

Acrogenospora (Acrogenosporaceae, Minutisphaerales) Appears to Be a Very Diverse Genus

Dan-Feng Bao^{1,2,3}, Eric H. C. McKenzie⁴, D. Jayarama Bhat⁵, Kevin D. Hyde^{2,6}, Zong-Long Luo^{1*}, Hong-Wei Shen^{1,2} and Hong-Yan Su^{1*}

¹ College of Agriculture and Biological Sciences, Dali University, Dali, China, ² Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand, ³ Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, ⁴ Manaaki Whenua Landcare Research, Auckland, New Zealand, ⁵ Retired, Goa Velha, India, ⁶ Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China

OPEN ACCESS

Edited by:

Rajesh Jeewon, University of Mauritius, Mauritius

Reviewed by:

Huzefa A. Raja, University of North Carolina at Greensboro, United States Andrey M. Yurkov, German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Germany

*Correspondence:

Zong-Long Luo luozonglongfungi@qq.com Hong-Yan Su suhongyan16@163.com

Specialty section:

This article was submitted to Fungi and Their Interactions, a section of the journal Frontiers in Microbiology

Received: 28 April 2020 **Accepted:** 19 June 2020 **Published:** 24 July 2020

Citation:

Bao D-F, McKenzie EHC, Bhat DJ, Hyde KD, Luo Z-L, Shen H-W and Su H-Y (2020) Acrogenospora (Acrogenosporaceae, Minutisphaerales) Appears to Be a Very Diverse Genus. Front. Microbiol. 11:1606. doi: 10.3389/fmicb.2020.01606 During a study of diversity and taxonomy of lignicolous freshwater fungi in China, nine species of *Acrogenospora* were collected. Seven of these were new species and they are described and illustrated. With morphology, additional evidence to support establishment of new species is provided by phylogeny derived from DNA sequence analyses of a combined LSU, SSU, TEF1 α , and RPB2 sequence dataset. *Acrogenospora subprolata* and *A. verrucispora* were re-collected and sequenced for the first time. The genus *Acrogenospora* is far more species rich than originally thought, with nine species found in a small area of Yunnan Province, China.

Keywords: 7 new species, Acrogenosporaceae, molecular analyses, phylogeny, taxonomy

INTRODUCTION

Freshwater fungi are an ecological group that are defined by their presence in freshwater for the whole or part of their life cycle (Thomas, 1996; Wong et al., 1998), and include any species that grow on predominantly aquatic or semi-aquatic substrates (Goh and Hyde, 1996). Freshwater fungi play an important role in nutrient and carbon cycling, biological diversity and ecosystem functioning (Zhang et al., 2008; Swe et al., 2009). There have been many studies of freshwater fungi, especially on diversity, taxonomy and phylogeny (Tsui et al., 2000; Cai et al., 2002; Vijaykrishna et al., 2005; Vijaykrishna and Hyde, 2006; Hirayama et al., 2010; Ferrer et al., 2011; Barbosa et al., 2013; Raja et al., 2013, 2015) and recently from China (Hyde et al., 2016; Yang et al., 2017; Huang et al., 2018a,b; Su et al., 2018; Guo et al., 2019; Luo et al., 2019). In this study, we report nine Acrogenosporaceae species that were collected from freshwater habitats in China. *Acrogenosporaceae* was established by Jayasiri et al. (2018) to accommodate *Acrogenospora* within Minutisphaerales, with the latter being a freshwater ascomycetes order, comprising two families, Acrogenosporaceae and Minutisphaeraceae (Wijayawardene et al., 2020). Members of these two families are mostly reported from freshwater habitats (Goh et al., 2020).

Acrogenospora was established by Ellis (1971) with two species, Acrogenospora sphaerocephala, and Farlowiella carmichaeliana (asexual morph). Ellis (1972) included two other species A. setiformis and F. australis in this genus. Hughes (1978) accepted the genus and added

two additional species, *A. gigantospora* and *A. novae-zelandiae*. A taxonomic revision was provided by Goh et al. (1998) who accepted eight species, including two new combinations and two new species, and provided descriptions, illustrations and a key to species. Currently, 13 species are included in *Acrogenospora* (Hu et al., 2010; Ma et al., 2012; Hyde et al., 2019). *Acrogenospora* species are characterized by macronematous, mononematous, simple, brown, sometimes percurrently proliferating conidiophores; monoblastic, terminal or intercalary conidiogenous cells; and globose, ellipsoid or obovoid, olivaceous to brown conidia (Hughes, 1978; Goh et al., 1998).

The sexual morph of Acrogenospora has been linked with Farlowiella. Mason (1941) showed the connection between A. megalospora and Farlowiella armichaeliana based on cultural studies. Ellis (1971) reported the asexual morph of F. carmichaeliana as A. carmichaeliana. Ellis (1972) introduced A. australis as the asexual morph of F. australis based on morphological characters. Goh et al. (1998) accepted these two asexual morphs of Farlowiella and synonymized A. megalospora under F. carmichaeliana and A. altissima under F. australis. Jayasiri et al. (2018) carried out phylogenetic analyses with seven isolates of Acrogenospora and showed that A. sphaerocephala clustered with the sexual morph Farlowiella carmichaeliana. This confirmed the connection between Acrogenospora and Farlowiella. Hyde et al. (2019) also supported the asexual-sexual connection between these two genera based on a phylogenetic study. Based on recent nomenclatural changes with regards to one fungus one name, Acrogenospora was given priority (Wijayawardene et al., 2014; Rossman et al., 2015).

During our investigation of freshwater fungi on submerged wood along a north/south gradient in the Asian/Australasian region (Hyde et al., 2016), nine isolates of *Acrogenospora* were collected from freshwater habitats in China. Among them, two are identified as existing species, *A. subprolata* and *A. verrucispora*, and another seven are introduced as new species by comparing their morphology with known species of the genus, as well as performing phylogenetic analyses of on LSU, SSU, TEF1 α , and RPB2 DNA sequence data. The objectives of this study are as follows: (i) describe and illustrate the newly collected *Acrogenospora* spp. from freshwater habitats in China; (ii) provide molecular data for *Acrogenospora* species and understand their phylogenetic relationships.

MATERIALS AND METHODS

Isolation and Morphology

Samples of submerged wood were collected from Yunnan and Tibet provinces, China and taken to the laboratory in plastic bags. The samples were incubated in plastic boxes lined with moistened tissue paper at room temperature for one week. Specimen observations and morphological studies were conducted following the protocols provided by Luo et al. (2018).

Single spore isolations were carried out following the method described in Chomnunti et al. (2014). Germinating conidia were transferred aseptically to PDA and MEA plates supplemented

with 100 mg of streptomycin and grown at room temperature in daylight. Colony color and other characters were observed and measured after 1 week and again after 3 weeks. The specimens were deposited in the Mae Fah Luang University (MFLU) Herbarium, Chiang Rai, Thailand. Living cultures are deposited in the Culture Collection at Mae Fah Luang University (MFLUCC). Facesoffungi numbers (FoF) were acquired as in Jayasiri et al. (2015) and Index Fungorum (2020). New species are established following recommendations outlined by Jeewon and Hyde (2016).

DNA Extraction, PCR Amplification, and Sequencing

Fungal mycelium was scraped from the surface of colonies grown on potato dextrose agar (PDA) or malt extract agar (MEA) at 25°C for 4 weeks, transferred into a 1.5 mL centrifuge tube and ground using liquid nitrogen. The EZ geneTM fungal gDNA kit (GD2416) was used to extract DNA from the ground mycelium according to the manufacturer's instructions. Primers for PCR amplification used were LSUrDNA = LR0R/LR7 (Vilgalys and Hester, 1990), SSUrDNA = NS1/NS4 (White et al., 1990), (TEF1- α) = 983F/2218R and (RPB2) = fRPB2-5F/fRPB2-7cR (Liu et al., 1999). The PCR mixture was prepared as follows: 12.5 µl of 2 × Power Taq PCR MasterMix, 20 mM Tris-HCl pH 8.3, 100 Mm KCl, 3 mM MgCl₂, stabilizer, and enhancer), 1 µl of each primer, 1 µl genomic DNA extract and 9.5 µl deionized water. The PCR of LSU, SSU and TEF1α gene was processed as follows: 94°C for 3 min, followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 56°C for 50 s, elongation at 72°C for 1 min and a final extension at 72°C for 10 min, and finally kept at 4°C. The RPB2 gene region was amplified with an initial denaturation of 95°C for 5 min, followed by 40 cycles of denaturation at 95°C for 1 min, annealing at 54°C for 40 s, elongation at 72°C for 90 s, and the final extension at 72°C for 10 min. PCR amplification was confirmed on 1% agarose electrophoresis gels stained with ethidium bromide. Purification and sequencing of PCR products were carried out using the above-mentioned PCR primers at Beijing Tsingke Biological Engineering Technology and Services Co., Ltd. (Beijing, P.R. China).

Molecular Phylogenetic Analyses Sequencing and Sequence Alignment

Sequences were assembled with BioEdit and those with high similarity indices were determined from a BLAST search to find the closest matches with taxa in *Acrogenospora* and from recently published data (Jayasiri et al., 2018; Hyde et al., 2019). All consensus sequences and the reference sequences were automatically aligned with MAFFT v. 7 and the strategy was using Auto (Katoh and Standley, 2013)¹. Aligned sequences of each gene region (LSU, SSU, TEF1 α and RPB2) were combined and manually improved using BioEdit v. 7.0.5.2 (Hall, 1999). Ambiguous regions were excluded from the analyses and gaps were treated as missing data. Phylogenetic analyses were performed using Maximum Likelihood (ML) and Bayesian tree building criteria.

¹http://mafft.cbrc.jp/alignment/server/index.html

Phylogenetic Analyses

Maximum likelihood analysis was performed at the CIPRES Science Gateway v.3.3 (Miller et al., 2010)² using RAxML v. 8.2.8 as part of the "RAxML-HPC2 on XSEDE" tool (Stamatakis, 2006; Stamatakis et al., 2008). All model parameters were estimated by RAxML. The final ML search was conducted using the GTRGAMMA + I model which was estimated by using MrModeltest 2.2 (Nylander, 2004), Maximum likelihood bootstrap support was calculated from 1000 bootstrap replicates.

Bayesian analysis was performed using MrBayes v 3.1.2. (Ronquist and Huelsenbeck, 2003). The model of each genes was estimated using MrModeltest 2.2 (Nylander, 2004), GTR + I + G model was the best-fit model of LSU, SSU, TEF1 α and RPB2 for Bayesian analysis. Posterior probabilities (PP) (Rannala and Yang, 1996) were performed by Markov chain Monte Carlo sampling (BMCMC) in MrBayes v.3.1.2 (Liu et al., 2012). Six simultaneous Markov chains were run for 50 million generations, and trees were sampled every 5000th generation (resulting in 10,000 trees). The first 2000 trees representing the burn-in phase of the analyses were discarded and the remaining 8000 (post burning) trees were used for calculating posterior probabilities (PP) in the majority rule consensus tree (Cai et al., 2006; Liu et al., 2012).

