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ABSTRACT: Recently, exchange-correlation potentials in density functional theory were
developed with the goal of providing improved band gaps in solids. Among them, the
semilocal potentials are particularly interesting for large systems since they lead to
calculations that are much faster than with hybrid functionals or methods like GW. We
present an exhaustive comparison of semilocal exchange-correlation potentials for band gap
calculations on a large test set of solids, and particular attention is paid to the potential
HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the
modified Becke−Johnson potential, which, most noticeably, is much more accurate than all
other semilocal potentials for strongly correlated systems. This can be attributed to its
additional dependence on the kinetic energy density. It is also shown that the modified
Becke−Johnson potential is at least as accurate as the hybrid functionals and more reliable
for solids with large band gaps.

■ INTRODUCTION

The calculation of the electronic properties of molecules,
surfaces, and bulk solids is done mostly with the Kohn−Sham
(KS) scheme of density functional theory (DFT),1,2 which is
considered as a fast method especially if the exchange and
correlation effects are approximated at the semilocal level, i.e.,
by using functionals Exc of the local density approximation
(LDA), generalized gradient approximation (GGA), or meta-
GGA (MGGA).3 Of high interest is the electronic gap Δg,
which is defined as I − A, where I and A are the ionization
potential and electron affinity, respectively. However, the
calculation of Δg with the KS-DFT orbital energies is not
obvious both from the theoretical and practical points of view.
KS-DFT is in principle a ground-state method, which raises the
question how well-founded is the use of KS-DFT for the
calculation of Δg, which is an excited-state property.
Furthermore, it has been shown that the KS band gap (defined
as the conduction band minimum minus the valence band
maximum) calculated with the exact (but unknown) potential
vxc = δExc/δρ differs from the band gap Δg by the derivative
discontinuity Δxc,

4−7 which can be of the same order of
magnitude as the band gap Δg itself.

8 In solid-state physics, the
Green-functions-based GW methods provide a formal way of
calculating the band gap Δg from the quasi-particles band
structure;9−11 however, these methods lead to very expensive
calculations and can not be applied routinely to large systems.
In addition, the GW method is usually applied in a perturbative
way, i.e., as a first-order correction to the orbital energies
obtained from a self-consistent KS-DFT calculation, such that
the results may depend strongly on the exchange-correlation
functional used in the KS-DFT calculation.
Therefore, it has been very common to use KS-DFT for band

gap calculations despite it may not be a fully justified procedure

depending on the type of potential that is used.12 In general,
the practical problem with KS-DFT is to choose the right
functional Exc (or potential vxc) for the problem at hand. It is
well-known that LDA and the standard GGA functionals like
PBE13 or BLYP14,15 severely underestimate the band gap (see,
e.g., refs 16 and 17). Major improvements in band gap
prediction have been obtained by using the hybrid func-
tionals,18−20 which lead to an accuracy similar to the GW
method.21 Therefore, these last ten years have seen a steady
increase in the number of solid-state applications using hybrid
functionals, in particular the one from Heyd, Scuseria, and
Ernzerhof (HSE06).22,23 Note that hybrid functionals are
usually not implemented in the strict KS framework, but in the
generalized KS (gKS) framework,24 thus leading to a potential
that is nonmultiplicative since a fraction of Hartree−Fock
exchange is used.25 With such nonmultiplicative potentials, (a
part of) the discontinuity Δxc is included in the orbital
energies.6 However, hybrid functionals are much more
expensive than semilocal functionals (albeit less than GW
calculations), such that they can not be applied routinely to
large systems, in particular with codes based on plane-waves
basis functions. Thus, the search for a fast semilocal and reliable
DFT method for electronic structure calculation, more
particularly for band gaps, is of very high interest.26−30

The goal of this work is to present a comparison between
various DFT methods for band gap prediction. A particular
focus will be on the HLE16 (high local exchange) GGA
proposed by Verma and Truhlar,17 which was shown to be of
similar accuracy as the hybrid functional HSE06. However,
what is clearly missing in their study is a comparison with the
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Table 1. Calculated and Experimental21,50−59 Fundamental Band Gaps (in eV). The Space Group Number Is Indicated in
Parenthesis.

