij as a main data object for the downstream shape change detection analysis
by ruling the irrelevant terms out using the estimates (Supplementary Fig. 16b).

Modified projection outlyingness. The transformation of RNA-seq to latent gene
expression opens the door to many types of hypothesis testing, including detection
of clusters and outliers. In the current work, we consider the testing for outliers.
Specifically, SCISSOR tests the hypothesis that each sample is no farther apart in
high-dimensional latent gene expression from the group than would be expected by
chance at a given significance level. The alternative hypothesis is that a sample is
farther apart than would be expected by chance (Fig. 1c). As analogous to a robust
measure of outlyingness in 1-dimension, the projection outlyingness of y with

respect to the data matrix Y for p-dimension is defined as max
khk¼1

hT y�MedðhTYÞ
MADðhTYÞ

��� ���. The
projection outlyingness finds the maximum outlyingness of a data point y by
looking at all one-dimensional view of a data set23,24. Although it is known as a
robust statistic, it is most effective when the resulting distribution of each one-
dimensional view is roughly symmetric. However, it is often the case that RNA-seq
coverage involves strong skewness, multi-modality, or high concentration near-
zero possibly due to existing clusters or a number of lowly expressed samples. Such
departure from normality can produce false discoveries and conceal biologically
important outliers, and therefore some attention is needed. Here, we propose a
modified projection outlyingness approach taking into account departure from
normality. To do this, we add a normality constraint to the projection outlyingness
function so that we only search the directions in which the given constraint is
satisfied. Let ϕ be a function measuring the normality. Then, the projection out-
lyingness will be

O yjYð Þ ¼ max
khk¼1

hTy �MedðhTYÞ
MADðhTYÞ

����
����s:t:ϕ hTY

� �
≤ ρ; h 2 Rp ð3Þ

where ρ is a cutoff value. While any measure of normality can be used, here we
employ the winsorized Anderson-Darling statistic with a special emphasis on the
skewness44. This statistic is robust against outliers, allowing us to keep useful
directions. From Eq. 3, we can obtain reliable outlyingness scores by looking for
directions where spurious outliers are less likely associated. For the real data
analysis in this paper, we used ρ = 3. The concept of an outlier is with respect to an
expected distribution. As such any cohort to which SCISSOR is applied should be
sufficiently large to assess the underlying distributions and any outlier of interest
should be sufficiently large to be detected in a cohort of that size. Precise experi-
ments to measure effect size and distributions are the subject of future work, but
empirically a cohort of 30 samples would be the smallest we have considered
successfully to date.

Global shape change detection. Extraction of latent outlier directions from a
high-dimensional data set is not simple because many features are involved in an
overwhelming number of dimensions. One challenge is that most solvers of this
problem require that the sample size is larger than the dimension. Second, even if a
solver can provide a solution for full-dimensional data, the solution might not be
meaningful because of the swamping effect from high dimensions. So it is
advantageous to make use of the knowledge about what types of aberrant features
should be considered.
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We propose a two-step procedure each step of which is designed to reveal
particular types of aberration. The first step aims to find global shape changes that
involve exon- or intron-level changes such as large structural variations including
fusion and large deletion. To identify global shape changes, we first approximate
the data matrix using a set of components (high-dimensional directions or bases)
each of which spans an exon or an intron. As projection outlyingness is
independent of the coordinate system chosen24, we reconstruct the data points
regarding the selected orthogonal components as new coordinate axes. With this
new coordinate system, we apply Eq. 3 by taking y = xj, Y = X, p = K, and obtain n
projection outlyingness values, denoted by GOj (j ¼ 1; ¼ ; n), for n data points.
Under the normality assumption, the GO2

j follows the chi-squared distribution
with K degrees of freedom (df) where K is the number of basis directions included.
To find a more accurate cutoff value for the case beyond the normality assumption,
we implemented a data-driven approach to search what degrees of freedom fit the
GO2

j the most. Starting from df = 1, we performed the Kolmogorov–Smirnov

(K–S) test with the GO2
j with potential outliers excluded and looked for the df that

attained the smallest K–S statistic, or the largest p-value. Then, we declared global
shape changes using the chi-squared distribution with the chosen df based on the
pre-determined level α.

Local shape change detection. We now propose a second step procedure to deal
with more challenging situations when outlying features are not distinguishable
using the low-rank representation constructed by exon/intron bases. In RNA-seq
data, it has been observed that shape variation associated with such weak signals
often exhibit local changes in a limited region of base-level coverage. As these local
shape changes generally remain in residuals, i.e., data after subtracting the low-rank
representation, they are difficult to infer due to accumulated noise in residuals.
Thus, the projection depth idea or other conventional outlier detection algorithm
may be improper or infeasible.

