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Abstract: In this work, the authors propose the Hilbert transform (HT)-based numerical method to analyse the time series of the
circadian rhythms. They demonstrate the application of HT by taking both deterministic and stochastic time series that they get
from the simulation of the fruit fly model Drosophila melanogaster and show how to extract the period, construct phase response
curves, determine period sensitivity of the parameters to perturbations and build Arnold tongues to identify the regions of
entrainment. They also derive a phase model that they numerically simulate to capture whether the circadian time series
entrains to the forcing period completely (phase locking) or only partially (phase slips) or neither. They validate the phase model,
and numerics with the experimental time series forced under different temperature cycles. Application of HT to the circadian
time series appears to be a promising tool to extract the characteristic information about circadian rhythms.

1 Introduction
Signal processing tools have been used extensively to understand
the properties of circadian rhythms. For example, wavelet
transform was applied to the circadian experimental time series to
extract period variations in the suprachiasmatic nucleus (SCN) [1,
2] and to study the interaction of ultradian oscillations with
circadian rhythm [3]. While Forger [4] applied Fourier transform to
the circadian model with biochemical feedback to understand the
effect of feedback loops to variations in the period, Escalante-
Martnez et al. [5] employed Laplace transform to model circadian
rhythms. Laplace transform, though suitable to analyse stationary
data, cannot apply to realistic non-stationary biological signals.
Fourier transform can detect the frequency components in the
signal, but, does not provide information about the instantaneous
frequency. Wavelet transform can estimate the instantaneous
frequency with better resolution in time but depends strongly on
the selection of proper wavelets. Moreover, wavelet analyses are
computationally intensive and have to take care of harmonics and
edge effects [2].

Mathematical models of circadian rhythms help to understand
the dynamics that govern the oscillator based on the molecular
mechanism of gene expression. These mechanistic models are
highly complex, non-linear, high-dimensional and cannot be
subjected to linear signal processing tools like Fourier, Laplace,
and wavelet transforms directly because of the problems mentioned
earlier. Some of the well-known and thoroughly studied
mathematical models of gene regulatory network of circadian
rhythms are for Neurospora [6–8], Drosophila [8–10], and
mammals [11–15]. Though these non-linear ordinary differential
equation (ODE) models are deterministic and are built based on the
laws of mass action kinetics, they can also account for molecular
noise [7, 16]. Popular Monte Carlo simulations like Gillespie's
method [17] are employed to carry out stochastic simulations of
gene regulatory network models of circadian rhythms. However, all
the circadian properties from the model are obtained through
numerical simulations under various conditions, since analytical
solutions are difficult to obtain for coupled non-linear ODE
models. Circadian properties that are obtained through numerical
simulations include a fitting model to the experimental time series
to get the period and amplitude, to get the phase response curve
(PRC) under pulse perturbations, and subjecting the model to
various light–dark (LD) cycles to study entrainment properties.
Therefore, analysis of simulated time series from the model

through proper tools is highly important to get an insight into
various properties of the circadian systems. Presently, to obtain the
period of stochastic and deterministic time series from the model,
various techniques like mean crossing method [18], Fourier [4],
and wavelet transforms [1, 2, 19] were employed. Similarly, to
construct PRCs, numerical methods like isochron and adjoint
methods were used [20]. This indicates that diverse tools are used
to extract different properties of circadian rhythms.

Interestingly, most of the important characteristic properties of
the circadian rhythms like period, PRCs, entrainment properties,
and robustness to molecular noise can be obtained from the
instantaneous phases of the oscillations. Instead of using different
techniques to obtain different properties of the circadian rhythms,
in this work, we show that Hilbert transform (HT) can be used to
extract most of the important circadian properties from the time
series got from the circadian models. HT has been widely applied
to diverse areas to analyse the time series of mechanical vibrations
[21], to analyse data from geophysics [22], mass flow [23], and in
bio-medical research [24]. HT was also employed to construct PRC
[25] and to extract phase information [3, 26, 27] from circadian
data. Moreover, different groups used HT based methods to
construct numerical PRC [28], to examine entrainment [29], and to
study the synchronisation properties [30] of the oscillatory system.
Besides circadian rhythms, HT was also used by Wang et al. [31]
to study memory performance on visual and auditory data. In this
work, we specifically show how HT can be used to determine
period variations, construct PRC's, identify period sensitivity of the
parameters to perturbations, and to get Arnold tongues to map the
entrainment regions. We also compared our results of PRC, period
sensitivity, and entrainment with the existing methods to show that
our method is robust and versatile. We also propose a novel method
(both model and numerics) in combination with HT to determine
whether the circadian time series under forcing period conditions
entrains completely (phase locking), partially (phase slips) or
neither. We show that our method works well for both deterministic
and stochastic time series under forcing conditions. We believe that
this simple method will be useful to the experimentalists to quickly
identify regions of entrainment to the external forcing period
signals. To illustrate the use of HT in analysing circadian time
series, we take as a test case the time series from the fruit fly model
of circadian rhythms [10] and the time series from the experimental
data [32] to demonstrate entrainment to different forcing cycles.
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2 Materials and method
2.1 Circadian time series from the two-variable model of fruit
fly

We summarise first the Tyson et al. [10] model of fruit fly followed
by the definition of HT. The gene regulatory model of fruit fly is
based on the production of PER and TIM proteins by per and tim
mRNA, respectively. These proteins are transported to the
cytoplasm that may either undergo proteolysis or forms a stable
product by heterodimerisation. The heterodimers in turn feedbacks
and inhibits the per/tim transcription. However, Tyson et al. [10]
proposed that the equilibrium between monomer and dimer results
in the protection of dimers from the double-time gene degradation
and thereby increases the total concentration of monomer, dimer
and its accumulation. This results in a double negative, positive
feedback between monomer and dimer. Without considering PER
and TIM separately, a three-variable model was initially proposed
with M, P1 and P2 that, respectively, are the mRNA, protein
monomer and dimer. Then based on the assumption that the
dimerisation reaction is fast, the model was reduced to two-
dimensional non-linear ODEs that are reproduced below:

dM
dt = vm

1 + (Pt(1 − q)/2Pcrit))2 − kmM (1)

dPt
dt = vpM − kP1Ptq + kP2pt

JP + Pt
− kP3Pt (2)

q = 2
1 + 1 + 8KeqPt

(3)