solid LDA PBE EV93PW91 AK13 Sloc HLE16 mBJLDA HSE06 B3PW91 exptl

Ne (225) 11.42 11.58 11.21 19.98 18.30 15.06 22.33 14.27 15.09 21.48
Ar (225) 8.18 8.70 9.26 15.13 12.57 11.74 13.84 10.37 10.89 14.15
Kr (225) 6.76 7.26 7.95 12.82 10.61 10.09 10.80 8.71 9.17 11.59
Xe (225) 5.78 6.24 7.03 10.67 9.02 8.80 8.48 7.44 7.86 9.29
C (227) 4.10 4.14 4.31 4.78 5.18 4.55 4.92 5.26 5.71 5.50
Si (227) 0.47 0.57 0.91 1.60 1.70 1.38 1.15 1.17 1.59 1.17
Ge (227) 0.00 0.06 0.58 0.70 0.00 0.12 0.83 0.82 1.08 0.74
Al2O3 (167) 6.19 6.26 6.67 7.92 7.30 7.20 8.34 8.08 8.43 8.80
SiC (216) 1.32 1.36 1.52 2.18 2.83 2.06 2.25 2.23 2.69 2.42
SiO2 (α-quartz, 152) 5.70 5.93 6.47 8.17 7.58 7.53 8.70 7.77 8.12 9.65
SiO2 (β-cristobalite, 227) 5.54 5.79 5.81 9.48 9.20 8.10 10.43 7.39 8.05 8.90
BN (216) 4.35 4.47 4.82 5.67 6.18 5.38 5.80 5.76 6.20 6.36
BP (216) 1.19 1.24 1.46 2.02 2.37 1.85 1.85 1.98 2.44 2.10
BAs (216) 1.14 1.20 1.46 1.96 2.23 1.82 1.71 1.86 2.30 1.46
AlN (216) 3.24 3.33 3.58 4.44 5.25 4.41 4.88 4.55 4.97 4.90
AlN (wurtzite, 186) 4.18 4.16 4.43 5.31 5.17 4.80 5.51 5.49 5.89 6.19
AlP (216) 1.45 1.59 2.10 3.00 3.08 2.75 2.31 2.30 2.72 2.50
AlAs (216) 1.35 1.45 1.90 2.76 1.95 2.55 2.13 2.11 2.52 2.23
AlSb (216) 1.15 1.22 1.56 2.29 1.16 1.84 1.75 1.80 2.19 1.69
GaN (216) 1.67 1.66 1.95 2.37 2.57 2.39 2.85 2.85 3.20 3.28
GaN (wurtzite, 186) 1.94 1.94 2.27 2.71 2.82 2.68 3.17 3.15 3.52 3.50
GaP (216) 1.44 1.60 2.08 2.60 1.57 2.35 2.25 2.28 2.68 2.35
GaSb (216) 0.00 0.11 0.60 0.76 0.00 0.26 0.95 0.88 1.11 0.82
GaAs (216) 0.30 0.54 1.13 1.45 0.12 0.94 1.64 1.40 1.64 1.52
InN (wurtzite, 186) 0.02 0.03 0.18 0.56 0.73 0.60 0.89 0.70 1.03 0.72
InP (216) 0.46 0.68 1.30 1.81 0.63 1.29 1.62 1.43 1.72 1.42
InAs (216) 0.00 0.00 0.36 0.73 0.00 0.23 0.67 0.45 0.69 0.42
InSb (216) 0.00 0.00 0.30 0.51 0.00 0.00 0.47 0.45 0.68 0.24
SnO2 (136) 1.09 1.24 1.64 2.20 1.40 1.62 3.19 2.88 3.17 3.59
SnSe (62) 0.48 0.55 0.76 1.10 1.17 1.03 0.89 0.98 1.31 0.90
SnTe (225) 0.09 0.07 0.07 0.22 0.74 0.47 0.15 0.17 0.07 0.36
Sb2Te3 (166) 0.04 0.00 0.20 0.18 0.35 0.34 0.24 0.31 0.13 0.28
LiH (225) 2.67 3.03 3.72 6.19 4.33 4.21 5.06 4.06 4.50 4.94