Maximum-parsimony analyses were performed using PAUP v.4.0b10 (Swofford, 2003). Gaps were treated as missing data with the heuristic search option with 1000 random sequence additions and tree bisection reconnection (TBR) branch-swapping. Maxtrees were unlimited, branches of zero length were collapsed and all parsimonious trees were saved. The consistency indices (CI), tree length (TL), homoplasy index (HI), rescaled consistency indices (RC), retention indices (RI) were calculated for each tree. Clade stability was assessed using a bootstrap (BT) analysis with 1000 replicates, each with 10 replicates of random stepwise addition of taxa. Other details are as provided by Jeewon et al. (2002, 2003)

Phylogenetic trees were represented by FigTree v. 1.4.4 (Rambaut, 2014) and edited in Microsoft Office PowerPoint 2016 (Microsoft Inc., United States). Newly generated sequences in this study were deposited in GenBank (**Table 1**) and the alignment used for the phylogenetic analyses were submitted to TreeBASE³ under the accession number: 26373.

RESULTS

Phylogenetic Analyses

The combined LSU, SSU, TEF, and RPB2 sequence dataset included 101 taxa (ingroup) and two outgroup taxa (*Diploschistes ocellatus* and *Stictis radiata*) with a total of 3853 characters (LSU: 867 bp; SSU:1020 bp; TEF1α: 915 bp; RPB2: 1051 bp) after alignment including the gaps. The RAxML and Bayesian analyses of the combined dataset resulted in phylogenetic reconstructions with largely similar topologies and the result of ML analysis

²http://www.phylo.org/portal2/

³https://www.treebase.org/

with a final likelihood value of -49015.757408 is shown in **Figure 1**. The matrix had 1149 distinct alignment patterns, with 29.85% undetermined characters or gaps. Estimated base frequencies were: A = 0.253075, C = 0.235518, G = 0.278280, T = 0.194616; substitution rates AC = 1.387195, AG = 3.679854, AT = 1.133462, CG = 0.233127, CT = 7.472473, GT = 1.000000; gamma distribution shape parameter α = 0.303701. Bootstrap support values for RAxML and MP greater than 60% and Bayesian posterior probabilities greater than 0.95 are given at each node (**Figure 1**).

In the phylogenetic analyses all the new strains grouped with members of Acrogenospora within Acrogenosporaceae with high support (99% ML and 0.99 BYPP). Acrogenospora aquatica, A. guttulatispora, A. submersa, A. yunnanensis grouped together, but separated in different clades. Two isolates of A. aquatica (MFLUCC 16-0949 and MFLUCC 20-0097) formed a distinct clade with high statistical support (95% ML and 1 BYPP). Acrogenospora guttulatispora was placed as a sister taxon to A. aquatica and A. submersa. Acrogenospora yunnanensis clustered with A. submersa. Acrogenospora basalicellularispora clustered with A. carmichaeliana (CBS 206.36) and sister to A. obovoidispora. Two strains of A. verrucispora (MFLUCC 20-0098 and MFLUCC 18-1617) clustered together with high statistical support (95% ML and 1 BYPP), and sister to A. carmichaeliana. Acrogenospora olivaceospora and A. subprolata grouped with A. sphaerocephala.

Acrogenospora aquatica D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, sp. nov.

Index Fungorum number: IF 557599; Facesoffungi number: FoF 07984, **Figure 2**

Holotype—MFLU 20–0291

Etymology—"*Aquatica*" in connection with the aquatic habitat from which it was recovered.

Saprobic on submerged decaying wood. Sexual morph: Undetermined. Asexual morph: Colonies effuse on natural substrate, hairy, dark brown. Mycelium mostly immersed, composed of septate, grayish brown, branched, smooth hyphae. Conidiophores 200–250 × 7.5–9.5 μ m ($\bar{x} = 226 \times 8.6 \mu$ m, n = 15), mononematous, macronematous, solitary, erect, straight or slightly flexuous, cylindrical, indeterminate, unbranched, brown to dark brown, paler toward apex, septate, smooth. Conidiogenous cells holoblastic, monoblastic, integrated, initially terminal, later becoming intercalary, cylindrical, smooth, pale brown, proliferating percurrently. Conidia 29–34.5 × 24–31 μ m ($\bar{x} = 31.8 \times 27.7 \mu$ m, n = 30), acrogenous, solitary, subprolate to broadly ellipsoidal, base truncate, dark brown to black, aseptate, lacking guttules, with a hyaline, globose to subglobose basal cell, smooth.

Material examined: CHINA, Yunnan Province, Dali, Cangshan Mountain, on decaying wood submerged in a stream, January 2016, Q.S. Zhou, S-763 (MFLU 20–0291, **holotype**), ex-type culture MFLUCC 20–0097. CHINA, Yunnan Province, Dali, Cangshan Mountain, on decaying wood submerged in Qingbixi Stream, March 2016, Z. L. Luo, S-282 (DLU 282, **isotype**), living culture MFLUCC 16-0949.

Notes: In our study, we found two species, *A. basalicellularispora* and *A. aquatica* with a hyaline, globose

TABLE 1 | GenBank numbers and culture collection accession numbers of species included in the phylogenetic study.

Таха	Strain	GenBank accession no.				References	
		LSU	SSU	RPB2	TEF1α		
Acrogenospora aquatica	MFLUCC 16-0949	MT340732	_	MT367160	MT367152	This study	
Acrogenospora aquatica	MFLUCC 20-0097	_	MT340743	MT367159	MT367151	This study	
Acrogenospora basalicellularispora	MFLUCC 16-0992	MT340729	_	_	_	This study	
Acrogenospora carmichaeliana	MFLU 18-1130	MH606222	_	_	_	Hyde et al., 2019	
Acrogenospora carmichaeliana	CBS 206.36	MH867287	_	_	_	Jayasiri et al., 2018	
Acrogenospora carmichaeliana	CBS 179.73	_	GU296148	_	_	Jayasiri et al., 2018	
Acrogenospora carmichaeliana	CBS 164.76	GU301791	GU296129	_	GU349059	Jayasiri et al., 2018	
Acrogenospora guttulatispora	MFLUCC 17-1674	MT340730	-	MT367157		This study	
Acrogenospora obovoidspora	MFLUCC 18-1622	MT340736	MT340747	MT367163	MT367155	This study	
Acrogenospora olivaceospora	MFLUCC 20-0096	MT340731	MT340742	MT367158	MT367150	This study	
Acrogenospora sphaerocephala	MFLUCC 16-0179	MH606222	_	MH626448	_	Hyde et al., 2019	
Acrogenospora sphaerocephala	JX-43	KF836062	KF836061	_	_	Jayasiri et al., 2018	
Acrogenospora sphaerocephala	FMR11021	HF677191	_	_	_	Javasiri et al., 2018	
Acrogenospora submersa	MFLUCC 18-1324	MT340735	MT340746	MT367162	MT367154	This study	
Acrogenospora subprolata	MFLUCC 18-1314	MT340739	MT340750	_	_	This study	
Acrogenospora thailandica	MFLUCC 17-2396	MH606223	MH606221	MH626449	_	Hvde et al., 2019	
Acrogenospora verrucispora	MFLUCC 20-0098	MT340737	MT340748	_	_	This study	
Acrogenospora verrucispora	MFLUCC 18-1617	MT340738	MT340749	MT367164	MT367156	This study	
Acrogenospora vunnanensis	MFLUCC 20-0099	MT340734	MT340745	MT367161	MT367153	This study	
Acrogenospora vunnanensis	MFLUCC 18-1611	MT340733	MT340744	_	_	This study	
Acrospermum adeanum	M 133	FU940104	FU940031	FU940320	_	Steproos et al. 2010	
Acrospermum compressum	M 151	EU940084	EU940012	EU940301	_	Stenroos et al. 2010	
Acrospermum graminum	M 152	EU940085	EU940013	EU940302	_	Stenroos et al. 2010	
Aigialus grandis	BCC 20000	GU479775	GU479739	_	GU479839	Suetrong et al. 2009	
Aigialus grandis	BCC 18419	GU479774	GU479738	_	GU479838	Suetrong et al. 2009	
Aigialus grandis	BCC 33563	GU479776	GU479741	_	GU479840	Suetrong et al. 2009	
Aliquandostinite khaovaiensis	CBS 118232	GU301796	AF201453	EJ238360	GU349048	Schoch et al. 2009	
Aliquandostipite siamensis	SS 81 02	EE175666	FE175645	_	_	Campbell et al. 2007	
Anteadonium abbreviatum	GKM 1029	G0221878	_	_	60221915	Mugambi and Hubndorf, 2009a	
Arthrographis arxii	IEM 52652	AB213438	_	_	_	Giraldo et al. 2014	
Arthrographis kalrae	CBS 693 77	AB116544	_	_	_	Giraldo et al. 2014	
Arthrographis longispora	UTHSC 05-3220	HG004540	_	_	_	Giraldo et al. 2014	
Ascocratera mandicola	BCC 09270	GU479782	GI 1479747	_	GI 1479846	Giraldo et al. 2014	
Asterina cestricola	TH 591	GU586215	GU586209	_	_	Hofmann et al. 2010	
Asterina fuchsiae	TH 590	GU586216	GU586210	_	_	Hofmann et al. 2010	
Asterina nhenacis	TH 589	GU586217	GU586211	_	_	Hofmann et al. 2010	
Asterina weinmanniae	TH 592	GU586218	GU586212	_	_	Hofmann et al., 2010	
Asterina zanthoxyli	TH 561	GU586219	GU586212	_	_	Hofmann et al. 2010	
Asterotexis cucurbitacearum	VIC 24814	KP143734	_	_	_	Guatimosim et al. 2015	
Asterotexis cucurbitacearum	PMAM 0141224	HO610510	_	_	_	Guatimosim et al. 2015	
Astrosphaeriella fusispora	MELLICC 10-0555	KT955462	KT955443	_	KT955425	Bookameek et al., 2015	
	MAFE 239/87	AB524502	AB524451	_	-	Tapaka at al., 2015	
Astrosphaenella stellata	CRS 115476	ADJ24392	DO677008	_	- DO767637	Phillips at al. 2009	
Cappedium salioinum	CBS 113470	DO678050	DQ077990	- KT216552	DQ101031	Schoch et al. 2006	
	1/1/2005	INR60134	INR60120	INI860087	INI960112	Spatafora et al., 2000	
Cladosporium cladosporioidos	CRS 170 54	AV212604	DO678004	311000007	311000113	Pakaman at al. 2005	
Dacampia bookori	Upfollpor 72807	KT282702	DQ070004	_	-	Firtz at al. 2015	
Dalitschia chaetomioidos	SMH 2052 0	CL 13000 82	_	_	- CL 1307750	Mugambi and Hubodorf 2000h	
Delitachia wintari	OR 005 60	000300000	-	- DO677075	000277000	Sebeeb et al. 2009	
	UDO 220.02	NC010011	DQ0/8020		DQ0//922	Schoch et al., 2006	
Dissoconium aciculare	CBS 204.89	GU214419	GU214523	KX288435	-	Crous et al., 2004	

(Continued)