In the equation, M is the mRNA and Pt is the total protein, where
Pt = P1 + 2P2. All the variables and parameters of the model are the
same as in [10] unless specified otherwise. The parameter values
are also provided in Fig. 1. The codimension-1 bifurcation diagram
for the mRNA (M) as a function of Keq is shown in Fig. 1. For
lower values of Keq, the system is in the stable steady state. As Keq
increases, the stable steady state becomes unstable through a Hopf
bifurcation (HB1) and generates oscillations. Further, an increase
in Keq leads to a loss of periodic orbits through supercritical Hopf
bifurcation (HB2) that has an unstable steady state surrounded by a
stable limit cycle. We also show the variations of the period to the
change in Keq. As shown in Fig. 1b, we identify three regimes in
the bifurcation diagram. In regime-I (R1), for low values of Keq
(between 0 and 100 approx.), there is a rapid variation in the period
that goes from 5 to 50 h, and this is the highly sensitive regime. In
regime-II (R2), between 100 and 450 of Keq values, the period is
24.2 h which is close to circadian. This wide regime is the most
stable regime with the period being insensitive to parameter
variations. In regime-III (R3), (Keq between 450 and 580) the
period is modestly sensitive to parameter variations. In this work,
regime-II (R2) is the region of our interest, and all the properties
are studied for Keq = 200. Using HT, we also perform period
sensitivity analysis for the other parameters in regime-II (R2) and
regime-I (R1), and we discuss this in detail in Section 4. 

To assess the robustness of the model to molecular noise, we
also perform a stochastic simulation of the two-variable model.
The deterministic model cannot describe the molecular fluctuations
at the population levels, and therefore, we use the stochastic
simulation algorithm (SSA) to determine the robustness of the
model to noise through the HT method. We performed stochastic
simulations according to Gillespie's method [17], and the results
are discussed in Section 3. Gillespie's method, firstly, associates a
probability to each of the reaction steps. Then at each time step, the
algorithm randomly determines the occurrence of a particular
reaction as well as the time interval to the next reaction step. The
number of molecules of the different reacting species as well as the
probabilities is updated at each time step. The transition
probabilities of the reaction and the transitions are given in Table 1.
The scaling parameter Ω is the system size (see [18, 34]) that can
use to modulate the molecular noise; higher the Ω, less the
molecular noise, and less the period variations. There are five
reaction steps; each of them is associated with a probability, which
depends on the deterministic kinetic parameters. 

The above 2D fruit fly model is also different from the existing
gene regulatory circadian models of Drosophila, Neurospora, and
mammals; (i) The model is 2D and is based on the positive
feedback loop due to the dimerisation of PER protein. (ii) The
model time series exhibits a sort of relaxation oscillations rather
than smooth sinusoidal oscillations that are seen in all the existing
models of circadian rhythms. (iii) The model exhibits both
bistability and Hopf bifurcation for appropriate choice of
parameters to explain the effect of light on mutants and normal
phenotypes, respectively, whereas existing circadian models
explains the behaviour of normal and mutant phenotypes only
through Hopf bifurcations. (iv) The 2D model exhibits both Type-I
and II PRCs and the only simple gene regulatory model which we
know of is the Goodwin's 3D model for Neurospora proposed by
Ruoff et al. [6]. Finally, the model is also robust to molecular
noise. This we show by performing a stochastic simulation by
Gillespie's method [17] and by HT we find that the period
distribution (variance) is close to the period (mean) of the fruit fly
circadian oscillations (20–25 h).

2.2 Hilbert transform

HT converts the time-domain signal x(t) to another time-domain
signal y(t) [35, 36]. HT of a signal x(t) can be considered as the
convolution of signal x(t) and 1/πt [35]

Fig. 1  Codimension-1 bifurcation diagram and bistability
(a) For lower values of Keq, the system is in the stable steady state (red lines, SS). As
Keq increases oscillations appear via Hopf bifurcation (HB1). Black broken lines are
the unstable steady state (US), blue line are unstable oscillation amplitude (UO), and
green lines are stable oscillations amplitude (SO) of the variable M. Sustained
oscillations disappeared via supercritical Hopf bifurcation (HB2), and the system
enters the stable steady state. The inset shows the enlarged view of the bifurcation
diagram for lower values of Keq. Xppaut [33] is used for simulating the bifurcation
diagram, (b) Period of oscillations as a function of Keq. R1 and R3 are the regions
where the period is highly sensitive to Keq, whereas R2 is the region where the period
is almost insensitive to Keq. Simulation results are obtained by integrating (1) and (2)

with parameter values vm = 1 Cmh−1, km = 0.1 h−1, vP = 0.5 h−1, kP1 = 10 Cph−1,

kP2 = 0.03 Cph−1, kP3 = 0.1 h−1, Pcrit = 0.1 Cp, JP = 0.05 Cp. As used in [10], Cp and
Cm are the characteristics concentrations for protein (Pt) and mRNA (M), respectively

 
Table 1 Stochastic version of Tyson et al. [10] model.
Deterministic to stochastic conversion is adapted from [7]
Number Probability of reaction Transition
1 w1 = vmΩ

1 + (Pt(1 − q)/2PcritΩ)2
M → M + 1

2 w2 = kmM M → M − 1
3 w3 = vpM pt → Pt + 1
4 w4 = PtΩ(kp1q + kp2)