To address this challenge, the second step adopts sparse directions supporting
biologically important regions as candidates where projection outlyingness would
be considered. We consider cryptic regions estimated by junction split reads as well
as sequential genomic regions. Each look can be considered as a window direction
which is a unit vector whose entries corresponding to a given region are all equal to
a constant and the remainder of the entries are zero. The sparsity of a window
direction helps to reduce the impact of noise and thus to separate meaningful
outliers from inliers. Windowing approaches, although empiric, have been widely
used in functional data analysis and genomics. As with all empiric strategies, the
selection of input parameters can impact the results. Narrow windows can be
sensitive to undesirable small fluctuation and too large windows can be vulnerable
to noise accumulation. We considered windows of 50–200 for a window size based
on the read lengths of short-read sequencing data. Using a collection of these
window directions, denoted by w, we can accurately capture challenging local shape
changes while reducing the impact of an overwhelming number of dimensions. The
consideration of window size was validated by the performance of the method
(Figs. 2b, 3b and Supplementary Note 7). To identify local outliers, we take the set
of direction vectors where the projection outlyingness function will examine to be
w. Let I2 be a set of the remaining sample indices after excluding the global outliers
and also let �xj be the jth sample residual vector for j 2 I2. Then, the projection
outlyingness for local shape changes, denoted by LOj, can be obtained using Eq. 3

by taking y ¼ �xj, Y ¼ �X, and Rp ¼ w, where �X ¼ �xj
� �

j2I2
. Similarly to the GOj,

we empirically find the degrees of freedom of the resulting distribution using the
data-driven approach.

Most outlying direction. For a given outlier, the most outlying direction (MOD) is
defined as the direction that achieves the maximum in Eq. 3 converted back to the
original data-space representation. The MOD describes the individual structure of
each data point that makes the point most distinguished, and accordingly, it can be
used to recover latent outlying expression that possibly generated shape changes in
the mixture model (Eq. 2).

The identified MOD would be some exons, introns, or their combination for a
global shape change whereas it would be some narrow area, rather than an entire
exon or intron, for a local shape change. Thus, it naturally enables the
interpretation of the identified abnormal events. Further, SCISSOR incorporates
the MOD with the splice junction reads to determine whether the event is
supported by splice reads or not, providing an automatic characterization of outlier
types, e.g., (cryptic) exon skipping, (cryptic) intron retention, alternative transcript
initiation/termination, or small deletion, etc (Supplementary Table 1). This greatly
improves the interpretability of the method and facilitates the comparison of
outliers between different groups.

Filtering out degraded samples. It is well known that sequencing degraded RNA
samples often leads to less read coverage at the 5’ end of the gene and negatively
affects subsequent analyses such as transcript quantification, gene expression profiles,
and fusion detection32–34. In particular, this leaves degraded RNA-seq samples sus-
ceptible to being considered as shape outliers, which could swamp the detection of
pathophysiologic aberrations in favor of alterations simply based on poor sample
quality. A recent study reports that the transcript coverage of degraded samples shows

an exponential decrease as a function of the distance from the 3′ end of mRNA that
more highly degraded samples show a faster rate of decrease32. This motivates us to
measure the extent of degradation, also called decay rate, by the mean-corrected slope
of log-transformed RNA-seq data. To accurately assess the decay rates, we first
adjusted the different sequencing depths at each locus by using the first step of the
scale normalization method. This procedure helps to remove the intrinsic slopes,
allowing for high-quality RNA-seq samples to be free of decreasing trend from the 3′
end so that the remaining trend can be observed only in a set of degraded samples.
Therefore, it enables a more accurate comparison of decay levels across genes by
adjusting the other sources possibly affecting slopes. After the adjustment, we fitted a
linear model to the mean-corrected coverage with the ordered base positions as a
covariate for each sample. Let qij ¼ qj ið Þ be the mean-corrected coverage for the jth
observation (1≤ j≤ n ¼ 522) where i indexes base position at a given locus (1≤ i≤ d)
of which total length is d. The linear model

qij ¼ qj ið Þ ¼ αj þ βj ´
i
d

� 	
þ ϵij

was fitted and the least square estimates α̂j and β̂j were obtained. Note that we divided

the covariate i by d to correct the effect of gene length. Then, the β̂j is the decay rate of

the jth observation with a higher value of β̂j indicating severe degradation.
To identify degraded samples, we obtained n = 522 decay rates at each gene and

collected those values across genes as a large matrix. Unsupervised hierarchical
cluster analysis was performed with this matrix using hclust in R/Bioconductor
with the complete linkage method (Supplementary Fig. 14a). Based on this cluster
analysis, we identified 70 RNA-seq samples with strong evidence of degradation
and excluded them from the downstream analysis. As expected, longer genes tend
to undergo more degradation as long genes are fully affected by degradation
whereas short genes are less affected. We also found that our decay rates are
strongly correlated with the 3′/5′ biases, an alternative measure of degradation
status at two housekeeping genes (ACTB and GAPDH)45, supporting the suitability
of the proposed decay rates.