TABLE 1 | Continued

Таха	Strain	GenBank accession no.				References	
		LSU	SSU	RPB2	TEF1α		
Dyfrolomyces rhizophorae	JK 5349A	GU479799	GU479766	_	GU479860	Suetrong et al., 2009	
Dyfrolomyces sinensis	MFLUCC 17-1344	MG836699	MG836700	-	-	Hyde et al., 2018	
Dyfrolomyces tiomanensis	NTOU3636	KC692156	KC692155	_	KC692157	Pang et al., 2013	
Eremomyces bilateralis	CBS 781.70	HG004545	_	_	_	Giraldo et al., 2014	
Fissuroma maculans	MFLUCC 10-0886	JN846724	JN846734	_	_	Liu et al., 2011	
Flavobathelium epiphyllum	MPN67	GU327717	JN887382	_	JN887423	Nelsen et al., 2009	
Gloniopsis praelonga	CBS 112415	FJ161173	FJ161134	FJ161113	FJ161090	Boehm et al., 2009	
Glonium stellatum	CBS 207.34	FJ161179	FJ161140	_	FJ161095	Boehm et al., 2009	
Hysterium angustatum	CBS 236 34	EJ161180	GU397359	EJ161117	EJ161096	Boehm et al. 2000	
Hysterobrevium smilacis	CBS 114601	EJ161174	EJ161135	EJ161114	EJ161091	Boehm et al. 2009	
Jahnula aquatica	B 68–1	EE175655	FE175633	_	_	Campbell et al. 2007	
Jahnula sevchellensis	SS2113	EF175665	EF175644	_	_	Campbell et al. 2007	
Lentoxyohium cacuminum	MELLICC 10-0049	JN832602	JN832587	_	_	Chompunti et al. 2011	
Lophiotrema lignicola	CBS 122364	GU301836	GU296166	_	GU349072	Schoch et al. 2009	
Manglicola quatemalensis	BCC 20156	E.1743448	E.1743442	_	-	Suetrong et al. 2010	
Manglicola guatemalensis	BCC 20079	E 1743449	E 1743443	_	_	Suetrong et al., 2010	
Mangicola gualemalensis	CRS 501 78	CU201820	CU206160	CU271760	_	Voglmayr and Jaklitech 2011	
Maggaria di onnia	M 06	00001009	HO500447	00371709	- UO500227	Vogimayr and Jakitsch, 2011	
Massaria inquinans	IVI 20	—	HQ599447	-	HQ599557	Vogimayr and Jakiitsch, 2011	
Minutianhaara aanara	C407 10	-	HQ599444	NQ399400	NQ399342	Doio ot ol. 2015	
Minutisphaera fimbriatianara	0427-1a	NF309993	KF309999	-	-		
	A242-0a	AD722440	AD700404	-	-	Raja et al., 2013	
Minutisphaera japonica	JUN 18560	AB733440	AB733434	_	_	Raja et al., 2013	
Minutisphaera paratimoriatispora	G156-4D	KP309997	KP310003	-	_	Raja et al., 2015	
	EB 0349	GU323209	GU323185	GU371757	-	Schoch et al., 2009	
Mytilinidion andinense	CBS 123562	FJ161199	FJ161159	FJ161125	FJ161107	Boenm et al., 2009	
Mytilinidion mytilinellum	CBS 303.34	FJ161184	FJ161144	FJ161119	FJ161100	Boehm et al., 2009	
Neoastrosphaeriella krabiensis	MFLUCC 11-0025	JN846729	JN846739	_	_	Liu et al., 2011	
Oedohysterium insidens	CBS 238.34	FJ161182	FJ161142	FJ161118	FJ161097	Boehm et al., 2009	
Paradictyoarthrinium diffractum	MFLUCC 13-0466	KP744498	KP753960	-	-	Liu et al., 2015	
Phyllobathelium anomalum	242	GU327722	JN887386	-	-	Nelsen et al., 2009	
Phyllosticta capitalensis	CBS 226.77	KF206289	KF766300	KY855820	-	Guarnaccia et al., 2017	
Piedraia hortae	CBS 480.64	GU214466	AY016349	KF902289	-	Crous et al., 2009	
Pseudoastrosphaeriella thailandensis	MFLUCC 11-0144	KT955478	KT955458	-	KT955440	Phookamsak et al., 2015	
Pseudorobillarda eucalypti	MFLUCC 12-0422	KF827457	KF827463	KF827496	-	Tangthirasunun et al., 2014	
Pseudorobillarda phragmitis	CBS 398.61	EU754203	EU754104	-	-	Gruyter et al., 2009	
Pseudovirgaria grisea	CPC 19134	JF957614	-	-	-	Braun et al., 2011	
Pseudovirgaria hyperparasitica	CPC 10753	EU041824	-	-	-	Arzanlou et al., 2007	
Psiloglonium araucanum	CBS 112412	FJ161172	FJ161133	FJ161112	FJ161089	Boehm et al., 2009	
Racodium rupestre	L346	EU048583	EU048575	-	-	Muggiaa et al., 2008	
Racodium rupestre	L424	EU048582	EU048577	-	-	Muggiaa et al., 2008	
Rhexothecium globosum	CBS 955.73	HG004544	-	-	-	Giraldo et al., 2014	
Saccharata proteae	CBS 115206	DQ377882	KF766311	-	-	Schoch et al., 2009	
Salsuginea ramicola	KT 2597.1	GU479800	GU479767	GU479833	GU479861	Suetrong et al., 2009	
Scorias spongiosa	CBS 325.33	KF901821	-	KT216542	-	Quaedvlieg et al., 2014	
Stictis radiata	AFTOL 398	AF356663	U20610	AY641079	-	Lutzoni et al., 2001	
Strigula jamesii	MPN548	JN887404	JN887388	-	JN887432	Nelsen et al., 2011	
Tetraplosphaeria sasicola	MAFF 239677	AB524631	AB524490	-	-	Tanaka et al., 2009	
Thaxteriella inthanonensis	MFLUCC11-0003	JN865199	-	-	-	Boonmee et al., 2011	
Triplosphaeria maxima	MAFF 239682	AB524637	AB524496	-	-	Tanaka et al., 2009	
Tubeufia chiangmaiensis	MFLUCC 11-0514	KF301538	KF301543	-	KF301557	Boonmee et al., 2014	
Tubeufia javanica	MFLUCC 12-0545	KJ880036	KJ880035	_	KJ880037	Boonmee et al., 2014	
Ulospora bilgramii	CBS 110020	DQ678076	DQ678025	DQ677974	DQ677921	Schoch et al., 2006	

The newly generated sequences are in bold.

FIGURE 1 Phylogenetic tree based on RAxML analyses of a combined LSU, SSU, TEF1 α and RPB2 dataset. Bootstrap support values for maximum likelihood \geq 70% and Bayesian posterior probabilities \geq 0.90 are indicated above the nodes as MLBS/PP. The tree is rooted with *Diploschistes ocellatus* (AFTOL 958) and *Stictis radiata* (AFTOL 398). The new isolates are in red.

to subglobose basal cell. Acrogenospora aquatica can be distinguished from A. basalicellularispora by the size of conidiophores (259–395 \times 8–12 vs. 202–250 \times 7.8–9.3 μ m). In

addition, conidia of *A. basalicellularispora* are pale orange-brown to olivaceous-brown, with several small to large guttules, while conidia of *A. aquatica* are dark brown to black and lack guttules.

Acrogenospora aquatica is phylogenetically close to A. guttulatispora. Acrogenospora aquatica similar to A. guttulatispora in having mononematous, macronematous, unbranched conidiophores, holoblastic, monoblastic conidiogenous cells and acrogenous, dark brown to black conidia. However, A. aquatica differs from A. guttulatispora in having subprolate to broadly ellipsoidal conidia with a hyaline, globose to subglobose basal cell, lacking guttules, while conidia of A. guttulatispora are spherical or subspherical, with a large guttule, lacking basal cell.

Acrogenospora basalicellularispora D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, **sp. nov.**

Index Fungorum number: IF 557596; *Facesoffungi number*: FoF 07981, **Figure 3**

Holotype—MFLU 20–0288

Etymology-Referring to the conidia which have a basal cell.

Saprobic on submerged decaying wood. Sexual morph: Undetermined. Asexual morph: Colonies effuse on natural substrate, hairy, dark brown. Mycelium mostly immersed, composed of gravish brown, septate, branched, smooth hyphae. *Conidiophores* 260–395 × 8–12 μ m ($\bar{x} = 327 \times 10 \mu$ m, n = 20) wide, mononematous, macronematous, solitary, cylindrical, erect, straight or slightly flexuous, mostly unbranched, septate, brown to dark brown, slightly paler toward apex, smooth. Conidiogenous cells holoblastic, monoblastic, integrated, initially terminal, later becoming intercalary, cylindrical, smooth, pale brown, proliferating percurrently. Conidia 27.5-33.7 × 21.7-25.8 μm ($\bar{x} = 30.6 \times 23.7 \mu m$, n = 30) wide, acropleurogenous, solitary, dry, broadly obovoid to spherical, smooth, pale orangebrown to olivaceous brown, aseptate, with several small or large guttules, with a small, hyaline, subcylindrical to subglobose basal cell, germinating from basal cell.

Material examined: CHINA, Yunnan Province, Gaoligongshan Mountain, on decaying wood submerged in a stream, August 2015, A.L. Shi, S-431 (MFLU 20–0288, **holotype**); ex-type culture, MFLUCC 16–0992.

Notes: In the phylogenetic analysis, Acrogenospora basalicellularispora clustered with A. sphaerocephala (CBS 206.36) with low support (66% ML and 0.98 BYPP). Unfortunately, CBS 206.36 lacks a morphological description and only LSU sequence data is available in GenBank. Morphologically, our new isolate can be distinguished from other Acrogenospora species by its pale orange-brown to olivaceous brown, broadly obovoid to spherical conidia with several small to large guttules and a small, hyaline, subcylindrical to subglobose basal cell. In our study, A. aquatica also has conidia with a basal cell. However, we can distinguish them by the shape (broadly obovoid to spherical vs. subprolate to broadly ellipsoidal) and color (pale orange-brown to olivaceous brown vs dark brown to black) of conidia and size $(260-395 \times 8-12 \text{ vs.})$ $200-250 \times 7.5-9.5 \,\mu$ m) of conidiophores.

Acrogenospora guttulatispora D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, sp. nov.

Index Fungorum number: IF 557597; Facesoffungi number: FoF 07982, **Figure 4**

Holotype-MFLU 20-0289

Etymology—Referring to the large guttule in the conidia.

Saprobic on submerged decaying wood. Sexual morph: Undetermined. Asexual morph: Colonies effuse on natural substrate, hairy, dark brown. Mycelium mostly immersed, composed of septate, grayish brown, branched, smooth hyphae. Conidiophores 295–330 × 7.5–8.5 μ m ($\bar{x} = 312.7 \times 8 \mu$ m, n = 15), mononematous, macronematous, solitary, erect, straight or slightly flexuous, cylindrical, indeterminate, unbranched, dark brown, paler toward apex, pale brown to hyaline at apex, septate, guttulate, smooth. Conidiogenous cells holoblastic, monoblastic, integrated, initially terminal, later becoming intercalary, cylindrical, smooth, pale brown, proliferating percurrently. Conidia 30–33.5 × 26.5–28 μ m ($\bar{x} = 34 \times 27 \mu$ m, n = 30), acropleurogenous, solitary, spherical or subspherical, truncate at base, hyaline when young, dark brown when mature, aseptate, with a large guttule, smooth.