LiF (225) 8.95 9.20 9.98 12.55 11.76 11.84 12.89 11.46 11.74 14.20
LiCl (225) 6.06 6.41 7.42 9.78 8.08 8.56 8.64 7.81 8.15 9.40
NaF (225) 6.05 6.41 7.17 11.10 9.36 9.44 11.46 8.57 8.89 11.50
NaCl (225) 4.79 5.21 6.18 9.82 7.16 7.73 8.45 6.61 6.96 8.50
KF (225) 5.79 6.17 6.82 10.98 9.19 8.91 10.40 8.18 8.56 10.90
KCl (225) 4.75 5.19 6.02 9.79 7.38 7.59 8.48 6.53 6.93 8.50
BeO (wurtzite, 186) 7.58 7.65 8.22 9.42 9.38 8.91 9.66 9.48 9.82 10.60
MgO (225) 4.69 4.78 5.17 6.69 6.11 5.91 7.13 6.47 6.83 7.83
MgS (216) 3.29 3.57 4.50 6.21 4.76 5.26 5.17 4.66 5.00 4.78
MgSe (225) 1.71 1.87 2.21 3.65 2.66 2.86 2.93 2.74 3.16 2.47
MgTe (216) 2.27 2.51 3.22 4.74 3.19 3.68 3.61 3.39 3.73 3.60
CaO (225) 3.49 3.67 4.07 5.03 4.36 4.63 5.35 5.26 5.59 7.00
CaF2 (225) 6.92 7.30 8.11 9.81 9.04 9.26 10.34 9.37 9.72 11.80
BaS (225) 2.00 2.20 2.79 4.03 3.43 3.56 3.27 3.11 3.50 3.88
BaSe (225) 1.82 1.97 2.50 3.68 3.17 3.25 2.86 2.79 3.17 3.58
BaTe (225) 1.48 1.61 2.09 3.23 2.72 2.79 2.28 2.31 2.70 3.08
ScN (225) 0.00 0.00 0.18 0.70 0.41 0.40 0.88 0.90 1.26 0.90
TiO2 (rutile, 136) 1.80 1.89 2.03 2.23 1.44 1.75 2.56 3.34 3.66 3.30
TiO2 (anatase, 141) 2.00 2.11 2.30 2.54 1.74 2.06 2.92 3.57 3.87 3.40
SrTiO3 (221) 1.78 1.88 2.06 2.34 1.61 1.87 2.68 3.29 3.62 3.30
VO2 (M1, 14) 0.00 0.00 0.00 0.00 0.00 0.00 0.51 1.03 1.35 0.60
Cr2O3 (167, 146) 1.20 1.63 1.88 2.35 1.46 1.53 3.68 4.42 4.54 3.40
Fe2O3 (167, 146) 0.33 0.56 0.88 1.50 1.49 1.70 2.35 3.24 3.35 2.20
MnO (225, 166) 0.74 0.86 1.23 2.56 3.71 3.26 2.94 2.85 3.19 3.90
FeO (225, 166) 0.00 0.00 0.10 0.84 0.20 0.13 1.84 2.35 2.08 2.40
CoO (225, 166) 0.00 0.00 0.24 1.35 0.43 0.34 3.13 3.48 3.57 2.50
NiO (225, 166) 0.43 0.95 1.35 2.08 1.21 1.23 4.14 4.37 4.36 4.30
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other semilocal potentials that were previously shown to be also
very accurate for band gaps in solids (see, e.g., refs 26 and
31−36 for the modified Becke−Johnson potential26 and refs 28,
37, and 38 for the potential of Armiento and Kümmel28). In
order to provide such a comparison, a large test set of 76 solids
will be considered. For comparison purposes, results obtained
with hybrid functionals will also be shown.