J pΩ + Pt

Pt → Pt − 1

5 w5 = kp3 Pt → Pt − 1
6 q = 2

1 + 1 + 8(Keq/Ω)Pt

—
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y(t) = 1
π∫−∞

∞ x(τ)
t − τ dt (4)

Simply, HT performs a −π /2 phase shift for every spectral
component of x(t). A signal x(t) and its HT y(t) are mutually
orthogonal and have the same autocorrelation and energy density
spectrum [35, 36]. A complex time signal z(t) can be constructed
using x(t) and y(t) which is called an analytic signal

z(t) = x(t) + iy(t) (5)

and in polar coordinates, z(t) is given as

z(t) = a(t) eiθ(t) (6)

with

a(t) = [x2(t) + y2(t)](1/2), θ(t) = tan−1 y(t)
x(t) (7)

a(t) is the envelope or amplitude of the analytic signal, θ(t) is the
phase, and the time derivative of θ(t) provides the instantaneous
frequency given as

Instantaneous frequency, f i(t) = 1
2π

dθ(t)
dt (8)

Instantaneous frequency is a positive function of time that varies
concerning the period of oscillation. The time average of the
instantaneous frequency provides the average frequency in a signal
spectrum [37]. HT is more suitable to analyse both stationary and
non-stationary data because of the following reasons:

(i) HT of a signal has the same frequency and amplitude of the
original signal, which makes it a powerful tool for signal analysis.
(ii) HT is non-local in time. Hence it is suitable for the computation
of instantaneous characteristics of the signal, whereas Fourier
transform and Laplace transform are local in time.
(iii) Unlike the wavelet transform, HT is versatile, which is
adaptable to the different type of signals. However, in the wavelet
transform analysis depends strongly on the proper choice of
wavelet function that in turn depends on a specific signal.

We use ode23s and ode45 MATLAB® routines (Matlab 8.1, The
MathWorks, Natick, MA) to get the time series from the 2D ODE
model under various conditions. The Matlab programs are provided
as supplementary materials.

3 HT method to determine the period of the
circadian oscillator
One of the important characteristic features of circadian oscillator
is its period. The period of oscillator determines the endogenous
rhythm that is unique to the given species. Further, determining the
period from the time series is an important aspect to understand
and compare the dynamics of wild and mutant phenotypes
behaviours of the circadian systems. However, oscillations
observed in the experiments are noisy and extracting the period
from a few, noisy, and some time the damping cycle is difficult. To
capture this noisy oscillation, and it's period as seen in the
experiments, both deterministic and stochastic simulations are
carried out for the 2D model. Existing methods to calculate the
period of noisy time series takes into account the time difference
between the two consecutive peaks (trough), but these are not a
very reliable method because many local maxima and minima will
occur that lead to an inaccurate estimation of the period. To
overcome this problem, Goldbeter and co-workers [18], calculated
the time difference between two consecutive upward crossing of
mean levels of a suitable oscillatory variable. Another common
method to determine the period is from the power spectrum of time
series of any oscillatory variable. Though this gives the time-
invariant amplitude and frequency, it will not provide instantaneous

frequency [38]. Therefore, we use the HT method to obtain the
instantaneous frequency of an oscillator from the time series.
Before we apply HT, we generate a time series by integrating the
2D model for the choice of kinetic parameters. We simulate both
the deterministic (1) and (2) and stochastic versions (Table 1) of
the model. For all the numerical analysis, we use the time series of
the dynamical variable M(t), detrend it from its average, and
convert it to an analytic signal of the form given in (5) by HT, from
which we obtain the instantaneous phase (θ(t)) as in (6) and (7).

We propose two different ways to determine the period
numerically from the instantaneous phase of the time series. In the
first method, we plot the instantaneous phase that changes from −π
to π, i.e. the total phase change is 2π. Then we determine the time
points where the absolute phase difference between two
consecutive instantaneous phases, θ(t) − θ(t + Δt) ≥ 1.5π (Fig. 2,
points a and b). This time point indicates phase switch from −π to
π and it provides the measure of one complete cycle of the
oscillation (we choose 1.5π because, in stochastic simulation, it is
not necessarily that the phase switch happens exactly from −π to π,
see Fig. 2, red dots. Therefore, we arbitrarily took it as 1.5π, and
this can be varied according to the noisy system). We repeat this
for the whole time series and the time differences between two
consecutive phase switching points (Fig. 2) give the period for one
cycle. A similar approach has been employed previously for
understanding the dynamics of brain signals [39]. In the second
method, we extract the points where there is a positive zero
crossing of the instantaneous phase (Fig. 2, points c, d). We then
calculate the period by taking the time difference between two
consecutive zero crossings. However, we use the phase-switching
method to determine the period in all our calculations. In
supplementary, we describe the algorithm for HT-based numerical
method to calculate the period and the corresponding MATLAB
programs. 

The time series obtained from the deterministic model is shown
in Fig. 3a and the instantaneous period and the period distribution
is shown in Figs. 3b and c. HT is an infinite impulse response (IIR)
filter, which requires computation on an infinite timescale.
However, software package like Matlab implements finite impulse
response (FIR) HT by applying window method [40]. This window
method may distort the beginning and end of the data, which is
called as the windowing effect [28]. To reduce the windowing
effect, and to calculate the mean period, we drop the five
oscillation cycles at the beginning and the end of the simulated
time series. As reported in the literature [10], the mean period of
the fruit fly oscillator obtained by HT method is 24.2 h. We then
proceed to compute the period of the stochastic time series using