Material examined: CHINA, Yunnan Province, Dali, Cangshan Mountain, on decaying wood submerged in Heilongxi stream, June 2013, Z.L. Luo. S-189 (MFLU 20–0289, **holotype**), ex-type culture, MFLUCC 17–1674 = ICMP 21772.

Notes: Acrogenospora guttulatispora can be distinguished from other species by the large guttule in the conidia. In the phylogenetic analyses, A. guttulatispora is close to A. aquatica. However, the conidia of A. guttulatispora are spherical or subspherical with a large guttule, without a basal cell. While, those A. aquatica are subprolate to broadly ellipsoidal with a hyaline, globose to subglobose basal cell. In addition, there are 22 base pair differences in the RPB2 region between these two species.

Acrogenospora obovoidspora D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, sp. nov.

Index Fungorum number: IF 557602; *Facesoffungi number*: FoF 04691, **Figure 5**

Holotype—MFLU 20–0295

Etymology—Referring to the broadly obovoid conidia of this fungus.

Saprobic on submerged decaying wood. Sexual morph: Undetermined. Asexual morph: Colonies effuse on natural substrate, hairy, dark brown. Mycelium partly immersed, partly superficial, composed of septate, brown to dark brown, branched, smooth hyphae. Conidiophores 209–277 × 7.5–10 μ m ($\bar{x} = 243 \times 8.8 \mu$ m, n = 15), mononematous, macronematous, solitary, erect, straight or slightly flexuous, cylindrical, unbranched, brown to dark brown, paler toward apex, septate, smooth. Conidiogenous cells holoblastic, monoblastic, integrated, initially terminal, later becoming intercalary, cylindrical, smooth, pale brown, proliferating percurrently. Conidia 32.5–37.5 × 27– 32 μ m ($\bar{x} = 35 \times 29.6 \mu$ m, n = 30) wide, acrogenous, solitary, oval to broadly ellipsoidal, base truncate, aseptate, olivaceous brown to black, thick-walled, smooth.

Material examined: CHINA, Yunnan Province, Dali, Huadianba Mountain, saprobic on decaying wood submerged in a stream, 9 December 2017, Z.L. Luo, S-1614 (MFLU 20–0295, **holotype**); ex-type culture, MFLUCC 18–1622.

Notes: Acrogenospora obovoidispora is similar to A. gigantospora in having mononematous, macronematous, conidiophores and solitary, aseptate conidia. However, Acrogenospora obovoidspora differs from A. gigantospora in having solitary conidiophores and oval to broadly ellipsoidal,

(**c**) Conid 20 μm.

FIGURE 4 | Acrogenospora guttulatispora (MFLU 20–0289, holotype) (a–c) Colonies on wood. (d–f) Conidiogenous cells and conidia. (g–i) Conidiophores. (j–n) conidia. (o) Germinating conidium. Scale bars: (a–c) 200 μm, (d–f) 30 μm, (g) 100 μm, (h,i) 50 μm, (j–o) 10 μm.

olivaceous brown to black conidia, while conidiophores of *A. gigantospora* are single or in groups of 2–4, and conidia are broadly obovoid to subspherical, dark brown to black (Ma et al., 2012).

Acrogenospora olivaceospora D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, sp. nov.

Index Fungorum number: IF 557598; *Facesoffungi number*: FoF 07983, **Figure 6**

Holotype—MFLU 20-0290

Etymology—Referring to the conidia which are olive-green.

Saprobic on submerged decaying wood. Sexual morph: Undetermined. Asexual morph: Colonies effuse on natural substrate, hairy, dark brown. Mycelium mostly immersed, composed of grayish brown, septate, branched, smooth hyphae. Conidiophores 100–175 × 6–9 μ m ($\bar{x} = 137 \times 7.4 \mu$ m, n = 20), mononematous, macronematous, solitary, erect, straight or slightly flexuous, cylindrical, indeterminate, unbranched, dark brown to olive, paler toward apex, septate, smooth.

Conidiogenous cells holoblastic, monoblastic, integrated, initially terminal, later becoming intercalary, cylindrical, smooth, pale brown, proliferating percurrently. *Conidia* 32–37 × 28–33 μ m ($\bar{x} = 34.5 \times 30.5 \ \mu$ m n = 30), acropleurogenous, solitary, subprolate to broadly ellipsoidal, base truncate, olive to black, aseptate, thick-walled, lacking guttules, smooth.

Material examined: CHINA, Yunnan Province, Dali, Cangshan Mountain, on decaying wood submerged in a stream, March 2016, H.W. Shen, S-715 (MFLU 20–0290, **holotype**), ex-type culture, MFLUCC 20–0096.

Notes: In the phylogenetic analyses, *Acrogenospora olivaceospora* clustered with *A. sphaerocephala* (MFLU 18-1130 and MFLUCC 16-0179). However, *A. olivaceospora* differs from *A. sphaerocephala* by the shape, color and size of conidia (**Table 2**). *Acrogenospora olivaceospora* has olive to black, subprolate to broadly ellipsoidal conidia, lacking guttules, while conidia of *A. sphaerocephala* are olive-green to brown, spherical or subspherical and guttulate.

Acrogenospora olivaceospora is most similar to A. subprolata in having subprolate to broadly ellipsoidal, olive to black, aseptate, thick-walled conidia. However, A. olivaceospora has solitary conidiophores whereas those of A. subprolata are sometimes in small groups. In addition, the conidiophores of A. olivaceospora are shorter ($102-172 \times 5.8-9$ vs. $150-300 \times 9-12 \mu$ m) and the conidia are smaller ($32-36.9 \times 28-32.8$ vs. $39-46 \times 30-39 \mu$ m).

Acrogenospora submersa D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, sp. nov.

Index Fungorum number: IF 557601; *Facesoffungi number*: FoF 07986, **Figure 7**

Holotype—MFLU 20-0294,

Etymology—Referring to the submerged habitat of this fungus.

Saprobic on submerged decaying wood. Sexual morph: Undetermined. Asexual morph: Colonies effuse on natural substrate, hairy, dark brown. Mycelium partly immersed, partly superficial, composed of septate, brown

TABLE 2 | Morphological comparison of Acrogenospora species.

Таха	Conidiophores		Conidia				Sequence References	
	Color	Size (µm)	Color	Shape	Size (µm)	data		
Acrogenospora altissima A. aquatica	Blackish brown to black Brown to dark brown, paler toward apex	Up to 800 × 12–20 202–250 × 7.5–9.5	Dark to blackish brown Dark brown to black	Broadly ellipsoidal Subprolate to broadly Ellipsoidal, with a basal cell and guttules	40–60 × 30–36 29–34.5 × 24.5–31	Absent Present	Goh et al., 1998 This study	
A. basalicellularispora	Brown to dark brown, paler toward apex	259–395 × 8–12	Pale orange-brown to olivaceous brown	Broadly obovoid to spherical, with basal cell	27.5–33.5 × 21.5–25.5	Present	This study	
A. carmichaeliana	Brown to dark brown	Up to 400 × 9–12	Brown to dark brown	Broadly ellipsoidal to obovoid	19–32 × 16–23.5	Present	Goh et al., 1998	
A. ellipsoidea	Pale orange brown to mid brown	87.5–162.5 × 6.5–7.5	Dark brown	Ellipsoidal, atrobrunnea,	32–41 × 17–24	Absent	Hu et al., 2010	
A. gigantospora	Dark blackish brown	Up to 700 × 9–14.5	Dark brown to black (opaque)	Broadly obovoid to spherical	25–55 × 21–50	Absent	Hughes, 1978	
A. guttulatispora	Dark brown, paler toward apex	294–331 × 7.5–8.6	Hyaline when young, dark brown at mature,	Spherical or subspherical, with a large guttule	30–33.5 × 26.5–28	Present	This study	
A. hainanensis	Brown to dark brown, paler toward the apex	60–80 × 2–3.5	Brown	Spherical or subspherical	7.5–9.5 × 7–8.5	Absent	Ma et al., 2012	
A. megalospora	Black (opaque), Yellow brown at apex	Up to 400 × 9–12	Mid to dark brown	Obovoid	19–32 × 13–23	Absent	Goh et al., 1998	
A. novae-zelandiae	Black (opaque), paler at apex	Up to 720 × 10–16	Mid to dark brown	Broadly ellipsoidal to oblong	26–54 × 21.5–30.5	Absent	Hughes, 1978	
A. obovoidspora	Brown to dark brown, paler toward apex	209–277 × 7.5–10	Olivaceous brown to black	Oval to broadly obovoid	32.4–37.6 × 27–32	Present	This study	
A. olivaceospora	Dark brown to olive, paler toward apex	102–172 × 5.8–9	Olive to black	Subprolate to broadly ellipsoidal	32–36.9 × 28–32.8	Present	This study	
A. ovalia	Pale to mid brown	Up to 240 × 4–4.5	Mid orange-brown	Oval to oblong or broadly obovoid	24–33 × 18–22	Absent	Goh et al., 1998	
A. setiformis	Dark blackish brown	Up to 350 × 4–7	Dark reddish brown	Broadly ellipsoidal	14.5–24 × 10.5–19	Absent	Ellis, 1972	
A. sphaerocephala	Mid to dark brown, pale brown at apex	100-730 × 7.2-10.5	Pale to mid brown	Subspherical	17–30 × 15.5–30	Present	Hughes, 1978	
A. submersa	Brown to dark brown, paler toward apex	163–223 × 6.7–10	Hyaline when young, pale orange-brown to olivaceous brown at mature	Spherical or subspherical	28–32.5 × 25–28	Present	This study	
A. subprolata	Pale to mid brown	150–300 × 9–12	Pale orange-brown to olivaceous brown	Broadly ellipsoidal to subprolate	39–46 × 30–39	Present	Goh et al., 1998	
A. thailandica	Pale to dark brown, paler toward the apex	850-950 × 3.5-8	Olive-green to dark brown	Spherical or subspherical	15.5–24.5	Present	Hyde et al., 2019	
A. verrucispora	Brown to dark brown, paler toward apex	100–230 × 5–6	Mid to dark brown	Spherical or subspherical	19–21.5 diam	Present	This study	
A. yunnanensis	Brown to dark brown, paler toward apex	260–391 × 8.6–12	Hyaline when young, dark brown to black at mature	Spherical or subspherical	23–32.5 × 22–30	Present	This study	

FIGURE 7 | Acrogenospora submersa (MFLU 20–0294, holotype) (a) Colonies on wood. (b–g) Conidiophores with conidia. (h,i) Conidiogenous cells with conidia. (j,k) conidia. (i) Germinating conidium. (m,n) Culture on MEA (upper and lower view). Scale bars: (a) 200 µm, (b–g) 50 µm, (h–l) 20 µm.

conidia. Scale bars: (a,b) 200 μm, (c-e) 100 μm, (f,g) 30 μm, (h-l) 20 μm.

to dark brown, branched, smooth hyphae. Conidiophores 163–223 × 6.5–10 μ m ($\bar{x} = 193 \times 8.4 \mu$ m, n = 15), mononematous, macronematous, solitary, erect, straight or slightly flexuous, cylindrical, unbranched, brown to dark brown, paler toward apex, septate, smooth. Conidiogenous cells holoblastic, monoblastic, integrated, initially terminal, later becoming intercalary, cylindrical, smooth, pale brown,

proliferating percurrently. *Conidia* 28–32.5 × 25–28 μ m ($\bar{x} = 30.3 \times 26.5 \mu$ m, n = 30), acropleurogenous, solitary, spherical or subspherical, base truncate, aseptate, hyaline when young, pale orange-brown to olivaceous brown when mature, smooth.