■ METHODS AND COMPUTATIONAL DETAILS

The semilocal methods that improve over the standards like
PBE for the band gap can be divided into two groups according
to their type of potential operator vx̂c, multiplicative (KS
framework) or nonmultiplicative (gKS framework), and the
focus of the present work is to make a thorough comparative
assessment of multiplicative potentials for band gaps in solids.
The potentials that are considered are the LDA and a
modification of it, four GGAs and one MGGA. All these
LDA and GGA potentials are obtained as functional derivative
vxc = δExc/δρ of energy functionals. The LDA consists of the
exchange2 and correlation39 of the homogeneous electron gas,
while Sloc (acronym for local Slater potential30) consists of a
slightly modified but strongly enhanced exchange LDA (vx

Sloc =
−1.67ρ0.3 compared to vx

LDA ≃ −0.7386ρ1/3) with no
correlation added. The GGAs are the exchange-correlation
PBE from Perdew et al.,13 the exchange of Engel and Vosko40

(EV93PW91, combined with correlation from Perdew and
Wang41 as done in ref 42), the exchange from Armiento and
Kümmel28,37,38 (AK13, no correlation added as done in refs 28
and 37), and the recently proposed HLE1617 that consists of a
modification of the HCTH/407 functional43 (the exchange and
correlation components are multiplied by 1.25 and 0.5,
respectively). The tested MGGA is the modified Becke−
Johnson exchange potential combined with LDA for correlation
(mBJLDA),26 which is based on the exchange potential of
Becke and Johnson.44

The test set (see Table S1 of the Supporting Information)
consists of most of the solids considered in refs 17, 21, and 45
and includes a large variety of solids: rare gases, sp-
semiconductors, ionic insulators, and transition-metal com-
pounds. All systems, except the antiferromagnetic Cr2O3,
Fe2O3, MnO, FeO, CoO, and NiO, were treated as non-
magnetic. Antiferromagnetic 3d transition metal oxides are the
typical systems with strongly correlated 3d electrons, which are

particularly difficult cases for LDA and GGA methods46 since
the self-interaction error is much more important than in the
case of itinerant metals like Fe or Ni with more delocalized 3d
electrons. VO2 is also a difficult case for which it was shown in
ref 47 that mBJLDA leads to qualitatively correct trends. Also
included in the test set are Cu1+ compounds, e.g., Cu2O, which
is known to be problematic for the mBJLDA potential.32 For
comparison purposes, we will also show the results obtained
with the hybrid functionals B3PW9125 and HSE0622,23 that
have been tested very recently by Crowley et al.21 and Garza
and Scuseria,45 respectively. However, note that the HSE06
results of the present work were actually obtained with YS-
PBE048 (YS stands for Yukawa screened), which leads to band
structures that are quasi-identical to HSE06 thanks to the
similarity between the error-function- and exponential-based
screened Coulomb operators.49

The calculations of the electronic structure were done with
the all-electron code WIEN2k,60 which is based on the
linearized-augmented plane-wave method61 that allows for a
very accurate solution of the KS-DFT equations. The
experimental geometry (see Table S1) was used for all
calculations such that the differences in the band gaps obtained
with the various methods are only due to the exchange-
correlation potential. This is the most reasonable choice, in
particular since the energy functionals EV93PW91, AK13, and
HLE16 were shown to be very inaccurate for geometry
optimization,17,38,62 while mBJLDA is only a potential with no
corresponding energy functional.63,64 Actually, it was shown in
ref 17 that the HLE16 band gaps calculated at the
corresponding HLE16 equilibrium geometry (severely under-
estimated in many cases) are much larger (in some sense
artificially) than the band gaps evaluated at a more reasonable
geometry. The calculation parameters like the size of the basis
set or the number of k-points for Brillouin zone integrations
were chosen such that the band gaps, including those calculated
with the hybrid functionals, should be converged with an error
bar below 0.05 eV. We note that a comparison of our HSE06
(YS-PBE0) and B3PW91 band gaps with those obtained from
codes using Gaussian basis functions21,45 shows in general a
rather fair agreement; however, large discrepancies in the order
of 1−2 eV were obtained in a few cases, e.g., MnO, NiO,45 and
systems with very large band gaps like LiF, NaCl, or SiO2.