Fig. 2  Two different methods to determine the period from HT. Blue lines
are the instantaneous phase of the deterministic model, and red dots are the
instantaneous phase of the stochastic model. In the first method, points a
and b are the two consecutive phase switching points, where the phase
changes from π to −π. Note that at the phase switching points, the
instantaneous phase of the stochastic model does not always reach to π or
−π. In the second method, points c and d are the two consecutive zero
crossing of the instantaneous phase
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the Gillespie method (Fig. 4). We use three different Ω values for
stochastic simulation: Ω = 10, Ω = 100, and Ω = 10, 000. It is
clear that the effect of molecular noise is more when Ω = 10 and
shows very large fluctuations in oscillations (Fig. 4a). The time
series also shows a large number of local maxima and minima in a
single cycle, and the amplitude values take a very wide range. We
perform the stochastic simulation for 2500 h to calculate the period
distribution via an HT method for Ω = 10 (Fig. 4d), Ω = 100
(Fig. 4h) and Ω = 10, 000 (Fig. 4l). Our results are on par with the
mean crossing method [18] shown in Figs. 4c, g and k. As in the
case of any stochastic circadian model, the simulation of this 2D
model also shows the robust circadian oscillations even when a
fewer number of molecules are present. For Ω = 10, 000, the
model shows the robust circadian oscillations, the period histogram
is much narrower, and the mean period is close to the deterministic
value. 

In subsequent sections, we take both the deterministic and
stochastic time series to study the characteristic properties of
circadian rhythms using HT. We also use this time series to validate
the novel method that we propose in the later section to determine
the phase variations of forced circadian oscillator under different
external forcing period conditions.

4 Influence of kinetic parameters on the period:
period sensitivity from HT
A robust circadian system has to maintain the amplitude, period,
and phase relationship between the molecular components
regardless of the environmental variations and fluctuations.
Besides robustness to molecular noise, another measure that
provides information about the robustness/sensitivity of the model
is the variations in the amplitude or period in response to parameter
perturbations. The period of oscillations (τ) depends on the
reaction rate parameters, and a small perturbation (Δp) in these
parameters (pj) may cause a large change in the period.
Understanding period sensitivity provides insight into the
functioning of the circadian system, and hence, helps to identify
period sensitive parameters to modulate the period of the oscillator
to simulate various phenotypes. Previous works have developed
different methods to measure the period sensitivity of the circadian
models [20, 41]. In [20], period sensitivity was determined from
the rate of phase difference accumulated around each cycle, and we
call this as the phase accumulation method. This method requires

to solve the adjoint equation through backward integration, and this
leads to instability and computational difficulty. To overcome this
difficulty, we use HT to calculate the period sensitivity based on
the finite difference method that is given below:

∂τ
∂pj

≃ τ(p + Δp) − τ(p)
Δp (9)

We calculate the period of unperturbed (τ(p)) and perturbed
(τ(p + Δp)) system by HT method. We rank-order the parameters
for wild-type (WT) according to the absolute magnitude of
sensitivity (Fig. 5a), and the ranking matches with the reported
results [20]. This ranking of the model parameter perhaps may help
to redesign the whole model or may help to reduce the number of
dynamical variables in the model that are insensitive. Top-ranked
sensitivity parameter, km is the exponential degradation constant of
mRNA (M). Our sensitivity analysis reveals that the model shows a
period insensitivity to two crucial parameters, Keq and kp1, and
agrees with the reported results [10]. However, the sensitive
parameters are present mostly in the mRNA (M) equation. We also
perform the period sensitivity analysis when the Keq is low. As
shown in Fig. 1b, there are three regimes where R2 is the regime of
wild-type and R1 is the regime, where the period is high for a very
low Keq value and this regime is taken as the mutant regime. We
took Keq as 15 to simulate the period sensitivity of the mutant
(Fig. 5b). We find that for a very low Keq value, most of the
parameters involved are in the production, degradation, and
positive feedback loop of total protein Pt (Jp, vp, and kp1) are more
sensitive to variations in period than in the wild type. The period
sensitivity of Keq is also higher (Fig. 5b, inset), and this result
agrees with the bifurcation diagram in Fig. 1b that period change is
higher for the mutant (R1) than in the wild-type (R2). This
indicates that positive feedback may be playing a strong role in
influencing the period in R1 regime. Thus HT method captures the
period sensitivity to variations in parameters of both wild and
mutant types effectively. 

5 Phase response curves
A plot of the perturbed phase against the phase shift for one
circadian cycle due to the application of pulse stimulus provides
the PRC. These curves explain the relationship between a small
duration of the light stimulus applied at different phases in one
cycle, and the corresponding phase shifts. PRC provides vital
information about the range of entrainment of a circadian system,
which in turn helps to understand the adaptation to external
seasonal variations like long and short day cycles. PRC's are also
categorised as Type-1 and Type-0 depending on the jumps in the
phase shifts from delay to advance or vice-versa [42]. PRC for
various circadian systems under different conditions is well
documented (e.g. Drosophila [43] and mammals [44]). To
determine the goodness of the mathematical models of circadian
rhythms, PRC is generated by light pulse stimulation, and its effect
is compared with the experimental data. Different numerical
methods have been previously developed to calculate the PRC [20,
33] and one of them use the adjoint method to construct PRC. In
this section, we proposed HT-based numerical method to the
construct PRC of the 2D model of the fruit fly and compared our
results with PRC got from the adjoint method [20]. For this, we
first consider the circadian ODE model of the form

x′(t, p) = f (x(t, p) (10)

Integrating the above equation gives the vector of state variable X:

X(t, p) = x1, x2, …, xi, …, xn (11)

and p is the vector of parameters given as

p = p1, p2, …, pj, …, pm (12)

Fig. 3  Period distribution of the deterministic time series
(a) Time series of the variable M, (b) Instantaneous phase of the time series calculated
via HT method, (c) Period distribution of the model. The endogenous period is close
to 24.2 h as reported in the literature [10]. Simulation results are obtained by
integrating (1) and (2) with Keq = 200Cp

−1. Rest of the parameter values are the same
as in Fig. 1. As used in [10], Cp and Cm are the characteristics concentrations for
protein (Pt) and mRNA (M), respectively
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τ0 is the free-running period of the system. Discretising the time
over one period gives

tdt = t1, t2, …tk, …tq (13)

where tq be the time at which phase is circadian time 24 (CT24).

