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ABSTRACT
A b-carbonic anhydrase (CA, EC 4.2.1.1) previously annotated to be present in the genome of
Staphylococcus aureus, SauBCA, has been shown to belong to another pathogenic bacterium,
Mammaliicoccus (Staphylococcus) sciuri. This enzyme, MscCA, has been investigated for its activation with a
series of natural and synthetic amino acid and amines, comparing the results with those obtained for the
ortholog enzyme from Escherichia coli, EcoCAb. The best MscCA activators were D-His, L- and D-DOPA, 4-
(2-aminoethyl)-morpholine and L-Asn, which showed KAs of 0.12� 0.89mM. The least efficient activators
were D-Tyr and L-Gln (KAs of 13.9� 28.6mM). The enzyme was also also inhibited by anions and sulphona-
mides, as described earlier. Endogenous CA activators may play a role in bacterial virulence and colonisa-
tion of the host which makes this research topic of great interest.
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1. Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1), the enzymes which catalyse
the interconversion between CO2 and bicarbonate according to
Equations (1) and (2), are widespread in all life kingdoms, includ-
ing Bacteria1–5. Of the eight genetically distinct CA families known
to date, at least four (a-, b-, c- and i-CAs) are present in these
organisms, in which they play crucial roles related to metabolism,
pH regulation, acclimation in different niches in which bacteria
grow, but also pathogenesis and virulence in the case of patho-
genic species4–6.

EZn2þ�OH� þ CO2�EZn2þ�HCO�
3 �þH2O

EZn2þ�OH2 þ HCO�
3 (1)

EZn2þ�OH2�EZn2þ�OH� þ Hþ �rate determining step� (2)

Inhibition of CAs belonging to various classes and organisms
has been exploited pharmacologically for various applications for
the last decdes, mainly by targeting human CA (hCA) isoforms, of
which 15 are presently known7–11. Many such isoforms are targets
for diuretics, antiobesity, antiepileptic, antiglaucoma or antitumor
agents7–11. Inhibition of such enzymes from pathogenic bacteria,
fungi or protozoans was on the other hand proposed as a new
approach to develop antiinfectives with novel mechanisms of
action, devoid of the drug resistant problems of the currently
used agents5,11. Thus, a large number of drug design studies of
CA inhibitors (CAIs) targeting both mammalian and pathogenic
CAs are constantly being reported, mainly based on the tail
approach developed by one of our groups over the last
two decades12.

On the other hand, activation studies of various classes of CAs
have progressed slower compared to the inhibition studies. The
CA activation mechanism was definitively demonstrated at the
molecular level only in 1997 with the report of the first X-ray crys-
tallographic adduct of a CA – activator complex, more precisely
hCA II complexed with histamine13. Thus, Briganti et al.13 demon-
strated that CA activators (CAAs) participate directly in the enzyme
catalytic cycle, as shown schematically in Equation (3), binding in
a different binding site compared to the classical sulphonamide
inhibitors, i.e. at the entrance of the cavity6,13.

EZn2þ�OH2 þ A�½EZn2þ�OH2� A� �½EZn2þ�HO�� AHþ�
�EZn2þ�HO� þ AHþ

enzyme � activator complexes

(3)

Presently, a large number of activation studies of all hCAs are
available with many classes of compounds, and several crystallo-
graphic and drug design studies were also reported14–17.
Furthermore, CAAs may have pharmacological applications for
memory therapy as well as for the treatment of cognitive disor-
ders in need of effective therapies18. Athough this field is still in
its infancy, crucial advances have been made over the last few
years in understanding the connections between fear, extinction/
social memory and CA activation/inhibition17,18.

Non-mammalian CAs activation, mainly described in fungal and
bacterial pathogens started to be investigated only in the last
years, in order to understand whether endo- or exogenic modula-
tors of this enzymatic activity may interfere with virulence, metab-
olism or pathogenicity of these organisms19–21. Indeed, CAs from
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fungi such as Malassezia globosa, Saccharomyces cerevisiae,
Candida albicans, Cryptococcus neoformans, etc., or bacteria such
as Vibrio cholerae, Mycobacterium tuberculosis, Francisella tularensis,
Brucella suis, Escherichia coli, etc., were recently investigated for
their activation profiles with natural and synthetic amines and
amino acid derivatives19–21.