Filtering out on/off genes. It has been observed that the genes where samples do
not share an analogous pattern commonly have a considerable number of samples
that appear to be unexpressed, and we call those genes “on/off” genes (Supple-
mentary Fig. 15). To identify on/off genes, we measure the level of shape-similarity
among samples in the context of angles in a high-dimensional space between each
individual vector and the mean vector at a given gene. A larger angle from the
mean vector indicates that the corresponding sample presents a higher dissimilarity
from the other samples. The angle approach allows a sample expressed at a low
level along with the global structure that is shared among the other samples to be
considered as being “on” at the given gene. This helps to distinguish the signal-
involved low coverage from noise. See Supplementary Note 4 for full details. We
identified the 5802 on/off genes where more than 20% of the samples are off and
these genes were excluded from the downstream analysis (Supplementary Fig. 15).

Data sets. A collection of 522 HNSC tumor samples were obtained from the
TCGA Research Network21. The samtools was used to obtain per-base read counts.
Because there often exist multiple transcripts at a given gene, mapping reads based
on a single transcript may overshadow novel genetic events occurred outside the
transcript. To account for this, reads were mapped to union of transcripts obtained
from the TCGA generic annotation file (GAF) v2.1 based on the December 2011
version of the UCSC Gene annotations. In contrast to many RNA-seq data analyses
based on reads only at exonic regions with splice junctions, we include reads
mapped to both exonic and intronic regions in order to include potential intronic
aberration. Mutations were analyzed based on mutation annotation format (MAF)
obtained from the TCGA Research Network21.

Inclusion of intronic part. Although SCISSOR does not require a gene model for
most of its underlying assumptions, gene models greatly facilitate the biologic
interpretation and visualization of results. The SCISSOR procedure, including
normalization and outlier detection, can be applied directly to RNA aligned to the
genome in a truly unbiased manner. However, such a procedure can produce
results that are difficult to interpret as RNA is most easily described in the context
of named genes, exons, introns, and splicing. As such, the SCISSOR procedure is
applied in the context of named gene models to assist in the visualization and
interpretation of the data. SCISSOR is unbiased in that space because it is not
constrained by existing exon start or stop positions and incorporates intron space
to allow detection of events outside exons such as run-on transcription. Addi-
tionally, although SCISSOR does not include splicing information in the statistical
procedure, it does incorporate splices in the interpretation of shape changes once
they are identified as described in the earlier section (Most outlying direction).

Gene models were modified to include a portion but not all of intronic regions
to facilitate the common alterations that involve intron-exon boundaries. The
omission of large portions of introns is reasonable because they complicate the
visualization of RNA pileups and add little to biologic signal. The disadvantage of
this decision is that important alternate splice sites and cryptic exons may be
missed. To determine which parts of introns to be included in the model, a basic
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rule is that the total lengths of bases for all exons and all introns at a gene to be
approximately equal for the current SCISSOR application. This helps to make
variations of expression at exonic regions and intronic regions comparable.
Further, the lengths of intron included between exons are determined by the
following rule: for each intron between exons,

1. If its length is less than or equal to a threshold (L), it is fully included.
2. If its length is greater than L, then the part of the intron is taken to be the

union of two subsets of length L
2 from both ends of that intron, and the rest

of it is discarded.

Here, the threshold L is chosen such that the difference between total lengths of
exons and introns is minimized. As a result, the RNA-seq data as a data object for
the analysis consist of exons and introns with equal weights.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-seq data that support the findings of this study are available in The Cancer
Genome Atlas (TCGA) database (https://gdac.broadinstitute.org/). Binary alignment
(BAM) files for TCGA head and neck samples were downloaded from the TCGA Data
Portal (https://portal.gdc.cancer.gov/). The mutation data were downloaded at https://
gdac.broadinstitute.org/ and the gene annotation file was downloaded at https://gdc.
cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files. All data
are available from the corresponding author upon reasonable request.

Code availability
An open-source software implementation of SCISSOR is available on Github46 (https://
github.com/hyochoi/SCISSOR).
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