Let S be the stimulus applied to perturb the system and it is
given as

S j =
pj + Δpj, for t ∈ [tk, tk + d]
pj, for t ∉ [tk, tk + d] (14)

where Δpj is a pulse given at the time tk for the time duration d. We
compute the PRC for the parameter pj

PRC j = Δθ j1, Δθ j2, …, Δθ jk, …, Δθ jq (15)

where Δθ jk is the average value of phase differences between the
perturbed and unperturbed phase of the state variable given below:

Δθ jk = 1
N ∑θperturbed

jk − θunperturbed (16)

Here N is the total number of discrete points for which we calculate
the Hilbert phases. θperturbed

jk  is the phase of the perturbed system,
where the parameter pj is perturbed at a time tk for the time
duration d while θunperturbed is the phase of the unperturbed system.
Positive and negative phase differences imply, respectively, phase
lead and phase lag. We also describe below how to calculate the
phase difference between the perturbed and unperturbed limit cycle
oscillation using HT

θperturbed
jk = tan−1 XpH

jk

Xp
jk (17)

θperturbed = tan−1 XHu
Xu

(18)

where XpH
jk  and XHu are the HT of perturbed (Xp

jk) and unperturbed
(Xu) state variables, respectively. Thus

Δθ jk = 1
N ∑ tan−1 XpH

jk Xu − XHuXp
jk

Xp
jkXu + XpH

jk XHu
(19)

We provide in the supplementary the Matlab program for the
numerical computation of PRC.

To determine how well HT method performs in simulating PRC
of various species, besides getting the PRC for the fruit fly model
[10], we also generate PRC of other well-known circadian models
of Drosophila [8], Neurospora [6], and compared the results with
the experimental PRC. Fig. 6 shows how the parameter
perturbation affects the time series (Fig. 6a) and their phase
(Fig. 6b). The phase difference between the Hilbert phases of the
perturbed and unperturbed time series is shown in Fig. 6c. We
specifically compared our method with the infinitesimal PRC
(iPRC) method to capture the PRC's of Drosophila [8] and
Neurospora [6] (see Fig. 7). The iPRC method requires to solve
adjoint equations that are unstable and to get the solution requires
backward integration that is difficult to program. Further, the PRC
of Drosophila model obtained from the iPRC method is
qualitatively very similar (Fig. 7a, green line) but quantitatively
incorrect. This method also works well only if the perturbation is
very small [41], and for large perturbation, this method fails to
predict PRC accurately. This method also fails to capture the
Type-0 PRC of Neurospora model (Fig. 7b). HT-based method, on
the other hand, could reproduce quantitatively and qualitatively
both Type-0 and Type-1 PRC's. Our method is efficient and
accurate in comparison to the iPRC method, and this is because our
algorithm computes the instantaneous phase of the oscillation for a
large number of cycles and take its average. We also construct
Type-0 and Type-1 PRC's of the 2D fruit fly model (Fig. 8), and it
agrees well with the simulated results [10]. However, the model in
[10] fails to reproduce the experimentally observed PRC [43, 45]. 

Fig. 4  Stochastic simulation, determination of instantaneous phase and
period distribution of Tyson et al. [10] model using the HT method
(a) Time series of the variable M obtained from the stochastic simulation for Ω = 10,
(b) Instantaneous phase, (c) Period histogram calculated via mean crossing method
[18], (d) Histogram of the period obtained via HT method. The distribution of the
circadian period is over the range of 0–50 h. In all cases, the mean period and standard
deviations for a single run are provided in the figure itself, and we calculated the
period for the time series simulated for 2500 h. The average period is 19.13 h for ten
simulations (not shown), and each simulation is carried over for 2500 h, (e) Time
series for Ω = 100, (f) Instantaneous phase, (g) Period histogram calculated via mean
crossing method, (h) Period histogram calculated via HT. The distribution of the
period is over the range of 18–30 h. The average period is 23.23 h for ten simulations
(not shown), each over 2500 h, (i) Time series for the stochastic simulation for
Ω = 10, 000, (j) Instantaneous phase, (k) Period histogram calculated via mean
crossing method, (l) Period histogram calculated via HT. The average period is 24.14 h
for ten trials, each trail simulated for over 2500 h. As Ω increases, the mean period
obtained by stochastic simulation approaches to a deterministic value (24.2 h) and the
standard deviation of the period distribution is very less. As used in [10], Cm is the
characteristics concentrations for mRNA (M)

 

Fig. 5  Comparison of HT based period sensitivity with phase
accumulation method
(a) Period sensitivity for WT (Keq = 200) calculated via HT method (blue) and the
period sensitivity is calculated via the phase accumulation method as described in [20]
(brown). kp1, Keq are almost insensitive to the period of oscillations (inset), and this
agrees with the published results [10, 20], (b) Blue indicates the period sensitivity
calculated via HT for mutant (Keq = 15) (R1 in Fig. 1b), and brown represents the
period sensitivity calculated via phase accumulation method. Period sensitivity of Keq