Among the pathogens investigated ultimately for the presence
of druggable CAs, was Staphylococcus aureus, a bacterium known
for its virulence and easy development of drug resistance to a var-
iety of clinically used antibiotics2. In 2016 we identified in the
NCBI database a sequence annotated as encoding for a b-CA in
the genome of S. aureus, which we cloned, characterised and
showed to be susceptible to inhibition with sulphonamides and
anions, two of the most investigated classes of CAIs2. This enzyme,
denominated SauBCA, showed the typical behaviour of a bacterial
b-CA, possessing a significant CO2 hydrase catalytic activity, similar
to those of other such enzymes described earlier in E. coli, M.
tuberculosis, Salmonella enterica (serovar Typhimurium), and many
other pathogenic bacteria by us and other groups1–5. However, a
recent reinvestigation of the database showed that the initial

annotation was erroneous, and that the sequence thought to
belong to the genome of S. aureus, was in fact from another spe-
cies of this genus, Staphylococcus sciuri22. To make things even
more complicated, recently S. sciuri has been moved to another
taxon, Mammaliicoccus sciuri23. Mammaliicoccus (Staphylococcus)
sciuri, is known as a Gram-positive, oxidase-positive, coagulase-
negative member of these infectious bacteria, provoking disease
in humans and animals (it was originally isolated from the squir-
rel)22. In fact, the taxonomy of the Staphylococcaceae family is
rather complex, and as mentioned earlier, many genome annota-
tions were inexact or were overlapping between various genetic-
ally similar species23. However, all these bacteria provoke diseases
in humans and animals and show variable (usually high) degrees
of resistance to clinically used antibiotics22.

Here we report an activation study of the b-CA previously
known as SauBCA, and now renamed here as MscCA, with a series
of amino acids and amines of types 1–24 (Figure 1) previously
investigated as activators of other classes of CAs, including several
bacterial such enzymes19–21. We also compare the obtained results
with those for a similar b-class enzyme from the model orgnisms

Figure 1. Amino acids and amines 1–24 investigated as CAAs in the current article.
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Escherichia coli, EcoCAb, investigated earlier for its activation with
the same class of compounds21c.

2. Materials and methods

2.1. Enzyme production and purification

The protocol described in ref.2 has been used to obtain purified
recombinant MscCA. EcoCAb was also obtained in-house as
reported earlier21c.

2.2. Ca activity/activation measurements

An Sx.18Mv-R Applied Photophysics (Oxford, UK) stopped-flow
instrument has been used to assay the catalytic activity of various
CA isozymes for CO2 hydration reaction24. Phenol red (at a con-
centration of 0.2mM) was used as indicator, working at the
absorbance maximum of 557 nm, with 10mM Hepes (pH 7.5, for
a-CAs)14–16 or TRIS (pH 8.3, for b-CAs)19–21 as buffers, 0.1M NaClO4

(for maintaining constant ionic strength), following the CA-cata-
lyzed CO2 hydration reaction for a period of 10 s at 25 �C. The CO2

concentrations ranged from 1.7 to 17mM for the determination of
the kinetic parameters and inhibition constants. For each activator
at least six traces of the initial 5–10% of the reaction have been
used for determining the initial velocity. The uncatalyzed rates
were determined in the same manner and subtracted from the
total observed rates. Stock solutions of activators (at 0.1mM) were
prepared in distilled-deionized water and dilutions up to 1 nM
were made thereafter with the assay buffer. Enzyme and activator
solutions were pre-incubated together for 15min prior to assay, in
order to allow for the formation of the enzyme–activator com-
plexes. The activation constant (KA), defined similarly with the
inhibition constant KI, can be obtained by considering the classical
Michaelis–Menten equation (Equation 4), which has been fitted by
non-linear least squares by using PRISM 3:

v ¼ vmax=f1þ KM=½S�ð Þ 1þ ½A�f=KA
� �g (4)

where [A]f is the free concentration of activator.
Working at substrate concentrations considerably lower than

KM ([S] �KM), and considering that [A]f can be represented in the
form of the total concentration of the enzyme ([E]t) and activator
([A]t), the obtained competitive steady-state equation for deter-
mining the activation constant is given by Equation (5):

v ¼ v0:KA=fKA þ ð½A�t � 0:5fð½A�t þ ½E�t þ KAÞ�ð½A�t þ ½E�t þ KAÞ2 � 4½A�t:½E�tÞ1=2gg
(5)

where v0 represents the initial velocity of the enzyme-catalyzed
reaction in the absence of activator19–21. Enzyme concentrations
in the assay system were of 7.6� 12.8 nM.

2.3. Reagents

Amines and amino acid derivatives 1–24 were obtained in the
highest purity that was available commercially from Sigma-Aldrich
(Milan, Italy).