Material examined: CHINA, Yunnan Province, saprobic on decaying wood submerged in Lancang River, 9 December 2017,

FIGURE 9 | Acrogenospora verrucispora (MFLU 20–0287) (a,b) Colonies on wood. (c-h) Conidiophores with conidia. (n-p) Conidiogenous cells with conidia. (i-m) conidia. Scale bars: (a-f) 50 μm, (g,h,n-p) 20 μm, (i-m) 10 μm.

Z.L. Luo, S-1601 (MFLU 20–0294, **holotype**), ex-type culture, MFLUCC 18–1324.

Notes: Acrogenospora submersa is similar to A. hainanensis in having mononematous, macronematous, solitary, proliferating percurrently conidiophores, monoblastic, integrated, terminal conidiogenous cells and spherical or subspherical, aseptate conidia. However, A. submersa differs from A. hainanensis by having longer conidiophores (163–223 × 6.7–10 μ m vs. 60– 80 × 2–3.5 μ m), and much larger conidia (28–32.5 × 25–28 μ m vs. 7.5–9.5 × 7–8.5 μ m), which are hyaline to pale orangebrown or olivaceous brown rather than brown. Phylogenetically, *A. submersa* is related to *A. guttulatispora* but in a distinct lineage. Therefore, we introduce it as a new species.

Acrogenospora subprolata Goh, K.D. Hyde & C.K.M. Tsui, Mycol. Res. 102(11): 1314 (1998) Figure 8

Saprobic on submerged decaying wood. Sexual morph: Undetermined. Asexual morph: Colonies effuse on natural substrate, hairy, dark brown. Mycelium partly immersed, partly superficial, composed of septate, brown to dark brown, branched, smooth hyphae. Conidiophores 212.5–348 × 8–10.5 μ m ($\bar{x} = 280.5 \times 9.4 \mu$ m, n = 15) wide, mononematous, macronematous, solitary, or in a small group, erect, straight

FIGURE 10 | Acrogenospora yunnanensis (MFLU 20–0292, holotype) (a) Colony on wood. (b–d) Conidiophores, conidiogenous cells and conidia. (e–g) Conidiogenous cells and conidia. (h–k) Conidia. Scale bars: (a) 200 μm, (b–d) 50 μm, (e–g) 30 μm, (h–j) 15 μm.

or slightly flexuous, cylindrical, unbranched, brown to dark brown, paler toward apex, septate, smooth. *Conidiogenous cells* holoblastic, monoblastic, integrated, initially terminal, later becoming intercalary, cylindrical, smooth, pale brown, proliferating percurrently. *Conidia* 40–51 × 32–40 μ m ($\bar{x} = 45 \times 31.5\mu$ m, n = 30) wide, acrogenous, solitary, subprolate to broadly ellipsoidal, base truncate, aseptate, hyaline when young, olivaceous brown to black when mature, thick-walled, smooth.

Material examined: CHINA, Tibet Province, saprobic on decaying wood submerged in a stream, 2 May 2017, Z.L. Luo. S-1455 (MFLU 20–0293), living culture, MFLUCC 18–1314.

Notes: Acrogenospora subprolata is characterized by conidiophores that are macronematous, mononematous, solitary or in groups of 2–4 with multiple percurrent proliferations and by acrogenous, subprolate to broadly ellipsoidal, pale orangebrown to olivaceous brown, aseptate, thick-walled conidia. Our isolate fits well with the characters of *A. subprolata* as described by Goh et al. (1998). Therefore, we identify this collection as *A. subprolata*.

Acrogenospora verrucispora Hong Zhu, L. Cai & K.Q. Zhang [as 'verrucospora'], Mycotaxon 92: 384 (2005) Figure 9

Saprobic on submerged decaying wood. Sexual morph: Undetermined. Asexual morph: Colonies effuse on natural substrate, hairy, dark brown. Mycelium partly immersed, partly superficial, composed of septate, brown to dark brown, branched, smooth hyphae. Conidiophores 103-149 \times 5.6-7.4 μm ($\bar{x} = 125.8 \times 6.5 \mu m$, n = 15) wide, mononematous, macronematous, solitary or sometimes in a small group, erect, straight or slightly flexuous, cylindrical, unbranched, brown to dark brown, paler toward apex, septate, smooth. Conidiogenous cells holoblastic, monoblastic, integrated, initially terminal, later becoming intercalary, cylindrical, smooth, pale brown, proliferating percurrently. Conidia 21.3-26.5 × 20.6-25.5 μ m ($\bar{x} = 24 \times 23 \mu$ m, n = 30) wide, acrogenous, solitary, spherical or subspherical, base truncate, aseptate, hyaline when young, orange-brown to olivaceous brown when mature, distinctly verrucose.

Material examined: CHINA, Yunnan Province, Gaoligongshan Mountain, saprobic on decaying wood submerged in a stream, May 2017, H.W. Shen. S-1402 (MFLU 20–0287), living culture, MFLUCC 20–0098. S-1328 (DLU 1328), living culture, MFLUCC 18–1617.

Notes: Acrogenospora verrucispora was introduced by Zhu et al. (2005) with distinct verrucose conidia, it was collected from bamboo in a stream in Yunnan province, China. A. verrucispora is characterized by mononematous, macronematous, proliferating percurrently conidiophores, monoblastic, integrated conidiogenous cells and acrogenous, solitary, spherical or subspherical, verrucose conidia. Our isolate fits well with the original description of A. verrucispora. As the sequence data of A. verrucispora is not available in GenBank, we identify our isolate as A. verrucispora based on the morphological characters and provide sequence data for this species.

Acrogenospora yunnanensis D.F. Bao, Z.L. Luo, K.D. Hyde & H.Y. Su, **sp. nov.**

Index Fungorum number: IF 557600; Facesoffungi number: FoF 07985, Figure 10

Holotype—MFLU 20–0292

Etymology—Referring to Yunnan province, China, where the fungus was collected.

Saprobic on submerged decaying wood. Sexual morph: Undetermined. Asexual morph: Colonies effuse on natural substrate, hairy, dark brown. Mycelium partly immersed, partly superficial, composed of septate, brown to dark brown, branched, smooth hyphae. Conidiophores 260–390 × 8.5–12 µm ($\bar{x} = 326 \times 10.3 \mu$ m, n = 15), mononematous, macronematous, solitary, erect, straight or slightly flexuous, cylindrical, unbranched, brown to dark brown, paler toward apex, septate, smooth. Conidiogenous cells holoblastic, monoblastic, integrated, initially terminal, later becoming intercalary, cylindrical, smooth, pale brown, proliferating percurrently. Conidia 23–32.5 × 22–30 μ m ($\bar{x} = 28 \times 26 \mu$ m, n = 30), acropleurogenous, solitary, spherical or subspherical, truncate at base, aseptate, hyaline when young, dark brown to black when mature, smooth.

Material examined: CHINA, Yunnan Province, Laojunshan Mountain, on decaying wood submerged in a stream, August 2015, A.L. Shi, S-1114 (MFLU 20–0292, **holotype**); ex-type culture, MFLUCC 18–1611. CHINA, Gaoligingshan mountain, saprobic on decaying wood submerged in a stream, August 2015, A.L. Shi. S-774 (DLU 774, **isotype**), living culture, MFLUCC 20– 0099.

Notes: In the phylogenetic analysis, *Acrogenospora yunnanensis* shares a sister relationship to *A. submersa*. Morphologically, *A. yunnanensis* can be distinguished from *A. submersa* by the longer conidiophores (**Table 2**) and color of conidia. *Acrogenospora yunnanensis* has dark brown to black conidia with a large guttule, while conidia of *A. submersa* are pale orange-brown to olivaceous brown at maturity and lack a guttule.

Morphologically, *A. yunnanensis* is most similar to *A. gigantospora* and *A. subprolata* in having similar conidial shape. However, they differ in size of conidiophores and conidia (**Table 2**).

DISCUSSION

In this study, we provide new descriptions and illustrations for seven new species and two known species of Acrogenospora. This study contributes to a better taxonomic understanding and proposes that there could be a number of additional new species within the genus and its diversity could be much higher than anticipated. Acrogenospora species are cosmopolitan with worldwide distribution, they are mainly found on dead and submerged wood especially in freshwater habitats (Hughes, 1978; Goh et al., 1998; Ma et al., 2012; Hyde et al., 2019). Among the 20 Acrogenospora spp., 15 species were reported from freshwater habitats and only 5 of them were recovered from terrestrial habitats. Our study has shown that in a small area of Yunnan Province there are 14 species of Acrogenospora in streams alone and indicates that the genus is highly diverse, and has been found to occur with other genera in the region (Hyde et al., 2019). Previous studies have also reported that there could be an amazing fungal diversity hidden in the South East Asian region (Hyde et al., 2018).

Acrogenospora species are quite similar to each other, and previous studies suggested to distinguish them based on conidial shape, size, and color and the degree of pigmentation of the conidiophores (Hughes, 1978, **Table 2**). We found that guttules and basal cells of conidia are also important characters to distinguish species and a morphological comparison of all *Acrogenospora* species is provided (**Table 2**).

Previous publications on submerged wood in freshwater have lumped several *Acrogenospora* collections and identified them based on morphology as *A. sphaerocephala* (**Table 3**) perhaps because of the difficulty of using morphs alone to delineate species and due to a lack of DNA sequence data. It is likely that the collections of *A. sphaerocephala* in older publications (**Table 3**) are wrongly named and further taxonomic work is necessary.

Before this study, there were 13 species of *Acrogenospora* but only three of them had sequence data available in GenBank, and there was no data for the ex-type strains. Our phylogenetic sampling included 12 strains of *Acrogenospora* (Acrogenosporaceae), and all strains grouped with four species of *Minutisphaera* (Minutisphaeraceae) within Minutisphaerales (99% ML and 0.99 PP, **Figure 1**). The results were similar to the analyses by Jayasiri et al. (2018). In our analyses, *Acrogenospora carmichaeliana* (CBS 206.36) did not cluster with other strains of *A. carmichaeliana*, instead clustered with our new isolate *A. basalicellularispora* with low statistical support. Unfortunately, there are no morphological descriptions for CBS 206.36, so we are unable to compare its morphology with our new isolate. Further collections and

phylogenetic studies of *Acrogenospora* are needed to better understand the phylogenetic placement of those species which lack sequence data and, undoubtedly, many more novel species can be found.