is higher for mutant than that of the wild type (inset)
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6 Mapping the entrainment region – Arnold
tongue
Entrainment happens when the frequency of a circadian oscillator
is relatively close to the frequency of external forcing signal. The
ratio of the period of the forced oscillator and the period of forcing
signal is called the period number (rotation number). The plot of
period number as a function of forcing signal frequency shows a
staircase structure, known as the devil's staircase [46, 47]. We
construct the devil's staircase from the model described in (1) and
(2), and it is shown in Fig. 9a. Some regions of the devil's staircase
show constant period number for a range of frequency, which is the
entrainment regions. Entrainment states can also be represented by
Arnold tongues, which are the regions of period locking, where
external forcing signals and the resulting forced oscillations of the
circadian model have their periods in a specific ratio. In the
entrainment region, the model can show n:m period locking. Here
m and n are the number of forcing signal cycles and forced
oscillation cycle, respectively. In Tyson et al. model [10], the
forcing signal is LD cycle. In the LD cycle simulation, we use
Keq = 200(1 − a) for the light phase and Keq = 200 for the dark
phase. Here a is proportional to the intensity of illumination [10],
and we take it as the forcing signal amplitude. To simulate Arnold's
tongue, we use the LD cycle with 50% photoperiod (duty cycle),

which denotes a 24 h forcing period with 12 h light phase and 12 h
dark phase. 

We construct the entrainment zone by first choosing appropriate
forcing signal and model parameters. We then integrate the two
variable ODE's and calculate the period of oscillation (τoscr) by
applying HT to the time series of the M variable. We compared this
period with the external forcing period (τE) given by
m − (τoscr/τE) ≤ ϵ, where ϵ is a small value to account for
integration error. If the above inequality is satisfied, then it is said
to be 1:m entrainment, where m is the number of forcing cycles.
Similarly, we also determine the n:m entrainment, where we
calculate n number of oscillations in m forcing cycle. The Arnold
tongue for the 2D model (Fig. 9b) is in good agreement with the
reported one (Fig. 5b in [10]). From the figure, it is clear that if the
strength (amplitude) of the forcing signal is increased/decreased,
then the entrainment region also expands/shrinks, a common
characteristic of limit cycle oscillators. The entrainment region
provides the parameter a for which 1:1 phase locking of
entrainment and phase slips are possible. This information is used
in the next section to validate the new method we propose in
combination with HT for phase entrainments.

7 Phase equations
Phase equation describes the dynamics of the phase difference
between free running oscillator subjected to an external forcing
signal. Phase locking happens during entrainment, where the phase
difference between forcing signal and forced oscillator phases
should maintain a stable value. Phase equation can be utilised to
determine the phase locking, and hence entrainment and phase
slips. In the subsequent part of this section, we explain this in
detail.

7.1 Derivation of the scaled phase equation

Entrainment for the deterministic and stochastic model of circadian
rhythms have been studied and discussed in [48], and they studied
the effect of molecular noise on phase locking and phase slip
phenomena in detail. We provide below the equations that we use
to determine the nature of entrainments like phase locking and
phase slips from the time series data for a given forcing period.

We consider θext and θinst, respectively, the instantaneous phases
in radians of the external (forcing) and forced oscillations that
governs the circadian oscillators. The phase difference is

Ψ = θext − θinst (20)

and the rate of change of this phase difference (radians/h) is given
as

dΨ
dt = dθext

dt − dθinst
dt (21)

dΨ
dt = ωext − ωinst (22)

Note that we have taken the time in hours (h). To get the period, we
take ωext = (2π /Text), ωinst = (2π /Tinst) and we substitute this in the
above equation to get

dΨ
dt = 2π

Text
− 2π

Tinst
.

dΨ
dt = 2π

Tinst − Text
TextTinst

.
(23)

where Text and Tinst are the period of forcing signal and forced
oscillator, respectively. Text have a constant value over the period
of time, whereas Tinst is varied over time, and the procedure for
calculating Tinst(t) will discussed in Section 7.2. We scale (23) and
reduce to dimensionless by taking ψ = (Ψ/Ψ0) and τ = (t /Text) and
the scaled equation is

Fig. 6  Illustration of phase difference obtained from the perturbed and
unperturbed oscillator via the HT method
(a) Unperturbed time series is shown as in blue line and perturbed time series as in the
red line. The black broken arrow indicates the phase at which the perturbation is
applied, (b) Instantaneous phases of perturbed and unperturbed time series calculated
via HT, (c) The phase difference between the perturbed and unperturbed time series.
Time series is obtained by integrating the ODE-provided in [6], where the variable X
represents the mRNA

 

Fig. 7  Comparison of PRCs by HT and iPRC methods for the Drosophila
and Neurospora circadian models
(a) PRC of the Drosophila is constructed from the circadian model described by the
equations (1a)–(1j) in [8]. The experimental data of PRC was extracted from [44]. To
simulate PRC, we set CT6 as the maximum of per mRNA. The light perturbation here
takes the form of a 3 h long two-fold increase in the parameter VdT. PRC obtained via
both iPRC (green line), and HT methods (blue line) are projected along with the
experimental data (red circles). The x-axis is converted into circadian time (1CT(h) = 
59.5 min), (b) PRC is constructed from the Neurospora circadian model described in
[6], and the experimental data of PRC is also extracted from [6]. To simulate PRC, the
maximum of X, the mRNA variable is set as CT4. PRC calculated via HT (blue line)
and iPRC methods (green line) are projected along with the experimental data (red
dots). The perturbation here takes the form of a 1 h long two-fold increase in the
parameter k1 in the Goodwin model of Neurospora. The x-axis again converted to the
circadian time (1CT(h) = 55.75 min). PRC's of both Neurospora crassa and
Drosophila via HT method matches well with the experimental data in comparison to
the iPRC method
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Ψ0

Text

dψ
dτ = 2π

Tinst − Text
TextTinst

(24)

Ψ0

2π
dψ
dτ = Tinst − Text

Tinst
(25)

If we take the constant Ψ0 to be 2π radians then the above equation
becomes

dψ
dτ = Tinst(τ) − Text

Tinst(τ) (26)

This is the dimensionless phase equation we use to calculate the
phase slip. To calculate the rate of phase slip per day (dψd /dt), we
modify the above equation as

dψd
dτ = Tavg − Text

Tavg
× 24 (27)

where Tavg is the average period of the forced oscillator, and it is
given as (1/n)∑(Tinst) with n being the number of cycles. Note the
difference between (26) and (27), and we use these two equations
in the next section to calculate the region of phase locking and
phase slips for the given parameter as well as the time series for the
fruit fly model.