3. Results and discussion

The catalytic activity of MscCA is significant for the physiologic
reaction, i.e. hydration of CO2 to bicarbonate, with a kcat of
1.46� 105 s�1 and a Michaelis-Menten constant KM of 5.7mM,
these kinetic parameters being comparable to those of other a- or

b-CAs investigated earlier14,21 (Table 1). The data in Table 1 also
indicates that the presence of L-Trp as an activator does not
change the KM for either of the two enzymes belonging to the
a-class (hCA I/II) as well as for EcoCAb and MscCA, a situation also
observed for all CA classes for which CA activators have been
investigated so far13–17,19–21. In fact, as proven by kinetic and crys-
tallographic data13–18, the activator binds in a different region of
the active site than the site of substrate binding. Thus, the activa-
tor does not influence KM but has an effect only on kcat. Indeed, a
10 mM concentration of L-Trp leads to a 7.5-fold enhancement of
the kinetic constant of MscCA compared to the same parameter
in the absence of the activator (Table 1). For hCA I and II, the
enhancement of the kinetic constant in the presence of L-Trp was
rather modest, as these enzymes have a weaker affinity for this
activator (Table 1). On the other hand, L-Trp has a low micromolar
affinity for MscCA which explains its effective activating effect on
this bacterial enzyme.

Thus, we proceeded with the investigation of activators 1–24
(Figure 1) belonging to the amino acid and amine chemotypes for
understanding their ability to activate MscCA as well as the struc-
ture-activity relationship profiles. In Table 2, the activation con-
stants of these compounds against the target enzyme MscCA as
well as hCA II and II (a-CA enzymes) and EcoCAb (a bacterial
b-CA) are shown, for comparative reasons. The following SAR was
observed for the activation of MscCA:

i. All investigated amines and amin acids showed activating
effects against MscCA, with KAs ranging between 0.12 and
28.6 mM. It has been demonstrated earlier that the activator
binds at the entrance of the CA active site (for a-class
CAs6,13–17) and participates in the rate determining step of
the catalytic cycle, the shuttling of the protons from the zinc
coordinated water molecule to the reaction medium. In this
way the nucleophilic metal hydroxide species of the enzyme
is formed, which enhances the overall catalytic process6,13–17.
Although no X-ray crystal structures of b-CA – activator com-
plexes are known to date, we hypothesise that the activation
mechanism is similar for all CA classes. This is also the reason
why the CAAs possess protonatable moieties of the amino,
imidazole and other heterocycles, or even carboxylate type17,
all of them present also in comounds 1–24 investi-
gated here.

ii. The most effective activators were D-His, 4-amino-L-Phe, L-
and D-DOPA, 4-(2-Aminoethyl)-morpholine and L-Asn, which
showed KAs of 0.12–0.89 mM. These derivatives belong to
three different chemotypes: aromatic amino acids based on
the His/Phe chemotype (3, 5, 6 and 11); heterocylic amines

Table 1. Activation of human carbonic anhydrase (hCA) isozymes I, II, EcoCAb
and MscCA with L-Trp, at 25 �C, for the CO2 hydration reaction25.

kcat� KM� (kcat)L-Trp�� KA��� (mM)
Isozyme (s�1) (mM) (s�1) L-Trp

hCA Ia 2.0� 105 4.0 3.4� 105 44.0
hCA IIa 1.4� 106 9.3 4.9� 106 27.0
EcoCAbb 5.3� 105 12.9 1.8� 106 18.3
MscCAc 1.46� 105 5.7 1.10� 106 1.02
�Observed catalytic rate without activator. KM values in the presence and the
absence of activators were the same for the various CAs (data not shown),��Observed catalytic rate in the presence of 10 mM activator; ���The activation
constant (KA) for each enzyme was obtained by fitting the observed catalytic
enhancements as a function of the activator concentration. All data are mean
from at least three determinations by a stopped-flow, CO2 hydrase method24.
Standard errors were in the range of 5–10% of the reported values (not shown).
aHuman recombinant isozymes, from ref.14; bBacterial recombinant enzyme, from
ref.21c, cThis work.
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incorporating 2-aminoethyl side chains (18) and aliphatic
dicaroxylic amino acid derivative (20). However, other investi-
gated compounds structurally similar to these derivatives
showed weaker CA activating effects, proving that the
molecular recognition between the MscCA active site and
the modulator is governed by many factors, and that small
structural changes in the activator molecule leads to drastic-
ally different activating effects (Table 2). For example D-
DOPA is an effective MscCA activator (KA of 0.40 mM)
whereas the structurally related D-Tyr and D-Phe (with one
and no phenolic OH moieties, respectively) showed weaker
such properties, with KAs of 13.9 and 8.62 mM, respectively.
The same differences can be observed between the structur-
ally related amines 17 and 18, which differ only by the endo-
cyclic X group, with the morpholine derivative 18 being
29.3-times a better activator compared to the piperazine 17.