21

The agreement of our results with the HSE results from refs 53

Table 1. continued

solid LDA PBE EV93PW91 AK13 Sloc HLE16 mBJLDA HSE06 B3PW91 exptl

Cu2O (224) 0.53 0.53 0.57 0.84 1.27 0.81 0.81 1.98 2.34 2.17
CuSCN (160) 2.01 2.23 2.46 2.78 3.64 3.24 2.79 3.60 3.99 3.94
CuCl (216) 0.33 0.47 0.98 1.95 3.78 2.95 1.69 2.37 2.63 3.40
CuBr (216) 0.20 0.36 0.89 1.76 3.38 2.69 1.56 2.15 2.40 3.07
CuI (216) 0.95 1.12 1.66 2.36 3.32 2.98 2.20 2.65 2.89 3.12
ZnO (wurtzite, 186) 0.74 0.81 1.27 2.06 3.21 2.81 2.65 2.50 2.80 3.44
ZnS (216) 1.84 2.09 2.81 3.67 3.13 3.54 3.65 3.30 3.58 3.84
ZnSe (216) 1.02 1.27 1.97 2.67 2.04 2.50 2.75 2.37 2.63 2.82
ZnTe (216) 1.04 1.27 1.84 2.33 1.54 2.08 2.42 2.25 2.51 2.39
MoS2 (194) 0.79 0.86 1.02 1.25 1.18 1.21 1.08 1.41 1.81 1.29
AgCl (225) 0.62 0.92 1.74 2.82 3.39 3.31 2.95 2.41 2.68 3.25
AgBr (225) 0.38 0.67 1.48 2.44 2.76 2.77 2.50 2.01 2.27 2.71
AgI (216) 1.05 1.34 2.02 3.02 3.15 3.14 2.77 2.48 2.78 2.91
CdS (216) 0.88 1.16 1.91 2.84 2.21 2.60 2.67 2.14 2.44 2.50
CdSe (216) 0.36 0.63 1.36 2.14 1.46 1.87 1.99 1.52 1.79 1.85
CdTe (216) 0.51 0.76 1.39 1.98 1.12 1.61 1.79 1.57 1.84 1.61
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Figure 1. Calculated versus experimental fundamental band gaps for the set of 76 solids. The right panels are zooms of the left panels focusing on
band gaps smaller than 5 eV.
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and 65, which were obtained with the projector augmented-
wave method, is in general clearly better, thus pointing to some
problems with the Gaussian basis sets.

■ RESULTS

The results for the fundamental band gap are shown in Table 1
and graphically in Figure 1a−f (Figures S1−S9 of the
Supporting Information show the results individually for each
method), while the summary statistics is shown in Table 2,
where M(R)E, MA(R)E, and STD(R)E denote the mean
(relative) error, the mean absolute (relative) error, and the
standard deviation of the (relative) error, respectively. The
largest errors are obtained with LDA and PBE, which
systematically underestimate the band gap and lead to ME of
about −2 eV, while in terms of relative error the under-
estimation is above 50%. The band gaps obtained with
EV93PW91 are slightly closer to the experimental values
since the MAE and MARE are 1.55 eV and 36%, which,
however, can still be considered as rather large with a clear
trend for underestimation. The recently proposed AK13, Sloc,
and HLE16 lead to further (and substantial) reductions of the
error in the band gap with MAE in the range 0.75−0.90 eV and
MARE of 30% for Sloc and ∼25% for AK13 and HLE16.
However, the best agreement with experiment is obtained with
the MGGA mBJLDA since the MAE and MARE drop to 0.47
eV and 15%, respectively. From the ME and MRE, the
tendency of all semilocal potentials is to underestimate the
band gap; however, it is rather small for the AK13 and
mBJLDA potentials. The STD(R)E (see Table 2) is a measure
of how scattered are the (relative) errors that are obtained with
a potential, and the smaller STD(R)E is, the more a (relative)
error is predictable and likely to be close to the M(R)E. The
results show that among all semilocal potentials, the mBJLDA
potential leads to the smallest values for both the STDE and
STDRE. For the STDE, the other methods lead to values that
are clearly larger including HLE16 with a STDE that is about
twice larger (0.57 eV for mBJLDA and 1.07 eV for HLE16). It
is also interesting to note that despite Sloc is a very simple
potential,30 which depends only on the electron density ρ (no
dependence on derivatives of ρ), it is of the same accuracy as
HLE16, which has a much more complicated analytical form
that involves ρ and its two first derivatives since the energy
functional is a GGA.17

Turning now to the comparison with hybrid functionals,
Tables 1 and 2 and Figure 1e,f also show the results obtained
with B3PW91 and HSE06. The main conclusion is the same as
above, namely, the mBJLDA potential leads to the smallest
MAE and MARE; however, note that, in terms of MARE,
mBJLDA and the screened hybrid HSE06 perform basically the
same, while for the MAE, mBJLDA leads to a value that is
nearly twice smaller since the MAE with HSE06 is 0.82 eV.
These observations are on par with those obtained in ref 36
with a reduced test set of solids. The performances of HSE06

and the unscreened hybrid functional B3PW91 are rather
similar, with B3PW91 leading to MAE and STDE that are
slightly smaller, but MARE and STDRE that are larger as
noticed in ref 45. In summary, the statistics for the absolute
errors are the smallest for mBJLDA, while for the relative error,
mBJLDA and HSE06 are of similar accuracy.
Besides the statistics, it is also instructive to discuss the