7.2 Numerics of the phase equation: phase locking and
phase slip

To calculate phase slip, we compute the period for each cycle using
HT and assume that the period is constant for one complete cycle
of oscillation, we take this period as an instantaneous period (Tinst)
for one complete cycle as shown in Fig. 10. We calculate phase slip
by integrating (26) by Euler's method with an integrating step of
Δτ, which is the same as the sampling time of the time series. We
calculate the phase slip from the time series; we obtain from the
fruit fly model [10] and the experimental data we got from the
mice SCN culture [32] to illustrate the effectiveness of our novel
method. 

7.2.1 Phase slip calculated for the time series obtained from
the fruit fly model: We use two forcing periods 23 and 25 h to
illustrate phase locking and slips in the fruit fly model [10]. When
forcing amplitude a = 0, the model oscillates with a free running
period of 24.2 h. A phase slip of 1.2 h is obtained if the forcing
period Text is 23 h and according to (27), the rate of phase slip per
day (24 h) is 1.19 h. We also calculate the rate of phase slip per day

Fig. 8  Type-0 and type-1 PRC of Tyson et al. model [10]. PRC obtained
via HT method. For small amplitude perturbations, the model shows type-1
PRC, and for high amplitude perturbation, type-0 PRC is seen. Calculated
PRC is matched with the published result (Fig. 5a in [10]). For type-1
PRC, Keq is changed from 200 to 15 for 0.7 h, and for type-0 PRC, Keq is
changed from 200 to 2 for 2 h. Experimental PRC is extracted from [43]
(red circle) and [45] (green circle). Note the model published by Tyson et
al., the PRC did not match well with the experimental PRC. So the
simulated PRC from HT method also did not match with the experimental
PRC but matched exactly with the model PRC simulated [10]

 

Fig. 9  Devils staircase and Arnold's tongue
(a) Devil's staircase. Period number as a function of forcing frequency. Some regions
show a constant period number for a range of frequency, (b) Arnold's tongue. When
the oscillator period is close to forcing signal period, entrainment occurs (1:1). Outside
the entrainment region, the quasi-periodic behaviour is observed. In 1:2 region, we
observe for every one cycle, there is a two-cycle forcing period, whereas in 2:1 region,
for every two cycles, there is one cycle of forcing period. We obtain the Devil's
staircase and Arnold's tongue by integrating (1) and (2). For LD cycle simulation, we
use Keq = 200(1 − a) in the light phase, and Keq = 200 at the dark phase, where a it is
proportional to the intensity of illumination [10]. To simulate Devil's staircase, we use
a = 0.5 with a duty cycle of 50% for the LD cycle. The period of the oscillator is
calculated using the HT method. Arnold's tongue matches the reported result (Fig. 5b
in [10])

 

Fig. 10  Calculation of phase slip
(a) Time series is obtained from the model, (b) Instantaneous phase is calculated via
HT. The period of each cycle is calculated as discussed in Section 3, and this period
assigned as the instantaneous period (Tinst(t)) for one cycle (c), (d) This instantaneous
period obtained is used for calculating the phase slip by routing it to (26). This
equation is numerically integrated via Euler's method. As used in [10], Cm is the
characteristic concentration for mRNA (M)
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for various values of a with a period forcing of 23 h and plot of
dψd /dt versus a is shown in Fig. 11a. There is a critical value of a
below which the phase slip occurs, and above which forced
oscillator is completely phase locked to the applied external signal.
We also repeat this to the forcing signal with a period of 25 h.
When a = 0, phase slip occurs, and it is −0.8 h and the rate of
phase slip per day is −0.79 h. We again obtain the rate of phase slip
per day for different values a with forcing period 25 h and the plot
of dψd /dt versus a is shown in Fig. 11c. 

We also numerically integrate (26) to calculate the phase slip
and locking for different a values with two different forcing signals
of period 23 and 25 h. The results are shown in Figs. 11e and f,
respectively, for various a values. We specifically select four
different a values, three from the non-entrainment region, and one
from the entrainment region as shown in Fig. 11b (red ‘addition
sign’ and green ‘multiplication sign’). In Fig. 11e, the period of the
forcing signal is 23 h, when a = 0 (without forcing signal), slip
progress at a constant rate (blue line). When a ≠ 0, the system
exhibits the periodic tendency for locking (black and green lines).
When a = 0.2, the system is completely phase locked ((dψ /dt) = 0,
red line). Corresponding time series for a = 0.15 are shown in
Fig. 11d. We observe similar results for the forcing period of 25 h
(Figs. 11f and g).

To see the effect of molecular noise on entrainment, we use the
stochastic time series of the Tyson et al. model with a forcing
period of 23 h and calculate the phase slip using (26). The results
are shown in Fig. 12. When Ω = 1000 and Ω = 10, 000,
entrainment is seen for the higher values of a (Figs. 12a and b). For
Ω = 10, 000 (Fig. 12b), the phase slip that we obtained from the
stochastic simulations matches well with the deterministic
simulation (Fig. 11e). This indicates that the model is robust to
noise and its entrainment property to the external forcing signal is
similar to that of the deterministic model provided that Ω is large
enough. 