iii. Most of the investigated activatrs were effective, low micro-
molar activators of MscCA (KAs of 1.02–8.62 mM) – Table 2.
They include compounds 1, 3, 4, 7–9, 12–17, 19, 21–23,
belonging both to the amino acid and amine series. There
seem to be no preference for L- or D-amino acids, since in
some cases the D-enantiomer was a better activator, whereas
in other cases the L-enantiomer showed more effective acti-
vating effects. Furthermore, these activators, as the ones dis-
cussed above, belong to heterogeneous chemotypes, making
the SAR rather difficult to dissect. What is important on the
other fact is that many diverse structural motifs incorporating
proton shuttling moieties of the amino, heterocylic or carbo-
cylate type show these effects.

iv. The least effective activators against MscAC were D-Tyr and
L-Gln, with KAs of 13.9–28.6 mM).

v. The activation profile of MscCA is very different from that of
other bacterial b-CAs, as the E. coli enzyme showed in Table
2, as well as the human isoforms hCA I and II.

4. Conclusions

The b-CA from M. sciuri, previously considered to be present in
the genome of S. aureus, is effectively activated by amines and
amino acids. Furthermore, as described earlier, this enzyme is also
inhibited by anions and sulphonamides2. Recently, G€otz’s group25

performed a thorough analysis regarding the presence of CAs in
the genome of S. aureus and related species, expressing a rather
critical vision regarding our earlier work on SauBCA2 and bacterial
CAs in general3. It is true that we did not investigate in detail
whether the S. aureus genome sequences present in the NCBI
database are all correct, as this is not our main research interest.
However, the experiments and statements in which the N-cyano-
sulphonamide S-0859 is considered as a selective inhibitor of
sodium-bicarbonate cotransporters by G€otz’s group in order to
definitey demonstrate the absence of CAs in this bacterium25 are
inconclusive, since N-cyanosulfonamides also act as rather effect-
ive CAIs26,27. Whether CAs are present only in some members of
the Staphylococcaceae and not in others, is of course highly rele-
vant, but it should be noted that bacteria may encode also for
i-CAs3, which were not searched for in the above-mentioned
study25. What is more relevant according to us, is the fact that our
study and the preceding ones2, although performed on an
enzyme thought to belong to S. aureus but which is actually M.
sciuri, may bring to attention druggable targets which may lead
to antibiotics with a novel mechanism of action. In fact, several
groups showed that inhibition of bacterial CAs represents an
effective and innovative way for fighting drug resistant bacteria4,5,
with all the scepticism from groups as the one mentioned above
that these enzymes could be considered antiinfective drug targets.
As far as we know, resistance to sulphonamide CAIs has not been
registered for any of the investigated bacterial species, although
this phenomenon is erroneously mentioned in ref. 25
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Table 2. Activation constants of hCA I, hCA II and the bacterial enzymes
EcoCAb (E. coli) and MscCA with amino acids and amines 1–24, by a stopped-
flow CO2 hydrase assay24.

No. Compound

KA (mM)�

hCA Ia hCA IIa EcoCAbb MscCAc

1 L-His 0.03 10.9 36.0 5.24
2 D-His 0.09 43 23.7 0.47
3 L-Phe 0.07 0.013 12.0 1.25
4 D-Phe 86 0.035 15.4 8.62
5 L-DOPA 3.1 11.4 10.7 0.89
6 D-DOPA 4.9 7.8 3.14 0.40
7 L-Trp 44 27 18.3 1.02
8 D-Trp 41 12 11.5 3.45
9 L-Tyr 0.02 0.011 9.86 3.81
10 D-Tyr 0.04 0.013 17.9 13.9
11 4-H2N-L-Phe 0.24 0.15 7.34 0.73
12 Histamine 2.1 125 18.5 1.15
13 Dopamine 13.5 9.2 11.3 6.23
14 Serotonin 45 50 2.76 1.08
15 2-Pyridyl-methylamine 26 34 48.7 2.69
16 2-(2-Aminoethyl)pyridine 13 15 17.2 7.94
17 1-(2-Aminoethyl)-piperazine 7.4 2.3 14.1 3.52
18 4-(2-Aminoethyl)-morpholine 0.14 0.19 17.4 0.12
19 L-Adrenaline 0.09 96.0 9.15 5.26
20 L-Asn 11.3 >100 49.5 0.88
21 L-Asp 5.20 >100 18.9 4.67
22 L-Glu 6.43 >100 18.0 3.75
23 D-Glu 10.7 >100 11.4 4.93
24 L-Gln >100 >50 49.2 28.6
�Mean from three determinations by a stopped-flow, CO2 hydrase method25.
Standard errors were in the range of 5–10% of the reported values (data
not shown).
aHuman recombinant isozymes, from ref.14; bBacterial recombinant enzyme,
ref.21; cBacterial recombinant enzyme, this work.
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