The phylogenetic analysis provide clear resolution to the taxonomic complexities within this group. Protein-coding genes have been shown to be essential to identify a taxon up to species level (Tang et al., 2007, 2009; Jeewon et al., 2017). In our study, we sequenced the RPB2 and TEF1 α sequence data to distinguish Acrogenospora species and the phylogenetic trees are provided in Supplementary Files 1, 2. In our phylogenetic tree (LSU + SSU + TEF1 α + RPB2, Figure 1), Acrogenospora aquatica, A. guttulatispora, A. submersa and A. yunnanensis grouped together, but they constitute different clades based on phylogenies derived from the TEF and RPB2 data which clearly support that they are phylogenetically distinct species. Acrogenospora verrucispora clustered with A. carmichaeliana (Figure 1), but there are 9 bp differences in TEF1 α gene region. In addition, they can be easily distinguished from each other by the shape, color and wall of conidia, (conidia of A. verrucispora are spherical or subspherical, orange-brown to olivaceous brown, distinctly verrucose-walled, while A. carmichaeliana has broadly ellipsoidal to obovoid, brown to dark brown, smooth-walled conidia). Acrogenospora olivaceospora is close to A. sphaerocephala, however, there are 12.3% nucleotide differences in RPB2 gene region between them. These results support our establishment of the new taxon as recommended by Jeewon and Hyde (2016). As for

TABLE 3 Collections of Acrogenospora from freshwater habitats.							
Acrogenospora collections	Location	Habitat	Host	References			
A. altissima	New Zealand	Lake	Rotten wood of Weinmannia racemosa	Goh et al., 1998			
A. aquatica	China (Yunnan)	Stream	Submerged wood	This study			
A. basalicellularispora	China (Yunnan)	Stream	Submerged wood	This study			
A. ellipsoidea	China (Yunnan)	Stream	Submerged wood	Hu et al., 2010			
A. guttulatispora	China (Yunnan)	Stream	Submerged wood	This study			
A. gigantospora	New Zealand	Lake	Rotten wood of Weinmannia racemosa	Hughes, 1978			
A. obovoidspora	China (Yunnan)	Stream	Submerged wood	This study			
A. olivaceospora	China (Yunnan)	Stream	Submerged wood	This study			
A. ovalia	China (Hongkong)	Reservoir	Submerged wood	Goh et al., 1998			
A. sphaerocephala	China (Hongkong)	Stream	Submerged wood	Tsui et al., 2000			
A. sphaerocephala	Philippines	Stream	Submerged wood and bamboo	Cai et al., 2003			
A. sphaerocephala	China (Hongkong)	Stream	Submerged wood and Pinus baits	Ho et al., 2001			
A. sphaerocephala	Durban, South Africa	River	Submerged Phragmites	Hyde et al., 1998			
A. sphaerocephala	Seychelles	River	Submerged wood	Goh et al., 1998			
A. sphaerocephala	China (Hongkong)	Reservoir	Submerged wood	Goh and Hyde, 1999			
A. sphaerocephala	Australia	River	Submerged wood	Goh et al., 1998			
A. sphaerocephala	UK	River	Submerged wood	Goh et al., 1998			
A. submersa	China (Yunnan)	River	Submerged wood	This study			
A. subprolata	China (Tibet)	Stream	Submerged wood	This study			
A. subprolata	China (Hongkong)	River	Submerged wood	Goh et al., 1998			
A. thailandica	Thailand	Stream	Submerged wood	Hyde et al., 2019			
A. verrucispora	China (Yunnan)	Stream	Submerged bamboo culms	Zhu et al., 2005			
A. verrucispora	China (Yunnan)	Stream	Submerged wood	This study			
A. yunnanensis	China (Yunnan)	Stream	Submerged wood	This study			

A. basalicellularispora and *A. subprolata* there are no DNA sequences available from protein-coding gene but they can be easily distinguished from other species based on morphological characters (**Table 2**).

Hyde et al. (2019) discussed whether Acrogenospora sphaerocephala was the asexual morph of Farlowiella carmichaeliana and whether A. megalospora was wrongly introduced as the asexual morph of F. carmichaeliana. In our phylogenetic analyses, Acrogenospora sphaerocephala did not cluster with A. carmichaeliana, forming different clades within Acrogenosporaceae. DNA sequences of Ex-type strains of both A. megalospora and Farlowiella carmichaeliana are unavailable in GenBank. Therefore, the connection of sexual and asexual morph of Farlowiella carmichaeliana is not clear and this needs further morpho-molecular evidence.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/**Supplementary** Material.

AUTHOR CONTRIBUTIONS

D-FB conducted the experiments, analyzed the data, and wrote the manuscript. EM, DB, and KH revised the manuscript. Z-LL planned the experiments and analyzed the data. H-YS planned the experiments and funded the experiments. H-WS conducted the experiments. All authors revised the manuscript.

REFERENCES

- Arzanlou, M., Groenewald, J. Z., Gams, W., Braun, U., Shin, H. D., and Crous, P. W. (2007). Phylogenetic and morphotaxonomic revision of *Ramichloridium* and allied genera. *Stud. Mycol.* 58, 57–93. doi: 10.3114/sim.2007.58.03
- Bao, D. F., Hyde, K. D., Luo, Z. L., Su, H. Y., and Nalumpang, S. (2019). *Minutisphaera* aquaticum sp. nov. increases the known diversity of Minutisphaeraceae. *Asian J. Mycol.* 2, 306–314. doi: 10.5943/ajom/2/1/21
- Barbosa, F. R., Gusmao, L. F. P., Raja, H. A., and Shearer, C. A. (2013). New species and new records of freshwater ascomycetes from Brazil and Costa Rica. *Mycologia* 105, 335–343. doi: 10.3852/12-054
- Boehm, E. W. A., Schoch, C. L., and Spatafora, J. W. (2009). On the evolution of the Hysteriaceae and Mytilinidiaceae (Pleosporomycetidae, Dothideomycetes, Ascomycota) using four nuclear genes. *Mycol. Res.* 113, 461–479. doi: 10.1016/ j.mycres.2008.12.001
- Boonmee, S., Rossman, A. Y., Liu, J. K., Li, W. J., Dai, D. Q., Bhat, D. J., et al. (2014). Tubeufiales, ord. nov., integrating sexual and asexual generic names. *Fungal Divers*. 68, 239–298. doi: 10.1007/s13225-014-0304-7
- Boonmee, S., Zhang, Y., Chomnunti, P., Chukeatirote, E., Tsui, C. K. M., Bahkali, A. H., et al. (2011). Revision of lignicolous Tubeufiaceae based on morphological reexamination and phylogenetic analysis. *Fungal Divers.* 51, 63–102. doi: 10.1007/s13225-011-0147-4
- Braun, U., Crous, P. W., Groenewald, J. Z., Verkley, G. M., Groenewald, J. Z., and Crous, P. W. (2011). *Pseudovirgaria*, a fungicolous hyphomycete genus. *IMA Fungus* 2, 65–69. doi: 10.5598/imafungus.2011.02.01.09
- Cai, L., Jeewon, R., and Hyde, K. D. (2006). Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. *Mycol. Res.* 110, 137–150. doi: 10.1016/j.mycres.2005.09.014

FUNDING

This work was mainly supported by the National Natural Science Foundation of China (Project IDs: 31860006 and 31660008) and Fungal Diversity Conservation and Utilization Innovation Team (ZKLX2019213). KH thanks the Thailand Research Fund for the grant entitled "Impact of climate change on fungal diversity and biogeography in the Greater Mekong Sub-region (RDG6130001)."

ACKNOWLEDGMENTS

D-FB would like to thank Shaun Pennycook from Landcare Research, Auckland, New Zealand, for advising on the taxon names. Wen-Li Li and Yan-Mei Zhang are acknowledged for their help on DNA extraction and PCR amplification.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2020.01606/full#supplementary-material

FILE S1 | Phylogenetic tree based on RAxML analysis of TEF1 α sequence data. Bootstrap support values for maximum likelihood and maximum parsimony (MP, red) higher than 75% are indicated above the nodes as MLBS/MPBS. The tree is rooted with *Hysterographium fraxini* (MFLU 15-3035 and MFLU 15-3681).

FILE S2 | Phylogenetic tree based on RAxML analysis of RPB2 sequence data. Bootstrap support values for maximum likelihood and maximum parsimony (MP, red) higher than 75% are indicated above the nodes as MLBS/MPBS. The tree is rooted with *Aliquandostipite khaoyaiensis* (AFTOL-ID 1364).

- Cai, L., Tsui, C. K. M., Zhang, K. Q., and Hyde, K. D. (2002). Aquatic fungi from Lake Fuxian. Yunnan, China. *Fungal Divers.* 9, 57–70.
- Cai, L., Zhang, K. Q., McKenzie, E. H. C., and Hyde, K. D. (2003). Biodiversity of fungi on submerged wood in a stream and its estuary in the Tai Ho Bay, Hong Kong. *Fungal Divers.* 13, 205–220.
- Campbell, J., Ferrer, A., Raja, H. A., Sivichai, S., and Shearer, C. A. (2007). Phylogenetic relationships among taxa in the Jahnulales inferred from 18S and 28S nuclear ribosomal DNA sequences. *Can. J. Bot.* 85, 873–882. doi: 10.1139/ B07-080
- Chomnunti, P., Hongsanan, S., Aguirre-Hudson, B., Tian, Q., Peršoh, D., Dhami, M. K., et al. (2014). The sooty moulds. *Fungal Divers*. 66, 1–36. doi: 10.1007/ s13225-014-0278-5
- Chomnunti, P., Schoch, C. L., Aguirre-Hudson, B., Ko-Ko, T. W., Hongsanan, S., Jones, E. B. G., et al. (2011). Capnodiaceae. *Fungal Divers*. 51, 103–134. doi: 10.1007/s13225-011-0145-6
- Crous, P. W., Schoch, C. L., Hyde, K. D., Wood, R., Gueidan, C., de Hoog, G. S., et al. (2009). Phylogenetic lineages in the Capnodiales. *Stud. Mycol.* 64, 17–47. doi: 10.3114/sim.2009.64.02
- Ellis, M. B. (1971). *Dematiaceous Hyphomycetes*. Kew: Commonwealth Mycological Institute.
- Ellis, M. B. (1972). Dematiaceous hyphomycetes. XI. Mycol. Pap. 131, 1–25.
- Ertz, D., Diederich, P., Lawrey, J. D., Berger, F., Freebury, C. E., Coppins, B., et al. (2015). Phylogenetic insights resolve *Dacampiaceae (Pleosporales)* as polyphyletic: *Didymocyrtis (Pleosporales, Phaeosphaeriaceae)* with *Phoma*like anamorphs resurrected and segregated from *Polycoccum (Trypetheliales, Polycoccaceae* fam. nov.). *Fungal Divers.* 74, 53–89. doi: 10.1007/s13225-015-0345-6