results in more detail in order to figure out what are the outliers
and the eventual trends among the classes of solids. This can be
done most easily by inspecting Figures S1−S9, which show the
results individually for each method. The most interesting
observations are the following. As already stated above, LDA,
PBE, and EV93PW91 underestimate basically all compounds,
and for a few of them, e.g., Ge, InAs, and FeO, the system is
described as metallic. With AK13, Sloc, and HLE16, the band
gap is (slightly) overestimated in many cases, but there are still
many outliers for which a large underestimation of the band
gap is obtained, especially with Sloc and HLE16. Furthermore,
some systems have still no band gap with these potentials (one
with AK13, five with Sloc, and two with HLE16). The data
points for mBJLDA are overall clearly closer to the diagonal
line. The three most visible outliers are Cu compounds: Cu2O,
CuCl, and CuBr for which the underestimation of the band gap
is 1.36, 1.71, and 1.51 eV, respectively. Note that in these
compounds, the oxidation state of the copper atom is Cu1+,
while it is Cu2+ in CuO, where such an underestimation of the
band gap with mBJLDA was not observed.32

For band gaps smaller than 5 eV, the HSE06 hybrid
functional leads to results that are rather close to the
experimental values, however, there is a clear underestimation
for large band gaps like Ne, Ar, and LiF that is similar, although
less pronounced, to what is observed with LDA, PBE, and
EV93PW91. As indicated in the upper panels of Figures S1−S9,
the slope of the linear regression for HSE06 is 0.73, which is
close to 0.80 for HLE16, while LDA, PBE, and EV93PW91 lead
to slopes in the range 0.62−0.65. In this respect, mBJLDA and
AK13, with slopes of 0.97, are the most balanced potentials, not
showing obvious underestimation or overestimation for small
or large band gaps. For band gaps smaller than 2 eV, B3PW91
leads to the largest overestimations among all methods tested in
this work, but overall the results are rather good for band gaps
between 2 and 10 eV. At that point, it should be mentioned
that hybrid functionals with a system-dependent fraction of
Hartree−Fock exchange αx have been shown to improve the
band gap prediction with respect to the traditional hybrids. For
instance, in refs 49, 54, and 55, the use of the dielectric function
to determine αx revealed to be very useful to cure the
underestimation for large band gaps, while the same was
concluded in ref 66 by using a density-based quantity for αx
similar to that for mBJLDA.
As mentioned above, antiferromagnetic transition-metal

oxides are difficult cases for the usual LDA/PBE methods,
which lead to qualitatively wrong results; however, these

Table 2. Summary Statistics for the Error in the Calculated Band Gap for the Set of 76 Solids

LDA PBE EV93PW91 AK13 Sloc HLE16 mBJLDA HSE06 B3PW91

ME (eV) −2.17 −1.99 −1.55 −0.28 −0.76 −0.82 −0.30 −0.68 −0.36
MAE (eV) 2.17 1.99 1.55 0.75 0.90 0.90 0.47 0.82 0.73
STDE (eV) 1.63 1.56 1.55 0.89 0.93 1.07 0.57 1.21 1.14
MRE (%) −58 −53 −35 −6 −21 −20 −5 −7 6
MARE (%) 58 53 36 24 30 25 15 17 23
STDRE (%) 23 23 23 31 37 28 22 22 35
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systems can be treated more accurately by LDA + U or hybrid
functionals (see, e.g., refs 52, 65, 67, and 68). Among the local
potentials tested here, only mBJLDA is able to provide band
gaps that are in qualitative agreement with experiment. For
FeO, CoO, and NiO, the underestimation with all other
semilocal potentials is at least 2 eV. Similarly, only mBJLDA
and the hybrids open a band gap for nonmagnetic VO2 (see ref
47 for a much more detailed discussion).
Exchange-correlation potentials vxc in Si (diamond structure)