8 Validation of the phase equation: identification
of phase-locked regime in the entrained
experimental time series of SCN under different
forced temperature cycles
In this section, we validate HT-based analysis of entrainment
property to the experimentally collected circadian data. Bordyugov
et al. [32] investigated the entrainment properties of mouse SCN
slice time-series data to the externally forced temperature cycles.
They recorded the time series of bioluminescence signal from
PER2::LUC mouse SCN slice under a different period of
temperature cycle (forcing signal). Here, we analyse this SCN
experimental data (Figs. 13a, e and i) with our phase equation
model to determine the entrainment of PER2 bioluminescence to
the temperature cycle. For this, we first calculate the Hilbert phase
of the detrended data (Figs. 13b, f and j), and using this phase
information; we calculate the instantaneous period (Tinst) as
discussed in Section 7.2. The results are shown Figs. 13c, g and k.
The Tinst obtained is routed to (26) to calculate the phase locking
regime (Figs. 13d, h and l). From HT-based numerics, it is clear
that PER2 entrains to the temperature cycles, and in the entrained
region, temperature cycle and the SCN PER2 data have the same
period (Figs. 13c, g and k). Also, during the entrainment period,
phase slip calculated through (26) is constant (Figs. 13d, h and l).
These results are in good agreement with the findings that SCN
entrains to the temperature cycle for different periods of 22, 24,

Fig. 11  Entrainment diagrams. dψ /dt versus a for the Tyson et al. [10] model with a forcing signal period of
(a) 23 h and, (c) 25 h. Calculated points are showing in the blue dots. Red ‘addition sign’ and green ‘multiplication sign’ are the corresponding points from the 1:1 Arnold's tongue
(b), (d) Time series of the model with a forcing signal period of 23 h and amplitude value a = 0.15. The model is not completely locked, and in each cycle, it shows different peaking
time concerning external forcing signal. Black dotted line shows the peaking time of the variable M, (e) Phase slip calculated for a forcing signal with period 23 h and photoperiod
11.5 h for 300 days. When a = 0, no locking occurs, and for non-zero values of a, it shows the periodic tendency for locking, (f) Phase slip calculated for a forcing signal with period
25 h and photoperiod 12.5 h, (g) Time series of the model with a forcing signal period of 25 h and amplitude value a = 0.1. As used in [10], Cm is the characteristic concentration for
mRNA (M)

 

Fig. 12  Effect of molecular noise on entrainment. The effect of molecular
noise on the stochastic version of Tyson et al. model with
(a) Ω = 1000 and, (b)Ω = 10, 000. In all simulations, the period of forcing signal is
23 h
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and 26 h, given the temperature variation is strong enough (6–8°C
temperature variation) [32]. 

9 Discussion and conclusion
In this work, we introduced the HT-based method to analyse the
time series of circadian models. HT is a powerful method that
accurately determined the instantaneous phase and frequency, and
from this information, we showed that the information about the
period distribution of noisy time series, PRC's, Arnold tongue, and
phase slip phenomena could effectively compute. In the presence
of noise, obtaining frequency information from the simulated
(stochastic) data is more challenging and hence it is difficult to
calculate the period. However, we showed in Section 3 that HT can
be utilised to calculate the period distribution of noisy time series
obtained from stochastic simulation, and the estimated periods
matched well with the published results. Further, the period of the
oscillations depends on the model parameters, and the period
sensitivity analysis helps to identify the parametric dependencies
on the oscillatory period of the model. We showed in Section 4 that
the period sensitivity using the HT method provides excellent
results that are in agreement with the published results [20, 10].

PRC is a powerful tool to analyse the performance of the
circadian model. Previously, experimental PRC of the SCN clock
cell under temperature perturbation was constructed using HT [25].
Also, HT has been applied to construct numerical PRC of the
oscillatory system [28]. However the amplitude information was
utilised to calculate the phase difference. Unlike previous methods,
with a detailed mathematical explanation, we directly utilised the
phase information for constructing PRC in Section 5. Further,

based on our method we constructed both Type-0 and Type-1
PRC's of various circadian models under light perturbation that
agreed very well with the published results [6, 8, 10].

Entrainment property tells the ability of a circadian model to
adapt to the day length variation of the environment. We applied
the HT method to determine the period mismatch between
circadian model and the external forcing signal by constructing
Arnold's tongue in Section 6. We successfully reproduced the
wedge-like shaped region for 1:1, 1:2, and 2:1 entrainment regions
for Drosophila model [10]. A phase slip phenomenon is another
method to examine the entrainment property. Previously, in [29]
the amount of entrainment is quantified using HT method.
However, their method does not provide information about at
which time entrainment (phase locking) or non-entrainment (phase
slip) occur. In this work, we proposed a simple model and numeric
in Section 7 to determine the entrainment properties of the system
under the external LD forcing periods. Importantly, we showed that
phase locking and phase slips can be obtained from the time series
data using the HT method. We specifically compared the results
obtained from the HT method with the experimental data [32] and
the results were found to agree very well. Importantly, we believe
that this method can be used directly to the forced experimental
data with known forcing periods to determine the occurrence of
entrainment or not. In summary, we showed here that the HT-based
time-series analysis of circadian data can be used to determine
most of the circadian properties like period distribution, period
sensitivity, PRC, and entrainment.

Fig. 13  Entrainment of experimental SCN circadian time series to different forced external temperature cycles
(a), (e), (i) Time series (blue line) of the bioluminescence signal from PER2::LUC mouse SCN slice [32]. Green lines indicate the various temperature levels during the days.
Initially, the temperature kept at a constant level, and after a few days it drops to some lower level periodically with a forcing period (Text) of (a) 24 h, (e) 22 h and (i) 26 h, (b), (j),
and (f) represent the instantaneous Hilbert phase of the time series shown in (a), (e), (i), respectively. (c), (g), (k) Tinst is calculated as described in Fig. 10. Calculated phase slip
according to (26) for the time series concerning the forcing signal as shown in (a), (e), (i) are provided in (d), (h), (l), respectively
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