- Ferrer, A., Miller, A. N., and Shearer, C. A. (2011). *Minutisphaera* and *Natipusilla*: two new genera of freshwater Dothideomycetes. *Mycologia* 103, 411–423. doi: 10.3852/10-177
- Giraldo, A., Gené, J., Sutton, D. A., Madrid, H., Cano, J., Crous, P. W., et al. (2014). Phylogenetic circumscription of *Arthrographis* (Eremomycetaceae, Dothideomycetes). *Persoonia* 32, 102–114. doi: 10.3767/003158514X680207
- Goh, T. K., and Hyde, K. D. (1996). Biodiversity of freshwater fungi. J. Ind. Microbiol. 17, 328–334. doi: 10.1007/BF01574764
- Goh, T. K., and Hyde, K. D. (1999). Fungi on submerged wood and bamboo in the Plover Cove Reservoir, Hong Kong. *Fungal Divers*. 3, 57–85.
- Goh, T. K., Hyde, K. D., and Tsui, K. M. (1998). The hyphomycete genus Acrogenospora, with two new species and two new combinations. Mycol. Res. 102, 1309–1315. doi: 10.1017/S0953756298006790
- Gruyter, J. D., Aveskamp, M. M., Woudenberg, J. H. C., Verkley, G. J. M., Groenewald, J. Z., and Crous, P. W. (2009). Molecular phylogeny of *Phoma* and allied anamorph genera: towards a reclassification of the *Phoma* complex. *Mycol. Res.* 113, 508–519. doi: 10.1016/j.mycres.2009.01.002
- Guarnaccia, V., Groenewald, J. Z., Li, H., Glienke, C., Carstens, E., Hattingh, V., et al. (2017). First report of *Phyllosticta citricarpa* and description of two new species, *P. paracapitalensis* and *P. paracitricarpa*, from citrus in Europe. *Stud. Mycol.* 87, 161–185. doi: 10.1016/j.simyco.2017.05.003
- Guatimosim, E., Firmino, A. L., Bezerra, J. L., Pereira, O. L., Barreto, R. W., and Crous, P. W. (2015). Towards a phylogenetic reappraisal of *Parmulariaceae* and *Asterinaceae* (Dothideomycetes). *Persoonia* 35, 230–241. doi: 10.3767/ 003158515X688046
- Guo, J. S., Zhang, Z., Qiao, M., and Yu, Z. F. (2019). *Phalangispora sinensis* sp. nov. from Yunnan, China and two new members of Wiesneriomycetaceae. Int. J. Syst. Evol. Microbiol. 69, 3217–3223. doi: 10.1099/ijsem.0.003612
- Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp. Ser.* 41, 95–98.
- Hirayama, K., Tanaka, K., Raja, H. A., Miller, A. N., and Shearer, C. A. (2010). A molecular phylogenetic assessment of *Massarina ingoldiana sensu lato*. *Mycologia* 102, 729–746. doi: 10.3852/09-230
- Ho, W. H., Hyde, K. D., Hodgkiss, I. J., and Yanna. (2001). Fungal communities on submerged wood from streams in Brunei, Hong Kong, and Malaysia. *Mycol. Res.* 105, 1492–1501. doi: 10.1017/S095375620100507X
- Hofmann, T. A., Kirschner, R., and Piepenbring, M. (2010). Phylogenetic relationships and new records of Asterinaceae (Dothideomycetes) from Panama. *Fungal Divers.* 43, 39–53. doi: 10.1007/s13225-010-0042-4
- Hu, D. M., Cai, L., Chen, H., Bahkali, A. H., and Hyde, K. D. (2010). Four new freshwater fungi associated with submerged wood from Southwest Asia. *Sydowia* 62, 191–203.
- Huang, S. K., Jeewon, R., Hyde, K. D., Bhat, J. D., Chomnunti, P., and Wen, T. C. (2018a). Beta-tubulin and Actin gene phylogeny supports *Phaeoacremonium ovale* as a new species from freshwater habitats in China. *MycoKeys* 41, 1–15. doi: 10.3897/mycokeys.41.27536
- Huang, S. K., Jeewon, R., Hyde, K. D., Bhat, J. D., and Wen, T. C. (2018b). Novel taxa within Nectriaceae: *Cosmosporella* gen. nov. and *Aquanectria* sp. nov. from freshwater habitats in China. *Crytogamie Mycol.* 39, 169–192. doi: 10.7872/crym/v39.iss2.2018.169
- Hughes, S. J. (1978). New Zealand Fungi 25, *Miscellaneous* species. *N. Z. J. Bot.* 16, 311–370. doi: 10.1080/0028825X.1978.10425143
- Hyde, K. D., Fryar, S., Tian, Q., Bahkali, A. H., and Xu, J. C. (2016). Lignicolous freshwater fungi along a north–south latitudinal gradient in the Asian/Australian region; can we predict the impact of global warming on biodiversity and function? *Fungal Ecol.* 19, 190–200. doi: 10.1016/j.funeco.2015. 07.002
- Hyde, K. D., Goh, T. K., and Steinke, T. O. (1998). Fungi on submerged wood in the Palmiet River, Durban, South Africa. S. Afr. J. Bot. 64, 151–162. doi: 10.1016/S0254-6299(15)30860-7
- Hyde, K. D., Norphanphoun, C., Chen, J., Dissanayake, A. J., Doilom, M., Hongsanan, S., et al. (2018). Thailand's amazing diversity: up to 96% of fungi in northern Thailand may be novel. *Fungal Divers*. 93, 215–239. doi: 10.1007/ s13225-018-0415-7
- Hyde, K. D., Tennakoon, D. S., Jeewon, R., Bhat, D. J., Maharachchikumbura, S. S. N., and Rossi, W. (2019). Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. *Fungal Divers*. 96, 1–242. doi: 10.1007/s13225-019-00429-2

- Jayasiri, S. C., Hyde, K. D., Ariyawansa, H. A., Bhat, D. J., Buyck, B., Cai, L., et al. (2015). The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. *Fungal Divers*. 74, 3–18. doi: 10.1007/s13225-015-0351-8
- Jayasiri, S. C., Hyde, K. D., Jones, E. B. G., and Persoh, D. (2018). Taxonomic novelties of hysteriform Dothideomycetes. *Mycosphere* 9, 803–837. doi: 10. 5943/mycosphere/9/4/8
- Jeewon, R., and Hyde, K. D. (2016). Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. *Mycosphere* 7, 1669–1677. doi: 10.5943/mycosphere/7/11/4
- Jeewon, R., Liew, E. C. Y., and Hyde, K. D. (2002). Phylogenetic relationships of *Pestalotiopsis* and allied genera inferred from ribosomal DNA sequences and morphological characters. *Mol. Phylogenet. Evol.* 25, 378–392. doi: 10.1016/ S1055-7903(02)00422-0
- Jeewon, R., Liew, E. C. Y., Simpson, J. A., Hodgkiss, I. J., and Hyde, K. D. (2003). Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species. *Mol. Phylogenet. Evol.* 27, 372–383. doi: 10.1016/ s1055-7903(03)00010-1
- Jeewon, R., Wanasinghe, D. N., Rampadaruth, S., Puchooa, D., Zhou, L. G., Liu, A. R., et al. (2017). Nomenclatural and identification pitfalls of endophytic mycota based on DNA sequence analyses of ribosomal and protein genes phylogenetic markers: a taxonomic dead end? *Mycosphere* 8, 1802–1817. doi: 10.5943/mycosphere/8/10/7
- Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780. doi: 10.1093/molbev/mst010
- Liu, J. K., Hyde, K. D., Jones, E. B. G., Ariyawansa, H. A., Bhat, D. J., Boonmee, S., et al. (2015). Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. *Fungal Divers*. 72, 1–197. doi: 10.1007/s13225-015-0324-y
- Liu, J. K., Phookamsak, R., Doilom, M., Wikee, S., Li, Y. M., Ariyawansha, H., et al. (2012). Towards a natural classification of Botryosphaeriales. *Fungal Divers*. 57, 149–210. doi: 10.1007/s13225-012-0207-4
- Liu, J. K., Phookamsak, R., Jones, E. B. G., Zhang, Y., Ko-Ko, T. W., Hu, H. L., et al. (2011). Astrosphaeriella is polyphyletic, with species in *Fissuroma* gen. nov., and *Neoastrosphaeriella* gen. nov. *Fungal Divers*. 51, 135–154. doi: 10.1007/s13225-011-0142-9
- Liu, Y. J., Whelen, S., and Hall, B. D. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. *Mol. Biol. Evol.* 16, 1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092
- Lumbsch, H. T., Mangold, A., Lücking, R., García, M. A., and Martín, M. P. (2004). Phylogenetic position of the genera *Nadvornikia* and *Pyrgillus* (Ascomycota) based on molecular data. *Acta Univ. Ups. Symb. Bot.* 34, 10–17.
- Luo, Z. L., Hyde, K. D., Liu, J. K., Bhat, D. J., Bao, D. F., Li, W. L., et al. (2018). Lignicolous freshwater fungi from China II: novel *Distoseptispora* (Distoseptisporaceae) species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. *Mycosphere* 9, 444–461. doi: 10.5943/mycosphere/9/3/2
- Luo, Z. L., Hyde, K. D., Liu, J. K., Maharachchikumbur, S. S. N., Jeewon, R., Bao, D. F., et al. (2019). Freshwater Sordariomycetes. *Fungal Divers*. 99, 451–660. doi: 10.1007/s13225-019-00438-1
- Lutzoni, F., Pagel, M., and Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. *Nature* 411, 937–940. doi: 10.1038/35082053
- Ma, J., Ma, L. G., Zhang, Y. D., Xia, J. W., and Zhang, X. G. (2012). Acrogenospora hainanensis sp. nov. and new records of microfungi from southern China. Mycotaxon 120, 59–66. doi: 10.5248/120.59
- Mason, E. W. (1941). Annotated account of fungi received at the Imperial Mycological Institute. Mycol. Pap. 5, 101–144.
- Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). "Creating the CIPRES Science Gateway for inference of large phylogenetic trees," in *Proceedings of the 2010 Gateway Computing Environments Workshop (GCE)*, New Orleans, LA, 1–8.
- Mugambi, G. K., and Huhndorf, S. M. (2009a). Molecular phylogenetics of Pleosporales: *Melanommataceae* and *Lophiostomataceae* re-circumscribed (*Pleosporomycetidae*, *Dothideomycetes*, Ascomycota). *Stud. Mycol.* 64, 103–121. doi: 10.3114/sim.2009.64.05
- Mugambi, G. K., and Huhndorf, S. M. (2009b). Parallel evolution of hysterothecial ascomata in ascolocularous fungi (Ascomycota, Fungi). *Syst. Biodivers.* 7, 453–464. doi: 10.1017/S147720000999020X

Auguine I. Hofellmore I. Winter N. H

Bao et al.