and Kr (face-centered cubic) are shown in Figure 2, where
significant differences between the potentials can be observed.
The most striking features concern HLE16 which shows
extremely large oscillations in the regions between the atoms.
The peaks in the HLE16 potential, which can be of positive or
negative values, are obviously a direct consequence of the
energy functional HLE16, which is based on the highly
parametrized HCTH/407 functional. The enhancement factor
of such functionals are usually less smooth than the more
simple ones like PBE, leading to strong oscillations in the
potential when taking the functional derivative. As already
discussed in refs 69 and 70, AK13 and, to a lesser extent, EV93
show strong positive values in the interstitial regions, which
may be responsible for some of the overestimations of the band
gap. Sloc (as well as LDA) is the most structureless potential;
nevertheless, as already mentioned above, it improves over
LDA/PBE the same way as HLE16 does. Note that also the
mBJLDA potential is smooth in the interstitial region.
In various previous works (see, e.g., refs 70 and 71), it was

shown that usually the more the magnitudes of the potential
around the atoms and in the interstitial differ, the larger is the
band gap. This is the case when the orbitals of the valence band
maximum (VBM) and conduction band minimum (CBM) are
mainly located around an atom or in the interstitial,
respectively, like in sp-semiconductors and ionic insulators.
This explains why the band gap is larger (with respect to LDA/
PBE) with basically all semilocal potentials tested in this work,
including the very simple LDA-like Sloc potential (see Figure
2). However, in systems like transition metal oxides with a d−d
band gap, the VBM and CBM may be located at the same
position in space (around the transition metal atom), such that
the simple mechanism explained above to open the band gap
does not work. This is why the band gap is still by far too small
with all LDA/GGA-type potentials, including AK13, Sloc, and

HLE16, for Cr2O3, Fe2O3, FeO, CoO, NiO, and VO2 as noticed
above. mBJLDA depends on an additional ingredient, the
kinetic energy density,72 which provides a more efficient way
for the potential to act differently on orbitals localized on the
same atom according to their angular distribution (e.g., t2g
versus eg). This feature of the BJ-based potentials, which has
been discussed in great detail in our previous works,32,69,70,73 is
crucial in explaining the opening of the band gap in strongly
correlated systems. However, it should be also mentioned that
it does not work in all cases, like for the Cu1+ compounds
(Cu2O, CuCl, and CuBr, in particular), where the Cu-sd
hybridization is essential and for which hybrid functionals are
more accurate. Note that, for these systems, Sloc is the only
semilocal potential leading to values close to experiment.

■ SUMMARY AND CONCLUSION

In summary, several semilocal multiplicative potentials have
been compared for band gap calculations. Using a test set of 76
solids of various types, it has been shown that on average
mBJLDA is the most accurate potential and clearly outperforms
all others including HLE16. Except for very few outliers (the
Cu1+ compounds), the mBJLDA potential is equally accurate
for small and large band gaps as well as for strongly correlated
systems for which all other potentials completely fail.
Furthermore, mBJLDA is as accurate as the hybrid functionals
for semiconductors, but more reliable for large band gap
insulators. Our results strongly support the use of the kinetic
energy density in the design of KS potentials for band gap
calculations or to approximate the exact KS potential as done in
our previous works.69,73 To finish, we should also mention that
nonmultiplicative MGGA potentials, which include the
derivative discontinuity Δxc in the energy spectrum, are
extremely promising for band gap calculations; however, at
the moment no such potential leading to satisfying results has
been proposed.12 Therefore, at the moment the mBJLDA
potential represents the best alternative to the much more
expensive hybrid or GW methods.
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Figure 2. Potentials vxc plotted (a) in Si from the atom at (1/8, 1/8, 1/8) (d = 0) to the middle of the unit cell and (b) in Kr from the atom at (0, 0,
0) (d = 0) to the middle of the unit cell.
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Reŕat, M. First-principles Study of the Optical Properties of BeO in its
Ambient and High-pressure Phases. J. Phys. Chem. Solids 2009, 70,
789−795.
(60) Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J.
WIEN2K: An Augmented Plane Wave plus Local Orbitals Program for
Calculating Crystal Properties; Vienna University of Technology:
Austria, 2001.
(61) Singh, D. J.; Nordström, L. Planewaves, Pseudopotentials and the
LAPW Method, 2nd ed.; Springer: Berlin, 2006.
(62) Dufek, P.; Blaha, P.; Schwarz, K. Applications of Engel and
Vosko’s Generalized Gradient Approximation in Solids. Phys. Rev. B:
Condens. Matter Mater. Phys. 1994, 50, 7279−7283.

(63) Karolewski, A.; Armiento, R.; Kümmel, S. Polarizabilities of
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