- Muggiaa, L., Hafellnera, J., Wirtzb, N., Hawksworthc, D. L., and Grubea, M. (2008). The sterile microfilamentous lichenized fungi *Cystocoleus ebeneus* and *Racodium rupestre* are relatives of plant pathogens and clinically important dothidealean fungi. *Mycol. Res.* 112, 50–56. doi: 10.1016/j.mycres.2007. 08.025
- Nelsen, M. P., Lücking, R., Grube, M., Mbatchou, J. S., Muggia, L., RivasPlata, E., et al. (2009). Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. *Stud. Mycol.* 64, 135–144. doi: 10.3114/sim.2009.64.07
- Nelsen, M. P., Lücking, R., Mbatchou, J. S., Andrew, C. J., Spielmann, A. A., and Lumbsch, H. T. (2011). New insights into relationships of lichen-forming Dothideomycetes. *Fungal Divers.* 51, 155–162. doi: 10.1007/s13225-011-0144-7
- Nylander, J. A. A. (2004). *MrModeltest v2 Program Distributed by the Author*. Uppsala: Uppsala University.
- Pang, K. L., Hyde, K. D., Alias, S. A., Suetrong, S., Guo, S. Y., Idid, R., et al. (2013). Dyfrolomycetaceae, a new family in the Dothideomycetes, Ascomycota. *Cryptogam. Mycol.* 34, 223–232. doi: 10.7872/crym.v34.iss3.2013.223
- Phillips, A. J. L., Alves, A., Pennycook, S. R., Johnston, P. R., Ramaley, A., Akulov, A., et al. (2008). Resolving the phylogenetic and taxonomic status of darkspored teleomorph genera in the Botryosphaeriaceae. *Persoonia* 21, 29–55. doi: 10.3767/003158508X340742
- Phookamsak, R., Norphanphoun, C., Tanaka, K., Dai, D. Q., Luo, Z. L., Liu, J. K., et al. (2015). Towards a natural classification of Astrosphaeriella-like species; introducing Astrosphaeriellaceae and Pseudoastrosphaeriellaceae fam. nov. and Astrosphaeriellopsis, gen. nov. Fungal Divers. 74, 143–197. doi: 10.1007/s13225-015-0352-7
- Quaedvlieg, W., Binder, M., Groenewald, J. Z., Summerell, B. A., Carnegie, A. J., Burgess, T. I., et al. (2014). Introducing the Consolidated Species Concept to resolve species in the *Teratosphaeriaceae*. *Persoonia* 33, 1–40. doi: 10.3767/ 003158514X681981
- Raja, H. A., El-Elimat, T., Oberlies, N. H., Shearer, C. A., Miller, A. N., Tanaka, K., et al. (2015). Minutisphaerales (Dothideomycetes, Ascomycota): a new order of freshwater ascomycetes including a new family, Minutisphaeraceae, and two new species from North Carolina, USA. *Mycologia* 107, 845–862. doi: 10.3852/ 15-013
- Raja, H. A., Oberlies, N. H., Figueroa, M., Tanaka, K., Hirayama, K., Hashimoto, A., et al. (2013). Freshwater ascomycetes: *Minutisphaera* (Dothideomycetes) revisited, including one new species from Japan. *Mycologia* 105, 959–976. doi: 10.3852/12-313
- Rakeman, J. L., Lafe, U. B. K., Chen, Y. C., Honeycutt, R. J., and Cookson, B. T. (2005). Multilocus DNA sequence comparisons rapidly identify pathogenic molds. J. Clin. Microbiol. 43, 3324–3333. doi: 10.1128/JCM.43.7.3324-3333. 2005
- Rambaut, A. (2014). *FigTree 1.4.2*. Avaiable at: http://tree.bio.ed.ac.uk/software/ figtree (accessed July 9, 2014).
- Rannala, B., and Yang, Z. (1996). Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43, 304–311. doi: 10.1007/BF02338839
- Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes3: bayesian phylogenetic inference under mixed models. *Bioinformatics* 19, 1572–1574. doi: 10.1093/ bioinformatics/btg180
- Rossman, A. Y., Crous, P. W., Hyde, K. D., Hawksworth, D. L., Aptroot, A., Bezerra, J. L., et al. (2015). Recommended names for pleomorphic genera in Dothideomycetes. *IMA Fungus* 6, 507–523. doi: 10.5598/imafungus.2015.06. 02.14
- Schoch, C. L., Crous, P. W., Groenewald, J. Z., Boehm, E. W. A., Burgess, T. I., de Gruyter, J., et al. (2009). A class wide phylogenetic assessment of Dothideomycetes. *Stud. Mycol.* 64, 1–15. doi: 10.3114/sim.2009. 64.01
- Schoch, C. L., Shoemaker, R. A., Seifert, K. A., Hambleton, S., Spatafora, J. W., and Crous, P. W. (2006). A multigene phylogeny of the Dothideomycetes using four nuclear loci. *Mycologia* 98, 1041–1052. doi: 10.1080/15572536.2006.1183 2632
- Spatafora, J. W., Owensby, C. A., Douhan, G. W., Boehm, E. W. A., and Schoch, C. L. (2012). Phylogenetic placement of the ectomycorrhizal genus *Cenococcum* in Gloniaceae (Dothideomycetes). *Mycologia* 104, 758–765. doi: 10.3852/11-233

- Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22, 2688– 2690. doi: 10.1093/bioinformatics/btl446
- Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Syst. Biol. 75, 758–771. doi: 10.1080/ 10635150802429642
- Stenroos, S., Laukka, T., Huhtinen, S., Döbbeler, P., Myllys, L., Syrjänen, K., et al. (2010). Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. *Cladistics* 26, 281–300. doi: 10.1111/j.1096-0031.2009.00284.x
- Su, X. J., Luo, Z. L., Jeewon, R., Bhat, D. J., Bao, D. F., Li, W. L., et al. (2018). Morphology and multigene phylogeny reveal new genus and species of Torulaceae from freshwater habitats in northwestern Yunnan, China. *Mycol. Prog.* 17, 531–545. doi: 10.1007/s11557-018-1388-3
- Suetrong, S., Sakayaroj, J., Phongpaichit, S., and Jones, E. B. G. (2010). Morphological and molecular characteristics of a poorly known marine ascomycete, *Manglicola guatemalensis* (Jahnulales: Pezizomycotina; Dothideomycetes, *Incertae sedis*): new lineage of marine ascomycetes. *Mycologia* 102, 83–92. doi: 10.3852/07-147
- Suetrong, S., Schoch, C. L., Spatafora, J. W., Kohlmeyer, J., Volkmann-Kohlmeyer, B., Sakayaroj, J., et al. (2009). Molecular systematics of the marine Dothideomycetes. *Stud. Mycol.* 64, 155–173. doi: 10.3114/sim.2009. 64.09
- Swe, A., Jeewon, R., Pointing, S. B., and Hyde, K. D. (2009). Diversity and abundance of nematode-trapping fungi from decaying litter in terrestrial, freshwater and mangrove habitats. *Biodivers. Conserv.* 18, 1695–1714. doi: 10. 1007/s10531-008-9553-7
- Swofford, D. L. (2003). PAUP*. Phylogenetic Analysis Using Parsimony (* and other Methods). Version 4. Sunderland, MA: Sinauer Associates.
- Tanaka, K., Hirayama, K., Yonezawa, H., Hatakeyama, S., Harada, Y., Sano, T., et al. (2009). Molecular taxonomy of bambusicolous fungi: *Tetraplosphaeriaceae*, a new pleosporalean family with *Tetraploa*-like anamorphs. *Stud. Mycol.* 64, 175–209. doi: 10.3114/sim.2009.64.10
- Tang, A. M. C., Jeewon, R., and Hyde, K. D. (2007). Phylogenetic utility of protein (RPB2, B-tubulin) and ribosomal (18S, 28S) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi). Antonie Van Leeuwenhoek 91, 327– 349. doi: 10.1007/s10482-006-9120-8
- Tang, A. M. C., Jeewon, R., and Hyde, K. D. (2009). A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. *Fungal Divers.* 34, 127–155.
- Tangthirasunun, N., Silar, P., Bhat, D. J., Chukeatirote, E., Chuketriote, E., Wijayawarden, E. D. N. N., et al. (2014). Morphology and phylogeny of *Pseudorobillarda eucalypti* sp. nov., from Thailand. *Phytotaxa* 176, 251–259. doi: 10.11646/phytotaxa.176.1.24
- Thomas, K. (1996). "Australian freshwater fungi," in *Introductory Volume to the Fungi (Part2). Fungi of Australian*, ed. C. A. Grgurinovic (Canberra: Australian Biological Resources Study), 1–37.
- Tsui, C. K. M., Hyde, K. D., and Hodgkiss, I. J. (2000). Biodiversity of fungi on submerged wood in Hong Kong streams. Aquat. Microb. Ecol. 21, 289–298. doi: 10.3354/ame021289
- Vijaykrishna, D., and Hyde, K. D. (2006). Inter and intra stream variation of lignicolous freshwater fungi in tropical Australia. *Fungal Divers*. 21, 203–224.
- Vijaykrishna, D., Jeewon, R., and Hyde, K. D. (2005). Fusoidispora aquatica: new freshwater ascomycetes from Hong Kong based on morphology and molecules. Sydowia 57, 267–280.
- Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. J. Bacteriol. Res. 172, 4238–4246. doi: 10.1128/jb.172.8.4238-4246. 1990
- Voglmayr, H., and Jaklitsch, W. M. (2011). Molecular data reveal high host specificity in the phylogenetically isolated genus *Massaria* (Ascomycota, Massariaceae). *Fungal Divers*. 46, 133–170. doi: 10.1007/s13225-010-0078-5
- White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). "Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics," in *PCR Protocols: A Guide To Methods And Applications*, eds G. M. Innis, D. Shinsky, and T. White (San Diego, CA: Academic Press), 315–322. doi: 10.1016/b978-0-12-372180-8.50042-1

- Wijayawardene, N. N., Crous, P. W., Kirk, P. M., Hawksworth, D. L., Boonmee, S., Braun, U., et al. (2014). Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. *Fungal Divers*. 69, 1–55. doi: 10.1007/s13225-014-0309-2
- Wijayawardene, N. N., Hyde, K. D., Al-Ani, L. K. T., Tedersoo, L., Haelewaters, D., Rajeshkumar, K. C., et al. (2020). Outline of fungi and fungal-like taxa. *Mycosphere* 11, 1060–1456. doi: 10.5943/mycosphere/11/1/8
- Wong, K. M. K., Goh, T. K., Hodgkiss, I. J., Hyde, K. D., Ranghoo, V. M., Tsui, C. K. M., et al. (1998). Role of fungi in freshwater ecosystems. *Biodivers Conserv.* 7, 1187–1206. doi: 10.1023/A:1008883716975
- Yang, J., Liu, J. K., Hyde, K. D., Jones, E. B. G., and Liu, Z. Y. (2017). Two new species in Fuscosporellaceae from freshwater habitat in Thailand. *Mycosphere* 8, 1893–1903.
- Zhang, Y., Jeewon, R., Fournier, J., and Hyde, K. D. (2008). Multi-gene phylogeny and morpho-taxonomy of *Amniculicola lignicola*: novel freshwater fungus from France and its relationships to the Pleosporales. *Fungal Biol.* 112, 1186–1194. doi: 10.1016/j.mycres.2008.04.004

Zhu, H., Cai, L., Hyde, K. D., and Zhang, K. Q. (2005). A new species of Acrogenospora from submerged Bamboo in Yunnan, China. Mycotaxon 92, 383–386.

Conflict of Interest: EM was employed by Manaaki Whenua Landcare Research.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Bao, McKenzie, Bhat, Hyde, Luo, Shen and Su. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.